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Abstract. The Sombor indices, a new category of degree-based topological molecular descriptors, have
been widely investigated due to their excellent chemical applicability. This paper aims to establish
Sombor indices distributions in random polygonal chain networks and to achieve expressions of the
expected values and variances. The expected values and variances of the Sombor indices for polyonino,
pentachain, polyphenyl, and cyclooctane chains are obtained. Since the end connection of a random
chain network follows a binomial distribution, the Sombor indices of any chain network follow the normal
distribution when the number of polygons connected by the chain, indicated by n, approaches infinity.
Keywords: Degree distribution; Polygonal chains; Expected value; Variance; Sombor indices

1. Introduction
Let G = (V (G) , E (G)) denote a graph with the edge set E (G) and the vertex set V (G). The degree

of vertex u is represented by dG (u). If u, v ∈ V (G) are adjacent, the edge connecting them is labeled by
uv. Please refer to [1] for concepts or notations in graph theory that are not addressed in this paper. A
multitude of degree-based topological indices play a very significant role in the fields of mathematics and
chemistry. For further information on topological indices, refer to [2,3]. Gutman [4] has proposed a new
group of topological indices called the Sombor indices, which includes the (ordinary) Sombor index, the
reduced Sombor index, and the average Sombor index, inspired by the Euclidean metric.

For a graph G, the formulas of the Sombor index SO (G), the reduced Sombor index SOred (G) and
the average Sombor index SOavr (G) are given as follows:

SO (G) =
∑

uv∈E(G)

√
d2G (u) + d2G (v) ,

SOred (G) =
∑

uv∈E(G)

√
(dG (u)− 1)

2
+ (dG (v)− 1)

2
,

SOred (G) =
∑

uv∈E(G)

√(
dG (u)− 2m

n

)2

+

(
dG (v)− 2m

n

)2

,

where 2m
n denotes the average degree of graph G and m, n represent the set of edges and the set of

vertices, respectively.
It is obvious that we can obtain the general equation for the Sombor indices [4], defined as

SOa (G) =
∑

uv∈E(G)

√
(dG (u)− a)

2
+ (dG (v)− a)

2
.
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Figure 1: A l-polygonal chain PCn with n polygons, where On is the n-th polygon.

Figure 2: k sorts of permutations in an l-polygonal chain.
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An l-cycles (polygon) PCn can be seen as a new structure. Between a new polygon with l-cycles and
a chain of polygons with n − 1 l-cycles, with line segments acting as bridges connecting the endpoints
of the segments. When 1 ⩽ i ⩽ n, Oi is known as the i-th polygon of the PCn; The polygonal chain is
unique when n = 1, 2 (see Fig 1); When n ⩾ 3, obtain PCi

n by joining the vertex of On with the vertex
Vn−1 of On−1, where 1 ⩽ i ⩽ n.

For an l-cycle random polygon chain PCn(n; p1, . . . , pk). The transition from PCn−1 to PCn is
assumed to be a stable stochastic process, indicated by pi, pi is a constant, independently of n, where
1 ⩽ i ⩽ k (see Fig 2). In other words, the stated process is viewed as a zeroth-order Markovprocess.

The Sombor index, a new category of degree-based topological molecular descriptors, has received a lot
of attention derived from its excellent chemistry applicability. Roberto et al [6], were concerned the results
of the Sombor index of chemical graphs. In [7], the Sombor index of the chemistry tree was given, and the
boiling temperatures of benzenoid hydrocarbons and the (reduced) Sombor index were confirmed to be
substantially linked. Existing bounds and extremal results related to the Sombor index and its variants
were collected by Liu and You [8]. In [9], the authors systematically described the general properties of
the Sombor indices. For additional outstanding Sombor indices results, we recommend that the reader
refer to [10–14]. Meanwhile, more scientific studies were focused on the exploration of the mathematical
expected values or variances of some degree-based topological indices. In [15], a simple mathematical
formula for the expected values of the Wiener index were established in a random cyclooctane chain. In
random hydrocarbon chains, Raza et al [16] have discovered the expected values for the several chemistry
indices. The expected values of the basic Randic index for conjugated hydrocarbons were reported by
the [17]. Zhang and Li [18] discussed the expected values of the four types of degree-based topological
indices in a random polyphenylene chain. In [19], the expected values of the Kirchhoff indices in the
random polyphenyl and spiro chains were obtained. Many studies have revealed the expected values and
variances of degree-based topological indices for a wide range of substances across this time period, and
the reader can refer to [20–23].

