Acknowledgements
We thank Professors Jie Bao at the East China University of Science and
Technology, Shihui Yang at Hubei University, and Ningyi Zhou at Shanghai
Jiao Tong University for donating plasmids for our research.
References
Attwater J, Raguram A, Morgunov AS, et al. (2018). Ribozyme-catalysed
RNA synthesis using triplet building blocks. eLife 7: e35255.
Akoopie A, Arriola JT, Magde D, Müller UF. (2020). A GTP-synthesizing
ribozyme selected by metabolic coupling to an RNA polymerase ribozyme.
Sci Adv 7: eabj7487.
Cao LY, Yang YF, Zhang X, Chen YH, Yao JW, Wang X, Xia J, Römling U, Liu
CG, Yang SH, Bai FW. (2022). Deciphering molecular mechanism underlying
self-flocculation of Zymomonas mobilis for robust production.
Appl Environ Microbiol 88(9): e02398−21.
Carreón-Rodríguez OE, Gutiérrez-Ríos RM, Acosta JL, Martinez A, Cevallos
M A. (2019). Phenotypic and genomic analysis of Zymomonas mobilisZM4 mutants with enhanced ethanol tolerance. Biotechnol Rep 23: e00328.
Cherfils J, Zeghouf M. (2011). Chronicles of the GTPase switch. Nat Chem
Biol 7: 494−495.
Ciofu O, Moser C, Jensen P, Hǿiby N. (2022). Tolerance and resistance of
microbial biofilms. Nat Rev Microbiol 20: 621−635.
Dong HW, Bao J, Ryu DDY, Zhong JJ. (2011). Design and construction of
improved new vectors for Zymomonas mobilis recombinants.
Biotechnol Bioeng 108: 1616–1627.
Gombert AK, van Maris AJA. (2015). Improving conversion yield of
fermentable sugars into fuel ethanol in 1st generation yeast-based
production processes. Curr Opin Biotechnol 33: 81−86.
Gong ZW, Nielsen J, Zhou YJ. (2017). Engineering robustness of microbial
cell factories. Biotechnol J 12: 1700014.
Gopinarayanan VE, Nair NU. (2019). Pentose metabolism
in Saccharomyces cerevisiae : The need to engineer global
regulatory systems. Biotechnol J 14: 1800364.
Guan NZ, Li JH, Shin HD, Du GC, Chen J, Liu L. (2017). Microbial
response to environmental stresses: from fundamental mechanisms to
practical applications. Appl Microbiol Biotechnol 101: 3991–4008.
Güvener ZT, Harwood CS. (2007).
Subcellular location characteristics of the Pseudomonas
aeruginosa GGDEF protein, WspR, indicate that it produces cyclic‐di‐GMP
in response to growth on surfaces. Mol Microbiol 66: 1459−1473.
Hao LP, Michaelsen TY, Singleton CM, Dottorini G, Kirkegaard RH,
Albertsen M, Nielsen PH, Dueholm MS. (2020). Novel syntrophic bacteria
in full-scale anaerobic digesters revealed by genome-centric
metatranscriptomics. ISME J 14: 906−918.
He MX, Wu B, Qin H, Ruan ZY, Tan FR, Wang JL, Shui ZX, Dai LC, Zhu QL,
Pan K, et al. (2014). Zymomonas mobilis : a novel platform for
future biorefineries. Biotechnol Biofuels 7 : 101.
Hengge R. High-specificity local and global c-di-GMP signaling. (2021).
Trends Microbiol 29: 993−1003.
Hoang T T, Karkhoff-Schweizer R R, Kutchma AJ, Schweizer HP. (1998). A
broad-host-range Flp-FRT recombination system for site-specific excision
of chromosomally-located DNA sequences: application for isolation of
unmarked Pseudomonas aeruginosa mutants. Gene 212: 77−86.
Jenal U, Reinders A, Lori C. (2012). Cyclic di‑GMP: second messenger
extraordinaire. Nat Rev Microbiol 15: 217−284.
