References
1. Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look
AT, et al. Human aminopeptidase N is a receptor for human coronavirus
229E. Nature. 1992;357(6377):420–2.
2. Bertram S, Dijkman R, Habjan M, Heurich A, Gierer S, Glowacka I, et
al. TMPRSS2 Activates the Human Coronavirus 229E for
Cathepsin-Independent Host Cell Entry and Is Expressed in Viral Target
Cells in the Respiratory Epithelium. J Virol. 2013 Jun
1;87(11):6150–60.
3. Bonavia A, Arbour N, Yong VW, Talbot PJ. Infection of primary
cultures of human neural cells by human coronaviruses 229E and OC43. J
Virol. 1997 Jan;71(1):800–6.
4. Collins AR. HLA Class I Antigen Serves as a Receptor for Human
Coronavirus OC43. Immunol Invest. 1993 Jan 7;22(2):95–103.
5. Vlasak R, Luytjes W, Spaan W, Palese P. Human and bovine
coronaviruses recognize sialic acid-containing receptors similar to
those of influenza C viruses. Proc Natl Acad Sci. 1988 Jun
1;85(12):4526–9.
6. Marzi A, Gramberg T, Simmons G, Möller P, Rennekamp AJ, Krumbiegel M,
et al. DC-SIGN and DC-SIGNR Interact with the Glycoprotein of Marburg
Virus and the S Protein of Severe Acute Respiratory Syndrome
Coronavirus. J Virol. 2004 Nov 1;78(21):12090 LP – 12095.
7. Jeffers SA, Tusell SM, Gillim-Ross L, Hemmila EM, Achenbach JE,
Babcock GJ, et al. CD209L (L-SIGN) is a receptor for severe acute
respiratory syndrome coronavirus. Proc Natl Acad Sci U S A. 2004 Nov
2;101(44):15748–53.
8. Hofmann H, Pyrc K, Van Der Hoek L, Geier M, Berkhout B, Pöhlmann S.
Human coronavirus NL63 employs the severe acute respiratory syndrome
coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A. 2005
May 31;102(22):7988–93.
9. Chan CM, Lau SKP, Woo PCY, Tse H, Zheng B-J, Chen L, et al.
Identification of Major Histocompatibility Complex Class I C Molecule as
an Attachment Factor That Facilitates Coronavirus HKU1 Spike-Mediated
Infection. J Virol. 2009 Jan 15;83(2):1026–35.
10. Millet JK, Whittaker GR. Host cell entry of Middle East respiratory
syndrome coronavirus after two-step, furin-mediated activation of the
spike protein. Proc Natl Acad Sci. 2014 Oct 21;111(42):15214 LP –
15219.
11. Hoffmann M, Kleine-Weber H, Pöhlmann S. A Multibasic Cleavage Site
in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human
Lung Cells. Mol Cell. 2020 May;78(4):779-784.e5.
12. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and
immunologic features in severe and moderate Coronavirus Disease 2019. J
Clin Invest. 2020 Mar 27.
13. Rokkas T. Gastrointestinal involvement in COVID-19: a systematic
review and meta-analysis. Ann Gastroenterol. 2020.
14. Hendren NS, Drazner MH, Bozkurt B, Cooper LT. Description and
Proposed Management of the Acute COVID-19 Cardiovascular Syndrome.
Circulation. 2020;141(23):1903–14.
15. Ellul MA, Benjamin L, Singh B, Lant S, Michael BD, Easton A, et al.
Neurological associations of COVID-19. Lancet Neurol. 2020 Jul;
16. Yoshimoto FK. The Proteins of Severe Acute Respiratory Syndrome
Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19. Protein J.
2020;39(3):198–216.
17. Thevarajan I, Nguyen THO, Koutsakos M, Druce J, Caly L, van de Sandt
CE, et al. Breadth of concomitant immune responses prior to patient
recovery: a case report of non-severe COVID-19. Nat Med. 2020 Apr
16;26(4):453–5.
18. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR,
et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans
with COVID-19 Disease and Unexposed Individuals. Cell. 2020
Jun;181(7):1489-1501.e15.
19. De Biasi S, Meschiari M, Gibellini L, Bellinazzi C, Borella R,
Fidanza L, et al. Marked T cell activation, senescence, exhaustion and
skewing towards TH17 in patients with COVID-19 pneumonia. Nat Commun.
2020 Dec 6;11(1):3434.
20. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic
characterisation and epidemiology of 2019 novel coronavirus:
implications for virus origins and receptor binding. Lancet. 2020
Feb;395(10224):565–74.
21. Daly JL, Simonetti B, Antón-Plágaro C, Kavanagh Williamson M,
Shoemark DK, Simón-Gracia L, et al. Neuropilin-1 is a host factor for
SARS-CoV-2 infection. bioRxiv. 2020 Jan 1;2020.06.05.134114.
22. Grant OC, Montgomery D, Ito K, Woods RJ. 3D Models of glycosylated
SARS-CoV-2 spike protein suggest challenges and opportunities for
vaccine development. bioRxiv. 2020 Jan 1;2020.04.07.030445.
23. Walls AC, Tortorici MA, Frenz B, Snijder J, Li W, Rey FA, et al.
Glycan shield and epitope masking of a coronavirus spike protein
observed by cryo-electron microscopy. Nat Struct Mol Biol. 2016
Oct;23(10):899–905.
24. Liu DX, Fung TS, Chong KK-L, Shukla A, Hilgenfeld R. Accessory
proteins of SARS-CoV and other coronaviruses. Antiviral Res. 2014
Sep;109:97–109.
25. Xia X. Extreme genomic CpG deficiency in SARS-CoV-2 and evasion of
host antiviral defense. Mol Biol Evol. 2020 Apr 14;msaa094.
26. Decroly E, Debarnot C, Ferron F, Bouvet M, Coutard B, Imbert I, et
al. Crystal Structure and Functional Analysis of the SARS-Coronavirus
RNA Cap 2′-O-Methyltransferase nsp10/nsp16 Complex. Rey FA, editor. PLoS
Pathog. 2011 May 26;7(5):e1002059.
27. Menachery VD, Yount BL, Josset L, Gralinski LE, Scobey T,
Agnihothram S, et al. Attenuation and Restoration of Severe Acute
Respiratory Syndrome Coronavirus Mutant Lacking 2’-O-Methyltransferase
Activity. J Virol. 2014 Apr 15;88(8):4251–64.
28. Deng X, Hackbart M, Mettelman RC, O’Brien A, Mielech AM, Yi G, et
al. Coronavirus nonstructural protein 15 mediates evasion of dsRNA
sensors and limits apoptosis in macrophages. Proc Natl Acad Sci U S A.
2017 May 23;114(21):E4251–60.
29. Posthuma CC, te Velthuis AJW, Snijder EJ. Nidovirus RNA polymerases:
Complex enzymes handling exceptional RNA genomes. Virus Res. 2017
Apr;234:58–73.
30. Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific
glycan analysis of the SARS-CoV-2 spike. Science. 2020 May 4;eabb9983.
31. Fung TS, Liu DX. Post-translational modifications of coronavirus
proteins: roles and function. Future Virol. 2018 Jun;13(6):405–30.
32. Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, et al. Inhibition of
SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent
pan-coronavirus fusion inhibitor targeting its spike protein that
harbors a high capacity to mediate membrane fusion. Cell Res. 2020 Apr
30;30(4):343–55.
33. Báez-Santos YM, St. John SE, Mesecar AD. The SARS-coronavirus
papain-like protease: Structure, function and inhibition by designed
antiviral compounds. Antiviral Res. 2015 Mar;115:21–38.
34. Jauregui AR, Savalia D, Lowry VK, Farrell CM, Wathelet MG.
Identification of Residues of SARS-CoV nsp1 That Differentially Affect
Inhibition of Gene Expression and Antiviral Signaling. Li K, editor.