As a result of the preceding research, we offered precise analytical formulas for the Sombor indices’s
expected values and variances in this study.

The structure of the paper is detailed following. In Section 2, we define a general random polygonal
chain and introduce some basic probability theory notions. The distributions of the Sombor indices in a
general random chain are established in Section 3. Based on these distributions, we obtain expressions
for their expected values and variances in Section 4. As an application of Sections 3 and 4, in Section
5, the Sombor indices for the polyonino, pentachain, polyphenyl, and cyclooctane chains, as well as
their expected values and variances of the Sombor indices are calculated. The asymptotic behavior of
the distributions of the Sombor indices for all the polygonal chains given in this paper is illustrated in
Section 6.

2. Preliminaries
For a random polygonal chain PCn, the SOa(PCn) are random variables. First, we introduce some

of the probability theories that will used in next section.

Definition 1. The random chain Gn = G(n; p1, p2, . . . , pk) with n identical graphs, a graph G is
given, created by the following ways:

(1) G2 is made up for two polygons, see Fig 1.
(2) For each n > 2, Gn is created by attaching one On to Gn−1 in certain ways, resulting in
G1

n, G2
n, . . . , Gk

n with probability p1, p2, . . . , pk, respectively, where
∑k

i=1 pi = 1.

Some of the fundamental concepts of probability theory are illustrated below.
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The polynomial distribution is a binomial distribution extension with n independent replicate exper-
iments, each with k possible results. It is usually denoted by M(n,p), where n represents the number of
experiments and the vector p is the probability of occurrence of the event.

{p|p = (p1, p2, . . . , pk)
T ∈ Rt, i = 1, 2, . . . , k, pi ⩾ 0 and

k∑
i=1

pi = 1}.

The sample space of the multinomial distribution is

S = {X|X = (x1, x2, . . . , xk)
T ∈ Zt, i = 1, 2, . . . , k, xi ⩾ 0 and

k∑
i=1

xi = n}.

The probability function of the multinomial distribution is

f(x) =
n!∏k

i=1 xi!

k∏
i=1

pxi
i , x ∈ S,

Assume that the random vector X follows the polynomial distribution, which is denoted by X ∼
M(n,p). The following conclusion about X can be obtained.

E(X) = np, Var(X) = n(diag(p)− ppT ). (2.1)

The bernoulli distribution B(p1), binomial distributionM(n, p1), and category distribution C(p) are
obtained by setting n = 1 and k = 1, n > 1 and k = 2, and n = 1 and k > 2 in that order.

The multinomial distribution’s two essential properties are described below.

Proposition 2.1. (Addition Rule [24]). Let Xi ∼ M(ni,p), where i = 1, 2, . . . , k, for each Xi is an
independent vector of each other. Then

k∑
i=1

Xi ∼ M(

k∑
i=1

ni, p).

Proposition 2.2. (Marginal Distribution [24]). Let X = (X1, X2, . . . , Xk) ∼ M(n, p). Then
Xi ∼ B(n, pi) for each i = 1, 2, . . . , k.

For further information on general probability distributions, please refer to [25]. The Lemma 2.3
below is commonly applied.

Lemma 2.3. Let X be a random variable and a, b ∈ R. Then

E(AX+ b) = AE(X) + E(b), Var(AX+ b) = AVar(X)AT .

A general method of calculating the expected values and variances for Sombor indices in polygonal
chain are given.

Theorem 2.4. Let PCn be a random polygonal chain of length n and X ∼ B(n− 2, p1), where n > 2.
Then

SO(PCn) = AX+B(n− 2) + C,

E(SOa(PCn)) = (p1A+B)(n− 2) + C,

Var(SOa(PCn)) = A2(n− 2)p1(1− p1),

where

(A,B,C) =
(
A1 −A2, A2, −2A2 + SOa(PCn)

)
.
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Proof. In order to quantify the random variable SOa(PCn), we defined a family of 3-dimensional random
vectors Zk as follows:

Zk =


(1, 0, 0), PCn = PC1

n;

(0, 1, 0), PCn = PC2
n;

(0, 0, 1), PCn = PC3
n.

By the definition of the random polygonal chain, we can check that Zk follows the categprical distri-
bution C(1, p1, p2, p3) and Z3, Z4, . . . , Zn are independent.

