Acknowledgements
We thank Professors Jie Bao at the East China University of Science and Technology, Shihui Yang at Hubei University, and Ningyi Zhou at Shanghai Jiao Tong University for donating plasmids for our research.
References
Attwater J, Raguram A, Morgunov AS, et al. (2018). Ribozyme-catalysed RNA synthesis using triplet building blocks. eLife 7: e35255.
Akoopie A, Arriola JT, Magde D, Müller UF. (2020). A GTP-synthesizing ribozyme selected by metabolic coupling to an RNA polymerase ribozyme. Sci Adv 7: eabj7487.
Cao LY, Yang YF, Zhang X, Chen YH, Yao JW, Wang X, Xia J, Römling U, Liu CG, Yang SH, Bai FW. (2022). Deciphering molecular mechanism underlying self-flocculation of Zymomonas mobilis for robust production. Appl Environ Microbiol 88(9): e02398−21.
Carreón-Rodríguez OE, Gutiérrez-Ríos RM, Acosta JL, Martinez A, Cevallos M A. (2019). Phenotypic and genomic analysis of Zymomonas mobilisZM4 mutants with enhanced ethanol tolerance. Biotechnol Rep 23: e00328.
Cherfils J, Zeghouf M. (2011). Chronicles of the GTPase switch. Nat Chem Biol 7: 494−495.
Ciofu O, Moser C, Jensen P, Hǿiby N. (2022). Tolerance and resistance of microbial biofilms. Nat Rev Microbiol 20: 621−635.
Dong HW, Bao J, Ryu DDY, Zhong JJ. (2011). Design and construction of improved new vectors for Zymomonas mobilis recombinants. Biotechnol Bioeng 108: 1616–1627.
Gombert AK, van Maris AJA. (2015). Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes. Curr Opin Biotechnol 33: 81−86.
Gong ZW, Nielsen J, Zhou YJ. (2017). Engineering robustness of microbial cell factories. Biotechnol J 12: 1700014.
Gopinarayanan VE, Nair NU. (2019). Pentose metabolism in Saccharomyces cerevisiae : The need to engineer global regulatory systems. Biotechnol J 14: 1800364.
Guan NZ, Li JH, Shin HD, Du GC, Chen J, Liu L. (2017). Microbial response to environmental stresses: from fundamental mechanisms to practical applications. Appl Microbiol Biotechnol 101: 3991–4008.
Güvener ZT, Harwood CS. (2007). Subcellular location characteristics of the Pseudomonas aeruginosa GGDEF protein, WspR, indicate that it produces cyclic‐di‐GMP in response to growth on surfaces. Mol Microbiol 66: 1459−1473.
Hao LP, Michaelsen TY, Singleton CM, Dottorini G, Kirkegaard RH, Albertsen M, Nielsen PH, Dueholm MS. (2020). Novel syntrophic bacteria in full-scale anaerobic digesters revealed by genome-centric metatranscriptomics. ISME J 14: 906−918.
He MX, Wu B, Qin H, Ruan ZY, Tan FR, Wang JL, Shui ZX, Dai LC, Zhu QL, Pan K, et al. (2014). Zymomonas mobilis : a novel platform for future biorefineries. Biotechnol Biofuels 7 : 101.
Hengge R. High-specificity local and global c-di-GMP signaling. (2021). Trends Microbiol 29: 993−1003.
Hoang T T, Karkhoff-Schweizer R R, Kutchma AJ, Schweizer HP. (1998). A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212: 77−86.
Jenal U, Reinders A, Lori C. (2012). Cyclic di‑GMP: second messenger extraordinaire. Nat Rev Microbiol 15: 217−284.
Jones-Burrage SE, Kremer TA, McKinlay JB. (2019). Cell aggregation and aerobic respiration are important for Zymomonas mobilis ZM4 survival in an aerobic minimal medium. Appl Environ Microbiol 85 (10): e00193-19.
Kuchma SL, Brothers KM, Merritt JH, Liberati NT, Ausubel FM, O’Toole GA. (2007). BifA, a cyclic-di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosaPA14. J Bacteriol 189: 8165−8178.
Ling H, Teo W, Chen BB, Leong SSJ, Chang MW. (2014). Microbial tolerance engineering toward biochemical production: from lignocellulose to products. Curr Opin Biotech 29: 99−106.
Li RX, Shen W, Yang YF, Du J, Li M, Yang SH. (2021). Investigation of the impact of a broad range of temperature on the physiological and transcriptional profile of Zymomonas mobilis ZM4 for high-temperature-tolerant recombinant strain development. Biotechnol Biofuels 14: 146.
Li X, Thomason LC, Sawitzke JA, Costantino N, Court DL. (2013). Positive and negative selection using the tetA-sacB cassette: Recombineering and P1 transduction in Escherichia coli . Nucleic Acids Res 41: e204–e204.
Lindenberg S, Klauck G, Pesavento C, Klauck E, Hengge R. (2013). The EAL domain protein YciR acts as a trigger enzyme in a c‐di‐GMP signalling cascade in E. coli biofilm control. EMBO J 32: 2001−2014.
Lori C, Ozaki S, Steiner S, et al. (2015). Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication. Nature 523: 236−239.
Masuho I, Balaji S, Muntean BS, et al. (2020). A global map of G protein signaling regulation by RGS proteins. Cell 183: 503−521.