PLoS One. 2013 Apr 29;8(4):e62416.
35. Wathelet MG, Orr M, Frieman MB, Baric RS. Severe Acute Respiratory
Syndrome Coronavirus Evades Antiviral Signaling: Role of nsp1 and
Rational Design of an Attenuated Strain. J Virol. 2007 Nov
1;81(21):11620–33.
36. Kamitani W, Narayanan K, Huang C, Lokugamage K, Ikegami T, Ito N, et
al. Severe acute respiratory syndrome coronavirus nsp1 protein
suppresses host gene expression by promoting host mRNA degradation. Proc
Natl Acad Sci. 2006 Aug 22;103(34):12885 LP – 12890.
37. Angelini MM, Akhlaghpour M, Neuman BW, Buchmeier MJ. Severe Acute
Respiratory Syndrome Coronavirus Nonstructural Proteins 3, 4, and 6
Induce Double-Membrane Vesicles. Moscona A, editor. MBio. 2013 Aug
13;4(4).
38. Kopecky-Bromberg SA, Martínez-Sobrido L, Frieman M, Baric RA, Palese
P. Severe acute respiratory syndrome coronavirus open reading frame
(ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon
antagonists. J Virol. 2006/11/15. 2007 Jan;81(2):548–57.
39. Ma Y, Wu L, Shaw N, Gao Y, Wang J, Sun Y, et al. Structural basis
and functional analysis of the SARS coronavirus nsp14-nsp10 complex.
Proc Natl Acad Sci U S A. 2015/07/09. 2015 Jul 28;112(30):9436–41.
40. Li Q, Wang L, Dong C, Che Y, Jiang L, Liu L, et al. The interaction
of the SARS coronavirus non-structural protein 10 with the cellular
oxido-reductase system causes an extensive cytopathic effect. J Clin
Virol. 2005 Oct;34(2):133–9.
41. Ivanov KA, Thiel V, Dobbe JC, van der Meer Y, Snijder EJ, Ziebuhr J.
Multiple Enzymatic Activities Associated with Severe Acute Respiratory
Syndrome Coronavirus Helicase. J Virol. 2004 Jun 1;78(11):5619–32.
42. Menachery VD, Debbink K, Baric RS. Coronavirus non-structural
protein 16: Evasion, attenuation, and possible treatments. Virus Res.
2014 Dec;194:191–9.
43. Chen X, Yang X, Zheng Y, Yang Y, Xing Y, Chen Z. SARS coronavirus
papain-like protease inhibits the type I interferon signaling pathway
through interaction with the STING-TRAF3-TBK1 complex. Protein Cell.
2014 May 14;5(5):369–81.
44. Taylor JK, Coleman CM, Postel S, Sisk JM, Bernbaum JG, Venkataraman
T, et al. Severe Acute Respiratory Syndrome Coronavirus ORF7a Inhibits
Bone Marrow Stromal Antigen 2 Virion Tethering through a Novel Mechanism
of Glycosylation Interference. J Virol. 2015 Dec;89(23):11820–33.
45. Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, et al. Cell entry
mechanisms of SARS-CoV-2. Proc Natl Acad Sci. 2020 May
26;117(21):11727–34.
46. Imai Y, Kuba K, Penninger JM. The discovery of
angiotensin-converting enzyme 2 and its role in acute lung injury in
mice. Exp Physiol. 2008 May 1;93(5):543–8.
47. Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, et al.
Complement associated microvascular injury and thrombosis in the
pathogenesis of severe COVID-19 infection: A report of five cases.
Transl Res. 2020 Jun;220:1–13.
48. Ramlall V, Thangaraj P, Meydan C, Foox J, Butler D, May B, et al.
Identification of Immune complement function as a determinant of adverse
SARS-CoV-2 infection outcome. medRxiv. 2020 Jan 1;2020.05.05.20092452.