For each k = 3, 4, . . . , n, SOa(PCk) can be quantified as

SOa(PCk) =
(
SOa(PC1

k), SOa(PC2
k), SOa(PC3

k)
)
Zk. (2.2)

By the definition of Sombor indices, for each k = 3, 4, . . . , n, and i = 1, 2, 3, we have

SOa(PCi
k)− SOa(PCk−1) = SOa(PCi

3)− SOa(PC2),

we denoted Ai = SOa(PCi
3)− SOa(PC2), i = 1, 2, 3. Then

SOa(PCi
k) = SOa(PCk−1) +Ai, i = 1, 2, 3. (2.3)

Associated (2.2) with (2.3), the SOa(PCk) satisfies the following recursive relation

SOa(PCk) = SOa(PCk−1) + (A1, A2, A3)Zk, (2.4)

SOa(PCn) = (A1, A2, A3)X+ SOa(PC2), X = (X1, X2, X3)
T =

n∑
k=3

Zk, (2.5)

where X follows the Multinomial distribution M(n− 2, p1, p2, p3) by Proposition 2.1.
Thus, we obtain

A1 = SOa(PC1
3 )− SOa(PC2),

A2 = SOa(PC2
3 )− SOa(PC2) = A3.

By (2.5), we have

SOa(PCn) = (A1, A2, A2)X+ SOa(PC2)

= (A1 −A2)(1, 0, 0)X+A2(1, 1, 1)X+ TI(PC2)

= (A1 −A2)X1 +A2(n− 2) + SOa(PC2),

where X1 follows the binomial distribution B(n− 2, p1) by Proposition 2.2.
Put A = A1 −A2, B = A2, C = SOa(PC2). Applying Lemma 2.3, we obtain

E
(
SOa(PCn)

)
= (p1A+B)(n− 2) + C, Var

(
SOa(PCn)

)
= A2(n− 2)p1(1− p1).

3. The distribution for SOa(Gn)

We discover that SOa(PCn) are regarded as random variables. Then, the distributions of SOa(PCn)

of a (2k + 1)-polygonal chain and SOa(PCn) of a 2k-polygonal chain are presented in this section.
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Theorem 3.1. Let Gn(n > 2) be an random polygonal chain also with connect constants {Ai}ki=1 for
Sombor indices, by Definition 2.1. Then

SOa(Gn) = ATX + SOa(G2),

where AT = (A1, A2, . . . , Ak) and X follow the M(n− 2, p), p = (p1, p2, . . . , pk).

Proof. Associated (2.2), (2.3), (2, 4) with (2.5) can be obtained.

Corollary 3.2. Let PCn be a (2k + 1)-polygonal chain of length n and X ∼ B(n− 2, p1), where k ⩾ 2

and n > 2. Then SOa(PCn) = AX +Bn+ C, where

A = 2
√
2 |2− a|+

√
2 |3− a|+ 2v1,

B =
√
2(2k − 3) |2− a|+

√
2 |3− a|+ v1,

C = 4
√
2 |2− a| −

√
2 |3− a|+ 8v1.

Specifically, we have

SO(PCn) = (6
√
2 + 2

√
13)X + (4

√
2k − 3

√
2 +

√
13)n+ 5

√
2 + 8

√
13,

SOred(PCn) = (4
√
2 + 2

√
5)X + (2

√
2k −

√
2 +

√
5)n+ 3

√
2 + 8

√
5,

SOavr(PCn) = A1X +B1n+ C1,

where

A1 =

√
2(2k + 3) + 2µ1

n(2k + 1)
,

B1 =
6
√
2nk − 7

√
2n+ 4

√
2k − 8

√
2 + µ1

n(2k + 1)
,

C1 =
−4

√
2nk + 9

√
2n+ 11

√
2 + 8µ1

n(2k + 1)
,

v1 =
√
2a2 − 10a+ 13,

µ1 =
√
4n2k2 − 4n2k − 8nk + 5n2 + 12n+ 8.

Proof. According to the concept of Sombor indices, we can obtain the Sombor indices of a random
(2k + 1)-polygonal chain. Specific proofs are as follows.