Mienda BS, Dräger A. (2021). Genome-scale metabolic modeling of Escherichia coli  and its chassis design for synthetic biology applications. In: Marchisio, MA (eds) Computational methods in synthetic biology. Methods Mol Biol 2189. pp 217−229. Springer Nature.
Mitsui R, Yamada R. (2021). Saccharomyces cerevisiae as a microbial cell factory. In: Singh V (eds) Microbial cell factories engineering for production of biomolecules. pp 319−333. Academic Press.
Morgan JLW, McNamara JT, Zimmer J. (2014). Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat Struct Mol Biol 21: 489−496.
Nesbitt NM, Arora DP, Johnson RA, Boon EM. (2015). Modification of a bi-functional diguanylate cyclase-phosphodiesterase to efficiently produce cyclic diguanylate monophosphate. Biotechnol Rep 7: 30−37.
Nogueira CC, Padilha CEA, Dantas JMM, Medeiros FGM, Guilherme AA, Souza DFS, Santos ES. (2021). In-situ detoxification strategies to boost bioalcohol production from lignocellulosic biomass. Renew Energ 180: 914−936.
Petchiappan A, Naik SY, Chatterji D. (2020). Tracking the homeostasis of second messenger cyclic-di-GMP in bacteria. Biophysical Reviews 12: 719–730.
Puligundla P, Smogrovicova D, Mok C, Obulam VSR. (2019). A review of recent advances in high gravity ethanol fermentation. Renew Energ 133: 1366−1379.
Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R, Braun S, de Vroom E, van der Marel GA, van Boom JH, Benziman M. (1987). Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325: 279−281.
Rutkis R, Strazdina I, Balodite E, Lasa Z, Galinina N, Kalnenieks U. (2016). The low energy-coupling respiration in Zymomonas mobilisaccelerates flux in the Entner-Doudoroff pathway. PLoS One 11: e0153866.
Rumbaugh KP, Sauer K. (2020). Biofilm dispersion. Nat Rev Microbiol 18: 571−586.
Saunders AM, Albertsen M, Vollertsen J, Nielsen PH. (2016). The activated sludge ecosystem contains a core community of abundant organisms. ISME J 10: 11−20.
Schirmer T. (2016). c-di-GMP synthesis: Structural aspects of evolution, catalysis and regulation. J Mol Biol 428: 3683–3701.
Thongsomboon W, Werby SH, Cegelski L. (2020). Evaluation of phosphoethanolamine cellulose production among bacterial communities using Congo red fluorescence. J Bacteriol 202: e00030-20.
Trivedi A, Mavi PS, Bhatt D, Kumar A. (2016). Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis . Nat Commun 7: 1−15.
Ute Römling U, Amikam D. (2006). Cyclic di-GMP as a second messenger. Curr Opin Microbiol 9: 218−228.
Wilén BM, Liébana R, Persson F, Modin O, Hermansson M. (2018). The mechanisms of granulation of activated sludge in wastewater treatment, its optimization, and impact on effluent quality. Appl Microbiol Biotechnol 102: 5005−5020.
Wolff DW, Bianchi-Smiraglia A, Nikiforov MA. (2022). Compartmentalization and regulation of GTP in control of cellular phenotypes. Trends Mol Med 28: 758−769.
Xia J, Yang YF, Liu CG, Yang SH, Bai FW. (2019). EngineeringZymomonas mobilis for robust cellulosic ethanol production. Trends Biotechnol 37: 960−972.
Xia J, Liu CG, Zhao XQ, Xiao Y, Xia XX, Bai FW. (2018). Contribution of cellulose synthesis, formation of fibrils and their entanglement to the self-flocculation of Zymomonas mobilis . Biotechnol Bioeng 115: 2714−2725.
Xu J, Kim J, Koestler BJ, Choi JH, Waters CM, Fuqua C. (2013). Genetic analysis of A grobacterium tumefaciens unipolar polysaccharide production reveals complex integrated control of the motile-to-sessile switch. Mol Microbiol 89: 929−948.
Yang Q, Yang Y, Tang Y, Wang X, Chen Y, Shen W, Zhan Y, Gao J, Wu B, He MX, Chen SW, Yang SH. (2020). Development and characterization of acidic-pH-tolerant mutants of Zymomonas mobilis through adaptation and next-generation sequencing-based genome resequencing and RNA-Seq. Biotechnol Biofuels 13: 1−17.
Yang S, Mohagheghi A, Franden MA, Chou YC, Chen X, Dowe N, Himmel ME, Zhang M. (2016). Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars.Biotechnol Biofuels 9:189.
Zhang M, Eddy C, Deanda K, Finkelstei M, Picataggio S. (1995). Metabolic engineering of a pentose metabolism pathway in ethanologenicZymomonas mobilis . Science 67(5195): 240−243.
Zhao N, Bai Y, Liu CG, Zhao XQ, Xu JF, Ba FW. (2014). FlocculatingZymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass. Biotechnol J 9: 362−371.
Zhao XQ, Bai FW. (2009). Yeast flocculation: New story in fuel ethanol production. Biotechnol Adv 27: 849−856.
Table 1 Protein domains predicted for c-di-GMP metabolism inZ. mobilis (ZM4).