49. Ip WKE, Chan KH, Law HKW, Tso GHW, Kong EKP, Wong WHS, et al.
Mannose-Binding Lectin in Severe Acute Respiratory Syndrome Coronavirus
Infection. J Infect Dis. 2005 May 15;191(10):1697–704.
50. Hattori R., Hamilton K.K., McEver R.P. SPJ. Complement proteins
C5b-9 induce secretion of high molecular weight multimers of endothelial
von Willebrand factor and translocation of granule membrane protein
GMP-140 to the cell surface. J Biol Chem. 1989;264:9053–9060.
51. de Bont CM, Boelens WC, Pruijn GJM. NETosis, complement, and
coagulation: a triangular relationship. Cell Mol Immunol. 2019 Jan
23;16(1):19–27.
52. Gralinski LE, Sheahan TP, Morrison TE, Menachery VD, Jensen K, Leist
SR, et al. Complement Activation Contributes to Severe Acute Respiratory
Syndrome Coronavirus Pathogenesis. Subbarao K, editor. MBio. 2018 Oct
9;9(5).
53. Choudhury A, Mukherjee S. In silico studies on the comparative
characterization of the interactions of SARS‐CoV‐2 spike glycoprotein
with ACE‐2 receptor homologs and human TLRs. J Med Virol. 2020 May
17;jmv.25987.
54. Dosch SF, Mahajan SD, Collins AR. SARS coronavirus spike
protein-induced innate immune response occurs via activation of the
NF-κB pathway in human monocyte macrophages in vitro. Virus Res. 2009
Jun;142(1–2):19–27.
55. Totura AL, Whitmore A, Agnihothram S, Schäfer A, Katze MG, Heise MT,
et al. Toll-Like Receptor 3 Signaling via TRIF Contributes to a
Protective Innate Immune Response to Severe Acute Respiratory Syndrome
Coronavirus Infection. Lipkin WI, editor. MBio. 2015 May 26;6(3).
56. Ma Z, Damania B. The cGAS-STING Defense Pathway and Its
Counteraction by Viruses. Cell Host Microbe. 2016 Feb;19(2):150–8.
57. Berthelot J-M, Lioté F. COVID-19 as a STING disorder with delayed
over-secretion of interferon-beta. EBioMedicine. 2020 Jun;56:102801.
58. Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, Montealegre Sanchez
GA, et al. Activated STING in a Vascular and Pulmonary Syndrome. N Engl
J Med. 2014 Aug 7;371(6):507–18.
59. Bai J, Liu F. The cGAS-cGAMP-STING Pathway: A Molecular Link Between
Immunity and Metabolism. Diabetes. 2019 Jun 20;68(6):1099–108.
60. Xie J, Li Y, Shen X, Goh G, Zhu Y, Cui J, et al. Dampened
STING-Dependent Interferon Activation in Bats. Cell Host Microbe. 2018
Mar;23(3):297-301.e4.
61. Chen G, Chen D, Li J, Czura CJ, Tracey KJ, Sama AE, et al.
Pathogenic role of HMGB1 in SARS? Med Hypotheses. 2004 Jan;63(4):691–5.
62. Schaefer L. Complexity of Danger: The Diverse Nature of
Damage-associated Molecular Patterns. J Biol Chem. 2014 Dec
19;289(51):35237–45.
63. Vogel S, Bodenstein R, Chen Q, Feil S, Feil R, Rheinlaender J, et
al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin
Invest. 2015 Nov 9;125(12):4638–54.
64. Andersson U, Ottestad W, Tracey KJ. Extracellular HMGB1: a
therapeutic target in severe pulmonary inflammation including COVID-19?
Mol Med. 2020 Dec 7;26(1):42.
65. Nieto-Torres JL, DeDiego ML, Verdiá-Báguena C, Jimenez-Guardeño JM,
Regla-Nava JA, Fernandez-Delgado R, et al. Severe Acute Respiratory
Syndrome Coronavirus Envelope Protein Ion Channel Activity Promotes
Virus Fitness and Pathogenesis. Denison MR, editor. PLoS Pathog. 2014
May 1;10(5):e1004077.