SOa(PC2) = (4k − 2)
√
2 |2− a|+

√
2 |3− a|+ 4v1,

SOa(PC1
3 ) = (6k − 4)

√
2 |2− a|+ 3

√
2 |3− a|+ 6v1,

SOa(PC2
3 ) = (6k − 5)

√
2 |2− a|+ 2

√
2 |3− a|+ 8v1,

...
SOa(PCk

3 ) = (6k − 5)
√
2 |2− a|+ 2

√
2 |3− a|+ 8v1,

then relevant variables of PCn are derived by

A1 = SOa(PC1
3 )− SOa(PC2)

= (2k − 2)
√
2 |2− a|+ 2

√
2 |3− a|+ 2v1,

A2 = SOa(PC2
3 )− SOa(PC2)

= (2k − 3)
√
2 |2− a|+

√
2 |3− a|+ 4v1,
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where v1 =
√
2a2 − 10a+ 13.

Applying (2.3), one obtains

SOa(PCn) = (A1 −A2)X +A2n− 2A2 + SOa(PC2), X ∼ B(n− 2, p1).

First part can be obtained by right away. If |V (PCn)| = n(2k + 1) and |E(PCn)| = 2n(k + 1) − 1,
then the average degree of PCn is 4n(k+1)+2

n(2k+1) . The proof is completed by putting a = 0, 1, 4n(k+1)+2
n(2k+1)

into the equation, respectively.

Corollary 3.3. Let PCn be a random 2k-polygonal chain of length n and X ∼ B(n−2, p1), where k ⩾ 2

and n > 2. Then SOa(PCn) = AX +Bn+ C, where

A = 2
√
2 |2− a| − 2v1,

B =
√
2((2k − 3) |2− a|+ |3− a|) + 4v1,

C =
√
2 |2− a| −

√
2 |3− a| − 4v1.

In particular, we have

SO(PCn) = (2
√
2− 2

√
13)X + (4

√
2k + 4

√
13− 3

√
2)n−

√
2− 4

√
13,

SOred(PCn) = (
√
2− 2

√
5)X + (2k − 1)

√
2n+ 4

√
5n−

√
2k − 4

√
5,

SOavr(PCn) = A2X +B2n+ C2,

where

A2 =
2
√
2n− 2µ2 − 2

√
2

nk
,

B2 =
3
√
2nk − 2

√
2k − 4

√
2n+ 4

√
2 + 4µ2

nk
,

C2 =
−
√
2nk + 2

√
2n− 2

√
2− 4µ1

nk
,

v1 =
√
2a2 − 10a+ 13,

µ2 =
√
n2k2 − 2n2k + 2nk + 2n2 − 4n+ 2.

Proof. According to the definition of Sombor indices, we can obtain the Sombor indices of a random
2k-polygonal chain.

SOa(PC2) =
√
2
(
(4k − 5 |2− a|) + |3− a|

)
+ 4v1,

SOa(PC1
3 ) =

√
2
(
(6k − 7 |2− a|) + 3 |3− a|

)
+ 6v1,

SOa(PC2
3 ) =

√
2
(
(6k − 8 |2− a|) + 2 |3− a|

)
+ 8v1,

...
SOa(PCk

3 ) =
√
2
(
(6k − 8 |2− a|) + 2 |3− a|

)
+ 8v1,

then relevant variables of PCn are given by

A1 = SOa(PC1
3 )− SOa(PC2)

=
√
2
(
(2k − 2 |2− a|) + |3− a|

)
+ 2v1,

A2 = SOa(PC2
3 )− SOa(PC2)

=
√
2
(
(2k − 3 |2− a|) + |3− a|

)
+ 4v1.
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Appiying (2.3), we obtain

SOa(PCn) = (A1 −A2)X +A2n− 2A2 + SOa(PC2), X ∼ B(n− 2, p1).

Setting A = A1 − A2, B = A2 and C = −2A2 + SOa(PC2), we promptly get the first component.
Setting A = A1−A2, B = A2, and C = −2A2 + SOa(PC2), we promptly get the first component. Since
|V (PCn)| = 2nk and |E(PCn)| = 2nk + n− 1, then the 2m

n of PCn is 2nk+n−1
nk . The proof is performed

directly by setting a = 0, 1, 2nk+n−1
nk .

4. The expected values and variances for SOa(Gn)

The exact analytical equations of E(SOa(PCn)) and Var(SOa(PCn)) of a (2k + 1)-polygonal chain
and a 2k-polygonal chain are discussed in this section, respectively.

Theorem 4.1. Let Gn be a random polygonal chain. The expected values and variances of SOn(Gn) are
calculated by

E(Gn) =

(
k∑

i=1

Aipi

)
(n− 2) + SOa(G2),

Var(Gn) =

(
k∑

i=1

A2
i pi − (

k∑
i=1

Aipi)
2

)
.