Jones-Burrage SE, Kremer TA, McKinlay JB. (2019). Cell aggregation and
aerobic respiration are important for Zymomonas mobilis ZM4
survival in an aerobic minimal
medium. Appl Environ Microbiol 85 (10): e00193-19.
Kuchma SL, Brothers KM, Merritt JH, Liberati NT, Ausubel FM, O’Toole GA.
(2007). BifA, a cyclic-di-GMP phosphodiesterase, inversely regulates
biofilm formation and swarming motility by Pseudomonas aeruginosaPA14. J Bacteriol 189: 8165−8178.
Ling H, Teo W, Chen BB, Leong SSJ, Chang MW. (2014). Microbial tolerance
engineering toward biochemical production: from lignocellulose to
products. Curr Opin Biotech 29: 99−106.
Li RX, Shen W, Yang YF, Du J, Li M, Yang SH. (2021). Investigation
of the impact of a broad range of temperature on the physiological
and transcriptional profile of Zymomonas mobilis ZM4
for high-temperature-tolerant recombinant strain development. Biotechnol
Biofuels 14: 146.
Li X, Thomason LC, Sawitzke JA, Costantino N, Court DL. (2013). Positive
and negative selection using the tetA-sacB cassette: Recombineering and
P1 transduction in Escherichia coli . Nucleic Acids Res 41:
e204–e204.
Lindenberg S, Klauck G, Pesavento C, Klauck E, Hengge R. (2013). The EAL
domain protein YciR acts as a trigger enzyme in a c‐di‐GMP signalling
cascade in E. coli biofilm control. EMBO J 32: 2001−2014.
Lori C, Ozaki S, Steiner S, et al. (2015). Cyclic di-GMP acts as a cell
cycle oscillator to drive chromosome replication. Nature 523: 236−239.
Masuho I, Balaji S, Muntean BS, et al. (2020). A global map of G protein
signaling
regulation by RGS proteins. Cell 183: 503−521.
Mienda BS, Dräger A. (2021). Genome-scale metabolic modeling
of Escherichia coli and its chassis design for synthetic biology
applications. In: Marchisio, MA (eds) Computational methods in synthetic
biology. Methods Mol Biol 2189. pp 217−229. Springer Nature.
Mitsui R, Yamada R. (2021). Saccharomyces cerevisiae as a
microbial cell factory. In: Singh V (eds) Microbial cell factories
engineering for production of biomolecules. pp 319−333. Academic Press.
Morgan JLW, McNamara JT, Zimmer J. (2014). Mechanism of activation of
bacterial cellulose synthase by cyclic di-GMP. Nat Struct Mol Biol 21:
489−496.
Nesbitt NM, Arora DP, Johnson RA, Boon EM. (2015). Modification of a
bi-functional diguanylate cyclase-phosphodiesterase to efficiently
produce cyclic diguanylate monophosphate. Biotechnol Rep 7: 30−37.
Nogueira CC, Padilha CEA, Dantas JMM, Medeiros FGM, Guilherme AA, Souza
DFS, Santos ES. (2021). In-situ detoxification strategies to boost
bioalcohol production from lignocellulosic biomass. Renew Energ 180:
914−936.
Petchiappan A, Naik SY, Chatterji D. (2020). Tracking the homeostasis of
second messenger cyclic-di-GMP in bacteria. Biophysical Reviews 12:
719–730.
Puligundla P, Smogrovicova D, Mok C, Obulam VSR. (2019). A review of
recent advances in high gravity ethanol fermentation. Renew Energ 133:
1366−1379.
Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R,
Braun S, de Vroom E, van der Marel GA, van Boom JH, Benziman M. (1987).
Regulation of cellulose synthesis in Acetobacter xylinum by
cyclic diguanylic acid. Nature 325: 279−281.
Rutkis R, Strazdina I, Balodite E, Lasa Z, Galinina N, Kalnenieks U.