66. Nieto-Torres JL, Verdiá-Báguena C, Jimenez-Guardeño JM, Regla-Nava
JA, Castaño-Rodriguez C, Fernandez-Delgado R, et al. Severe acute
respiratory syndrome coronavirus E protein transports calcium ions and
activates the NLRP3 inflammasome. Virology. 2015 Nov;485:330–9.
67. Xiong Y, Liu Y, Cao L, Wang D, Guo M, Jiang A, et al. Transcriptomic
characteristics of bronchoalveolar lavage fluid and peripheral blood
mononuclear cells in COVID-19 patients. Emerg Microbes Infect. 2020 Jan
1;9(1):761–70.
68. Bost P, Giladi A, Liu Y, Bendjelal Y, Xu G, David E, et al.
Host-Viral Infection Maps Reveal Signatures of Severe COVID-19 Patients.
Cell. 2020 Jun;181(7):1475-1488.e12.
69. Li J, Guo M, Tian X, Wang X, Yang X, Wu P, et al. Virus-host
interactome and proteomic survey of PBMCs from COVID-19 patients reveal
potential virulence factors influencing SARS-CoV-2 pathogenesis. Med
(New York, N.Y). 2020 Jul 21.
70. Law HKW, Cheung CY, Ng HY, Sia SF, Chan YO, Luk W, et al. Chemokine
up-regulation in SARS-coronavirus–infected, monocyte-derived human
dendritic cells. Blood. 2005 Oct 1;106(7):2366–74.
71. Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine
storm in COVID-19: An overview of the involvement of the
chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020
Jun;53:25–32.
72. Blanco-Melo D, Nilsson-Payant BE, Liu W-C, Uhl S, Hoagland D, Møller
R, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of
COVID-19. Cell. 2020 May;181(5):1036-1045.e9.
73. Schönrich G, Raftery MJ, Samstag Y. Devilishly radical NETwork in
COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T
cell suppression. Adv Biol Regul. 2020 Aug;77:100741.
74. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R,
Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in
COVID-19. Lancet. 2020 May;395(10234):1417–8.
75. He L, Mäe MA, Sun Y, Muhl L, Nahar K, Liébanas EV, et al.
Pericyte-specific vascular expression of SARS-CoV-2 receptor ACE2 –
implications for microvascular inflammation and hypercoagulopathy in
COVID-19 patients. bioRxiv. 2020 Jan 1;2020.05.11.088500.
76. Cardot-Leccia N, Hubiche T, Dellamonica J, Burel-Vandenbos F,
Passeron T. Pericyte alteration sheds light on micro-vasculopathy in
COVID-19 infection. Intensive Care Med. 2020 Jun 12.
77. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the
Coronavirus Disease 2019 (COVID-19) Outbreak in China. JAMA. 2020 Apr
7;323(13):1239.
78. Molony RD, Malawista A, Montgomery RR. Reduced dynamic range of
antiviral innate immune responses in aging. Exp Gerontol. 2018
Jul;107:130–5.
79. Cannizzo ES, Clement CC, Sahu R, Follo C, Santambrogio L. Oxidative
stress, inflamm-aging and immunosenescence. J Proteomics. 2011
Oct;74(11):2313–23.
80. Ellinghaus D, Degenhardt F, Bujanda L, Buti M, Albillos A,
Invernizzi P, et al. Genomewide Association Study of Severe Covid-19
with Respiratory Failure. N Engl J Med. 2020 Jun 17.
81. Breiman A, Ruvën-Clouet N, Le Pendu J. Harnessing the natural
anti-glycan immune response to limit the transmission of enveloped
viruses such as SARS-CoV-2. Coyne CB, editor. PLOS Pathog. 2020 May
21;16(5):e1008556.