Proof. SOa(Gn)A
T + SOa(G2), X ∼ M(n− 2,p), p = (p1, p2, . . . , pk)

T .

By Lemma 2.3, we obtain

E
(
SOa(Gn)

)
= E(ATX+ SOa(G2))

= ATE(X) + SOa(G2)

= (

k∑
i=1

Aipi)(n− 2) + SOa(G2),

Var
(
SOa(Gn)

)
= V ar(ATX+ SOa(G2))

= ATV ar(X)A

=
( k∑
i=1

Aipi − (

k∑
i=1

Aipi)
2
)
(n− 2).

Corollary 4.2. Let PCn be a random (2k + 1)-polygonal chain of length n, where k ⩾ 2 and n > 2.
Then

E
(
SOa(PCn)

)
= Mn+N, Var

(
SOa(PCn)

)
= Pn+Q,

where

M =
√
2 |2− a| (p1 + 2k − 3) +

√
2(1 + p1) |3− a|+ (4− 2p1)v1,

N = (−2
√
2p1 − 4

√
2k + 10

√
2) |2− a| − 3

√
2 |3− a|+ 4p1v1,

A2 = 3v21 + 2 |2− a| |3− a| − 2
√
2(|2− a|+ |3− a|),

P = A2p1(1− p1),

Q = −2A2p1(1− p1),

v1 =
√

2a2 − 10a+ 13.
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In particular, we have

E
(
SO(PCn)

)
=
(
(5
√
2− 2

√
13)p1 + 4

√
2k − 3

√
2 + 4

√
13
)
n

+ (4
√
13− 4

√
2)p1 − 8

√
2k + 11

√
2,

(4.6)

E
(
SOred(PCn)

)
=
(
(3
√
2− 2

√
5)p1 + 2

√
2k + 4

√
5−

√
2
)
n

+ (4
√
5− 2

√
2)p1 − 4

√
2k + 4

√
2,

(4.7)

E
(
SOavr(PCn)

)
= M1n+N1, (4.8)

where

M1 =

√
2np1(2k + 1) +

√
2n(6k − 7) + 4

√
2(k − 2) + (4− 2p1)µ1

n(2k + 1)
,

N1 =
−4

√
2np1 − 14

√
2nk + (4µ1 − 4

√
2)p1 − 8

√
2 + 23

√
2n+ 26

√
2

n(2k + 1)
,

v1 =
√
2a2 − 10a+ 13,

µ1 =
√
4n2k2 − 4n2k − 8nk + 5n2 + 12n+ 8.

Var
(
SO(PCn)

)
= (16

√
26 + 84)p1(1− p1)(n− 2), (4.9)

Var
(
SOred(PCn)

)
= (8

√
10 + 28)(n− 2)p1(1− p1), (4.10)

Var
(
SOavr(PCn)

)
= σ̃(n− 2)p1(1− p1), (4.11)

where

σ̃ =
16(

√
2 + 1)

√
4n2k2 − 4n2k − 8nk + 5n2 + 12n+ 8

n2(2k + 1)2
− 64(4n2k2 − 4n2k + 2n+ 1)

n2(2k + 1)2
+ 84.

Corollary 4.3. Let PCn be a random (2k)-polygonal chain of length n, where k ⩾ 2 and n > 2. Then

E
(
SOa(PCn)

)
= Mn+N, Var

(
SOa(PCn)

)
= Pn+Q,

where

M =
√
2
(
(p1 + 2k − 3) |2− a|+ |3− a|

)
+ (4− 2p1)v1,

N =
√
2 |2− a| (−2p1 − 4k + 7)− 3

√
2 |3− a| − 2

√
2(4− 2p1)v1,

P =
(
16a2 − 72a+ 84− 8

√
2v1 |2− a|

)
p1(1− p1),

Q = −2P.

