References
1. Greener ID, Sasano T, Wan X et al. Connexin43 gene transfer reduces ventricular tachycardia susceptibility after myocardial infarction. Journal of the American College of Cardiology 2012;60:1103-10.
2. Nascimento DS, Mosqueira D, Sousa LM et al. Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling after myocardial infarction by proangiogenic, antiapoptotic, and endogenous cell-activation mechanisms. Stem Cell Res Ther 2014;5.
3. Richards DJ, Tan Y, Coyle R et al. Nanowires and Electrical Stimulation Synergistically Improve Functions of hiPSC Cardiac Spheroids. Nano letters 2016;16:4670-8.
4. Monteiro LM, Vasques-Novoa F, Ferreira L, Pinto-do OP, Nascimento DS. Restoring heart function and electrical integrity: closing the circuit. NPJ Regenerative medicine 2017;2:9.
5. Martinelli V, Cellot G, Toma FM et al. Carbon nanotubes promote growth and spontaneous electrical activity in cultured cardiac myocytes. Nano letters 2012;12:1831-8.
6. Martinelli V, Cellot G, Toma FM et al. Carbon nanotubes instruct physiological growth and functionally mature syncytia: nongenetic engineering of cardiac myocytes. ACS nano 2013;7:5746-56.
7. Kharaziha M, Shin SR, Nikkhah M et al. Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials 2014;35:7346-54.
8. Pok S, Vitale F, Eichmann SL, Benavides OM, Pasquali M, Jacot JG. Biocompatible Carbon Nanotube-Chitosan Scaffold Matching the Electrical Conductivity of the Heart. ACS nano 2014;8:9822-9832.
9. Zhou J, Chen J, Sun HY et al. Engineering the heart: Evaluation of conductive nanomaterials for improving implant integration and cardiac function. Sci Rep-Uk 2014;4.
10. Sun H, Lu S, Jiang XX et al. Carbon nanotubes enhance intercalated disc assembly in cardiac myocytes via the beta1-integrin-mediated signaling pathway. Biomaterials 2015;55:84-95.
11. Hosseinpour M, Azimirad V, Alimohammadi M, Shahabi P, Sadighi M, Ghamkhari Nejad G. The cardiac effects of carbon nanotubes in rat. BioImpacts : BI 2016;6:79-84.
12. Pedrotty DM, Kuzmenko V, Karabulut E et al. Three-Dimensional Printed Biopatches With Conductive Ink Facilitate Cardiac Conduction When Applied to Disrupted Myocardium. Circ-Arrhythmia Elec 2019;12.
13. McCauley MD, Vitale F, Yan JS et al. In Vivo Restoration of Myocardial Conduction With Carbon Nanotube Fibers. Circulation Arrhythmia and electrophysiology 2019;12:e007256.
14. Bell RM, Mocanu MM, Yellon DM. Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. Journal of molecular and cellular cardiology 2011;50:940-50.
15. Bailey LE, Ong SD. Krebs-Henseleit Solution as a Physiological Buffer in Perfused and Super-Fused Preparations. J Pharmacol Method 1978;1:171-175.
16. Rao SV, Zeymer U, Douglas PS et al. Bioabsorbable Intracoronary Matrix for Prevention of Ventricular Remodeling After Myocardial Infarction. Journal of the American College of Cardiology 2016;68:715-23.
17. Freeman FE, Kelly DJ. Tuning Alginate Bioink Stiffness and Composition for Controlled Growth Factor Delivery and to Spatially Direct MSC Fate within Bioprinted Tissues. Sci Rep-Uk 2017;7.