82. Murray GP, Post SR, Post GR. ABO blood group is a determinant of von
Willebrand factor protein levels in human pulmonary endothelial cells. J
Clin Pathol. 2020 Jun;73(6):347–9.
83. Guzik TJ, Mohiddin SA, Dimarco A, Patel V, Savvatis K, Marelli-Berg
FM, et al. COVID-19 and the cardiovascular system: implications for risk
assessment, diagnosis, and treatment options. Cardiovasc Res. 2020 Aug
1;116(10):1666–87.
84. Sidaway P. COVID-19 and cancer: what we know so far. Nat Rev Clin
Oncol. 2020 Jun 7;17(6):336–336.
85. Pal R, Bhadada SK. COVID-19 and diabetes mellitus: An unholy
interaction of two pandemics. Diabetes Metab Syndr Clin Res Rev. 2020
Jul;14(4):513–7.
86. Gebhard C, Regitz-Zagrosek V, Neuhauser HK, Morgan R, Klein SL.
Impact of sex and gender on COVID-19 outcomes in Europe. Biol Sex
Differ. 2020 Dec 25;11(1):29.
87. Bonafè M, Prattichizzo F, Giuliani A, Storci G, Sabbatinelli J,
Olivieri F. Inflamm-aging: Why older men are the most susceptible to
SARS-CoV-2 complicated outcomes. Cytokine Growth Factor Rev. 2020
Jun;53:33–7.
88. Niedzwiedz CL, O’Donnell CA, Jani BD, Demou E, Ho FK, Celis-Morales
C, et al. Ethnic and socioeconomic differences in SARS-CoV-2 infection:
prospective cohort study using UK Biobank. BMC Med. 2020 Dec
29;18(1):160.
89. Lyn-Cook BD, Xie C, Oates J, Treadwell E, Word B, Hammons G, et al.
Increased expression of Toll-like receptors (TLRs) 7 and 9 and other
cytokines in systemic lupus erythematosus (SLE) patients: Ethnic
differences and potential new targets for therapeutic drugs. Mol
Immunol. 2014 Sep;61(1):38–43.
90. Cai Q, Chen F, Wang T, Luo F, Liu X, Wu Q, et al. Obesity and
COVID-19 Severity in a Designated Hospital in Shenzhen, China. Diabetes
Care. 2020 Jul;43(7):1392–8.
91. O’Shea D, Hogan AE. Dysregulation of Natural Killer Cells in
Obesity. Cancers (Basel). 2019 Apr 23;11(4):573.
92. Graham RL, Sims AC, Brockway SM, Baric RS, Denison MR. The nsp2
Replicase Proteins of Murine Hepatitis Virus and Severe Acute
Respiratory Syndrome Coronavirus Are Dispensable for Viral Replication.
J Virol. 2005 Nov 1;79(21):13399 LP – 13411.
93. Cornillez-Ty CT, Liao L, Yates 3rd JR, Kuhn P, Buchmeier MJ. Severe
acute respiratory syndrome coronavirus nonstructural protein 2 interacts
with a host protein complex involved in mitochondrial biogenesis and
intracellular signaling. J Virol. 2009 Oct;83(19):10314–8.
94. Lin C-W, Lin K-H, Hsieh T-H, Shiu S-Y, Li J-Y. Severe acute
respiratory syndrome coronavirus 3C-like protease-induced apoptosis.
FEMS Immunol Med Microbiol. 2006 Apr;46(3):375–80.
95. Kirchdoerfer RN, Ward AB. Structure of the SARS-CoV nsp12 polymerase
bound to nsp7 and nsp8 co-factors. Nat Commun. 2019 Dec 28;10(1):2342.
96. Sutton G, Fry E, Carter L, Sainsbury S, Walter T, Nettleship J, et
al. The nsp9 replicase protein of SARS-coronavirus, structure and
functional insights. Structure. 2004 Feb;12(2):341–53.
97. Egloff M-P, Ferron F, Campanacci V, Longhi S, Rancurel C, Dutartre
H, et al. The severe acute respiratory syndrome-coronavirus replicative
protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA
virus world. Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3792–6.