In particular, we have

E
(
SO(PCn)

)
=
(
2p1(

√
2−

√
13) + 4

√
2k − 4

√
13− 3

√
2
)
n

+ 4p1(
√
26−

√
2) + 8

√
2k + 5

√
2− 8

√
26,

(4.12)
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E
(
SOred(PCn)

)
=
(√

2(p1 + 2k − 1) + (4− 2p1)
√
5
)
n

− 2
√
2p1 + 4

√
10p1 − 4

√
2k − 8

√
10 +

√
2,

(4.13)

E
(
SOavr(PCn)

)
=

−2
√
2np1 + 2

√
2p1 + 8

√
2n− 6

√
2

k

+
4np1 − 8n− 4

nk
µ2,

(4.14)

Var
(
SO(PCn)

)
= (84− 16

√
26)p1(1− p1)(n− 2), (4.15)

Var
(
SOred(PCn)

)
= (28− 16

√
10)(n− 2)p1(1− p1), (4.16)

Var
(
SOavr(PCn)

)
=

−80n2k2 − 8n2k + 8nk + 16n2 − 32n+ 16

n2k2

+
−8

√
2(n− 1)µ2

n2k2
,

(4.17)

where

v1 =
√
2a2 − 10a+ 13,

u2 =
√
n2k2 − 2n2k + 2nk + 2n2 − 4n+ 2.

5. Application of Corollaries 4.2 and 4.3
The expected values and variances of topological indices of random polygonal chains have received

much attention in scientific research, such as random polygonal chains, random pentagonal chains, random
polyphenyl chains, and random cyclooctane chains. This section studied the Sombor indices distribution
of these polygonal chains as well as their expected values and variances. According to the common
research methods presented in 4.2 and 4.3, there was the following analysis.

A random polyonino chain is a random modified domino chain with n squares [26], represented by
GPCn(n; p1, 1 − p1). Due to the numerous intriguing combinatorial subjects that result from them,
for example, the dominance problems [27, 28], car dominoes, enumeration problems [29, 30] with perfect
matching, and so on, generalized domino graphs have aroused the curiosity about certain mathematicians.

In a random generalized poly-energy chain, there are two sorts of local permutations, due to the
definition of a random l-poly energy chain (see Fig. 3). Based on the calculation of the Sombor indices
for an random polygonal chain presented in Section 3, the generalized formula of the Sombor indices of
GPCn is obtained by

SOa(GPCn) = (2
√
2 |2− a| − 2v1)X

+
(√

2(|2− a|+ |3− a|) + 4v1

)
n

+
√
2 |2− a| −

√
2 |3− a| − 4v1,

where v1 =
√
2a2 − 10a+ 13.

Theorem 5.1. The expected value and variance of the Sombor indices for GPCn are given by

E
(
SOa(GPCn)

)
=

(√
2(1 + p1) |2− a|+

√
2 |3− a|+ (4− 2p1)v1

)
n

+
√
2(−2p1 − 1) |2− a| − 3

√
2 |3− a| − 2

√
2(4− 2p1)v1,

10



Figure 3: Two sorts of local permutations in a random polyonino chain.

Figure 4: Two sorts of local permutations in a random pentachain.
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Var
(
SOa(GPCn)

)
=
(
16a2 − 72a+ 84− 8

√
2v1 |2− a|

)
(n− 2)p1(1− p1),

where v1 =
√
2a2 − 10a+ 13.

A random pentachain P (n; p1, 1− p1) of length n with n pentagons [31,32], labeled it by Pn.
According to the concept of a random l-polygon chain, a random pentachain has two sorts of local

permutations (see Fig 4). Depending on the calculation of the Sombor indices for an random polygonal
chain presented in Section 3, the generalized formula of the Sombor indices of Pn is obtained by

SOa(Pn) =
(
2
√
2 |2− a|+

√
2 |3− a|+ 2v1

)
X

+
(√

2 |2− a|+
√
2 |3− a|+ v1

)
n

+ 4
√
2 |2− a| −

√
2 |3− a|+ 8v1,

where v1 =
√
2a2 − 10a+ 13.

Theorem 5.2. The expected value and variance of the Sombor indices for Pn are given by

E
(
SOa(Pn)

)
=

(√
2((1 + p1) |2− a|+ |3− a|) + (4− 2p1)v1

)
n

+ (2
√
2− 2

√
2p1) |2− a| − 3

√
2 |3− a|+ 4p1v1,

Var
(
(SOa(Pn)

)
= A2(n− 2)p1(1− p1),

where

A2 = 3v21 + 2 |2− a| |3− a| − 2
√
2
(
|2− a|+ |3− a|

)
,

v1 =
√
2a2 − 10a+ 13.