(2016). The low energy-coupling respiration in Zymomonas mobilisaccelerates flux in the Entner-Doudoroff pathway. PLoS One 11: e0153866.
Rumbaugh KP, Sauer K. (2020). Biofilm dispersion. Nat Rev Microbiol 18:
571−586.
Saunders AM, Albertsen M, Vollertsen J, Nielsen PH. (2016). The
activated sludge ecosystem contains a core community of abundant
organisms. ISME J 10: 11−20.
Schirmer T. (2016). c-di-GMP synthesis: Structural aspects of evolution,
catalysis and regulation. J Mol Biol 428: 3683–3701.
Thongsomboon W, Werby SH, Cegelski
L. (2020). Evaluation of phosphoethanolamine cellulose production among
bacterial communities using Congo red fluorescence. J Bacteriol 202:
e00030-20.
Trivedi A, Mavi PS, Bhatt D, Kumar A. (2016). Thiol reductive stress
induces cellulose-anchored biofilm formation in Mycobacterium
tuberculosis . Nat Commun 7: 1−15.
Ute Römling U, Amikam D. (2006). Cyclic di-GMP as a second messenger.
Curr Opin Microbiol 9: 218−228.
Wilén BM, Liébana R, Persson F, Modin O, Hermansson M. (2018). The
mechanisms of granulation of activated sludge in wastewater treatment,
its optimization, and impact on effluent quality. Appl Microbiol
Biotechnol 102: 5005−5020.
Wolff DW, Bianchi-Smiraglia A, Nikiforov MA. (2022).
Compartmentalization and regulation of GTP in control of cellular
phenotypes. Trends Mol Med 28: 758−769.
Xia J, Yang YF, Liu CG, Yang SH, Bai FW. (2019). EngineeringZymomonas mobilis for robust cellulosic ethanol production.
Trends Biotechnol 37: 960−972.
Xia J, Liu CG, Zhao XQ, Xiao Y, Xia XX, Bai FW. (2018). Contribution of
cellulose synthesis, formation of fibrils and their entanglement to the
self-flocculation of Zymomonas mobilis . Biotechnol Bioeng
115: 2714−2725.
Xu J, Kim J, Koestler BJ, Choi JH, Waters CM, Fuqua C. (2013). Genetic
analysis of A grobacterium tumefaciens unipolar polysaccharide
production reveals complex integrated control of the motile-to-sessile
switch. Mol Microbiol 89: 929−948.
Yang Q, Yang Y, Tang Y, Wang X, Chen Y, Shen W, Zhan Y, Gao J, Wu B, He
MX, Chen SW, Yang SH. (2020). Development and characterization of
acidic-pH-tolerant mutants of Zymomonas mobilis through
adaptation and next-generation sequencing-based genome resequencing and
RNA-Seq. Biotechnol Biofuels 13: 1−17.
Yang S, Mohagheghi A, Franden MA, Chou YC, Chen X, Dowe N, Himmel ME,
Zhang M. (2016). Metabolic engineering of Zymomonas mobilis for
2,3-butanediol production from lignocellulosic biomass sugars.Biotechnol Biofuels 9:189.
Zhang M, Eddy C, Deanda K, Finkelstei M, Picataggio S. (1995). Metabolic
engineering of a pentose metabolism pathway in ethanologenicZymomonas mobilis . Science 67(5195): 240−243.
Zhao N, Bai Y, Liu CG, Zhao XQ, Xu JF, Ba FW. (2014). FlocculatingZymomonas mobilis is a promising host to be engineered for fuel
ethanol production from lignocellulosic biomass. Biotechnol J 9:
362−371.
Zhao XQ, Bai FW. (2009). Yeast flocculation: New story in fuel ethanol
production. Biotechnol Adv 27: 849−856.
Table 1 Protein domains predicted for c-di-GMP metabolism inZ. mobilis (ZM4).