98. Minskaia E, Hertzig T, Gorbalenya AE, Campanacci V, Cambillau C,
Canard B, et al. Discovery of an RNA virus 3’->5’
exoribonuclease that is critically involved in coronavirus RNA
synthesis. Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5108–13.
99. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D.
Structure, Function, and Antigenicity of the SARS-CoV-2 Spike
Glycoprotein. Cell. 2020 Mar 6.
100. Padhan K, Tanwar C, Hussain A, Hui PY, Lee MY, Cheung CY, et al.
Severe acute respiratory syndrome coronavirus Orf3a protein interacts
with caveolin. J Gen Virol. 2007 Nov 1;88(11):3067–77.
101. Minakshi R, Padhan K, Rani M, Khan N, Ahmad F, Jameel S. The SARS
Coronavirus 3a Protein Causes Endoplasmic Reticulum Stress and Induces
Ligand-Independent Downregulation of the Type 1 Interferon Receptor.
Ahmed N, editor. PLoS One. 2009 Dec 17;4(12):e8342.
102. Álvarez E, DeDiego ML, Nieto-Torres JL, Jiménez-Guardeño JM,
Marcos-Villar L, Enjuanes L. The envelope protein of severe acute
respiratory syndrome coronavirus interacts with the non-structural
protein 3 and is ubiquitinated. Virology. 2010 Jul;402(2):281–91.
103. Fang X, Gao J, Zheng H, Li B, Kong L, Zhang Y, et al. The membrane
protein of SARS-CoV suppresses NF-kappaB activation. J Med Virol. 2007
Oct;79(10):1431–9.
104. Siu K-L, Kok K-H, Ng M-HJ, Poon VKM, Yuen K-Y, Zheng B-J, et al.
Severe acute respiratory syndrome coronavirus M protein inhibits type I
interferon production by impeding the formation of
TRAF3.TANK.TBK1/IKKepsilon complex. J Biol Chem. 2009 Jun
12;284(24):16202–9.
105. Chan C-M, Ma C-W, Chan W-Y, Chan HYE. The SARS-Coronavirus Membrane
protein induces apoptosis through modulating the Akt survival pathway.
Arch Biochem Biophys. 2007 Mar 15;459(2):197–207.
106. Yuan X, Wu J, Shan Y, Yao Z, Dong B, Chen B, et al. SARS
coronavirus 7a protein blocks cell cycle progression at G0/G1 phase via
the cyclin D3/pRb pathway. Virology. 2006 Mar;346(1):74–85.
107. Schaecher SR, Mackenzie JM, Pekosz A. The ORF7b Protein of Severe
Acute Respiratory Syndrome Coronavirus (SARS-CoV) Is Expressed in
Virus-Infected Cells and Incorporated into SARS-CoV Particles. J Virol.
2007 Jan 15;81(2):718–31.
108. Zhang Y, Zhang J, Chen Y, Luo B, Yuan Y, Huang F, et al. The ORF8
Protein of SARS-CoV-2 Mediates Immune Evasion through Potently
Downregulating MHC-I. bioRxiv. 2020 Jan 1;2020.05.24.111823.
109. Hu Y, Li W, Gao T, Cui Y, Jin Y, Li P, et al. The Severe Acute
Respiratory Syndrome Coronavirus Nucleocapsid Inhibits Type I Interferon
Production by Interfering with TRIM25-Mediated RIG-I Ubiquitination. J
Virol. 2017 Apr 15;91(8):e02143-16.
110. Shi C-S, Qi H-Y, Boularan C, Huang N-N, Abu-Asab M, Shelhamer JH,
et al. SARS-Coronavirus Open Reading Frame-9b Suppresses Innate Immunity
by Targeting Mitochondria and the MAVS/TRAF3/TRAF6 Signalosome. J
Immunol. 2014 Sep 15;193(6):3080–9.