Random polyphenyl chain of length n, with n hexagons, labeled by PPCn(n; p1, p2, 1 − p1 − p2).
Polygonal chains are nothing more than an unbranched heavy hydrocarbons graph with modifications
that are widely seen in chemical synthesis, medicinal synthesis, and heat exchangers, and they have
long aroused the curiosity of chemists [33, 34]. There are three types of configurations according to the
random polygonal chain concept, as shown in Fig 5. Based on the calculation of the Sombor indices
for an random polygonal chain presented in Section 3, the generalized formula of the Sombor indices of
PPCn is obtained by

SOa(PPCn) =
(
2
√
2 |2− a| − 2v1

)
X

+
(
3
√
2 |2− a|+

√
2 |3− a|+ 4v1

)
n

+
√
2 |2− a| −

√
2 |3− a| − 4v1,

where v1 =
√
2a2 − 10a+ 13.

Theorem 5.3. The expected value and variance of the Sombor indices for PPCn are derived by

E
(
SOa(PPCn)

)
=

(√
2((3 + p1) |2− a|+

√
2 |3− a|) + (4− 2p1)v1

)
n

− 5 |2− a| − 3
√
2 |3− a| − 2

√
2(4− 2p1)v1,

Var
(
SOa(PPCn)

)
=
(
16a2 − 72a+ 84− 8

√
2v1 |2− a|

)
(n− 2)p1(1− p1).
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Figure 5: Three sorts of permutations in a random polyphenyl chain.

Figure 6: Four sorts of permutations in a random cyclooctane chain.
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The random 8-polygonal chain COCn(n; p1, p2, p3, 1− p1 − p2 − p3) is a random cyclooctanechain
with n octagons. Aromatic hydrocarbons and their derivatives have constantly attracted the interest
of chemists [35, 36]. According to the definition of a random l-polygon chain, there are four sorts of
permutations in random cyclooctane chains (see Fig 6). According to the calculation of the Sombor
indices for a random polygonal chain presented in Section 3, the generalized formula of the Sombor
indices of COCn is obtained by

SOa(COCn) = (2
√
2 |2− a| − 2v1)X + (5

√
2 |2− a|+

√
2 |3− a|+ 4v1)n

+
√
2 |2− a| −

√
2 |3− a| − 4v1,

where v1 =
√
2a2 − 10a+ 13.

Theorem 5.4. The expected value and variance of the Sombor indices for COCn are obtained by

E
(
SOa(COCn)

)
=

(√
2((5 + p1) |2− a|+

√
2(1 + p1) |3− a|) + (4− 2p1)v1

)
n

− (2
√
2p1 + 6) |2− a| − 3

√
2 |3− a| − 4p1v1,

Var
(
SOa(COCn)

)
=
(
3v21 + 2 |2− a| ∗ |3− a| − 2

√
2(|2− a| ∗ |3− a|)

)
(n− 2)p1(1− p1),

where v1 =
√
2a2 − 10a+ 13.

6. Asymptotic behaviors for SOa(Gn)

The distribution of the Sombor indices of random polygonal chains is presented in Section 3, see Corol-
laries 4.2 − 4.3, respectively. In addition, the preceding section’s applications to four specific polygonal
chains were integrated. Therefore, in this part, asymptotic behavior of the Sombor indices within those
random chains.

Under specific conditions, the normal distribution is a good approximation of the binomial distri-
bution and can be used to calculate the probability of the binomial distribution. Since the probability
thus obtained is only an approximation to the true probability value of the binomial distribution, this
application of the normal distribution is known as the normal approximation to the binomial distribution.

Theorem 6.1. Let X obeys bernoulli distribution. For n → ∞, X asymptotically obeys normal distri-
butions. One has

lim
n→∞

sup
a∈R

∣∣∣∣P( Xn − np

np(1− p)
⩽ a)−

∫ a

−∞

1√
2π

e
t2

2 dt

∣∣∣∣ = 0.

Theorem 6.1 leads to the following conclusion.

Proposition 6.2. Let PCn, GPCn, Pn, PPCn, and COCn be a random polygonal chain, polyonino
chain, pentachain, polyphenyl, and cyclooctane chain, respectively.

For each x ∈ R, n → ∞, we have

lim
n→∞

sup
x∈R

∣∣∣∣∣∣∣∣P(
SOa(PCn)− E

(
SOa(PCn)

)
√
Var

(
SOa(PCn)

) ⩽ x)−
∫ x

−∞

1√
2π

e
t2

2 dt

∣∣∣∣∣∣∣∣ = 0, (6.18)
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lim
n→∞

sup
x∈R

∣∣∣∣∣∣∣∣P(
SOa(GPCn)− E

(
SOa(GPCn)

)
√
Var

(
SOa(GPCn)

) ⩽ x)−
∫ x

−∞

1√
2π

e
t2

2 dt

∣∣∣∣∣∣∣∣ = 0, (6.19)

lim
n→∞

sup
x∈R

∣∣∣∣∣∣∣∣P(
SOa(Pn)− E

(
SOa(Pn)

)
√
Var

(
SOa(Pn)

) ⩽ x)−
∫ x

−∞

1√
2π

e
t2

2 dt

∣∣∣∣∣∣∣∣ = 0, (6.20)

lim
n→∞

sup
x∈R

∣∣∣∣∣∣∣∣P(
SOa(PPCn)− E

(
SOa(PPCn)

)
√
Var

(
SOa(PPCn)

) ⩽ x)−
∫ x

−∞

1√
2π

e
t2

2 dt

∣∣∣∣∣∣∣∣ = 0, (6.21)

lim
n→∞

sup
x∈R

∣∣∣∣∣∣∣∣P(
SOa(COCn)− E

(
SOa(COCn)

)
√
Var

(
SOa(COCn)

) ⩽ x)−
∫ x

−∞

1√
2π

e
t2

2 dt

∣∣∣∣∣∣∣∣ = 0. (6.22)

Proof. By Corollary 4.2 and Corollary 4.3, we have

SOa(PCn)− E
(
SOa(PCn)

)
√

Var
(
SOa(PCn)

) =
X − E(X)√

Var(X)
, X ∼ B(n− 2, p1).

By Theorem 6.1 and (4.6− 4.19), (6.20) can be proved.
Similarly, (6.21− 6.24) are obtained by such proof process.

According to Proposition 6.2, the distributions of the Sombor indices of the random polygonal chain
networks are consistent with the asymptotic normal distributions, and when n > 30, p1 is a constant
between 0 and 1. The normal distributions can be regarded as an approximation to the distributions of
the Sombor indices of the random chain networks in this paper,and please refer to Table 1 for the specific
values.

7. Conclusion
In this paper, a method for calculating the distributions of the Sombor indices of a random polygonal

chain has been established. The expected values and variances of the Sombor indices of a random
polygonal chain have been calculated. As an application, we also have obtained the expected values
and variances of the Sombor indices for polyonino chain, pentachain, polyphenyl chain, and cyclooctane
chain. Based on the central limit theorem, it is also discovered from a probabilistic perspective that
since the end connections of random chains obey a binomial distribution, when the number n of polygons
connected by any chain tends to infinity, is the Sombor indices of any chain at that point from a normal
distribution. In addition, the results of this paper are appropriate for further types of chain networks.
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Table 1: Expected values and variances of Normal distribution for Sombor indices.
Indices Normal parameters

SO(PCn)2k+1 µ =
(
(5
√
2− 2

√
13)p1 + 4

√
2k − 3

√
2 + 4

√
13
)
n+ (4

√
13− 4

√
2)p1 − 8

√
2k + 11

√
2

σ2 = (16
√
26 + 84)p1(1− p1)(n− 2)

SOred(PCn)2k+1 µ =
(
(3
√
2− 2

√
5)p1 + 2

√
2k + 4

√
5−

√
2
)
n+ (4

√
5− 2

√
2)p1 − 4

√
2k + 4

√
2

σ2 = (8
√
10 + 28)(n− 2)p1(1− p1)

SOavr(PCn)2k+1 µ = M1n+N1

σ2 = σ̃(n− 2)p1(1− p1)

SO(PCn)2k µ =
(
(2p1(

√
2−

√
13) + 4

√
2k − 4

√
13− 3

√
2
)
n+ 4p1(

√
26−

√
2) + 8

√
2k + 5

√
2− 8

√
26

σ2 = (84− 16
√
26)p1(1− p1)(n− 2)

SOred(PCn)2k µ =
(√

2(p1 + 2k − 1) + (4− 2p1)
√
5
)
n− 2

√
2p1 + 4

√
10p1 − 4

√
2k − 8

√
10 +

√
2

σ2 = (28− 16
√
10)(n− 2)p1(1− p1)

SOavr(PCn)2k µ = −2
√
2np1+2

√
2p1+8

√
2n−6

√
2

k + 4np1−8n−4
nk µ2

σ2 = −80n2k2−8n2k+8nk+16n2−32n+16
n2k2 + −8

√
2(n−1)µ2

n2k2
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