References
1. Greener ID, Sasano T, Wan X et al.
Connexin43 gene transfer reduces ventricular tachycardia susceptibility
after myocardial infarction. Journal of the American College of
Cardiology 2012;60:1103-10.
2. Nascimento DS, Mosqueira D, Sousa
LM et al. Human umbilical cord tissue-derived mesenchymal stromal cells
attenuate remodeling after myocardial infarction by proangiogenic,
antiapoptotic, and endogenous cell-activation mechanisms. Stem Cell Res
Ther 2014;5.
3. Richards DJ, Tan Y, Coyle R et al.
Nanowires and Electrical Stimulation Synergistically Improve Functions
of hiPSC Cardiac Spheroids. Nano letters 2016;16:4670-8.
4. Monteiro LM, Vasques-Novoa F,
Ferreira L, Pinto-do OP, Nascimento DS. Restoring heart function and
electrical integrity: closing the circuit. NPJ Regenerative medicine
2017;2:9.
5. Martinelli V, Cellot G, Toma FM et
al. Carbon nanotubes promote growth and spontaneous electrical activity
in cultured cardiac myocytes. Nano letters 2012;12:1831-8.
6. Martinelli V, Cellot G, Toma FM et
al. Carbon nanotubes instruct physiological growth and functionally
mature syncytia: nongenetic engineering of cardiac myocytes. ACS nano
2013;7:5746-56.
7. Kharaziha M, Shin SR, Nikkhah M et
al. Tough and flexible CNT-polymeric hybrid scaffolds for engineering
cardiac constructs. Biomaterials 2014;35:7346-54.
8. Pok S, Vitale F, Eichmann SL,
Benavides OM, Pasquali M, Jacot JG. Biocompatible Carbon
Nanotube-Chitosan Scaffold Matching the Electrical Conductivity of the
Heart. ACS nano 2014;8:9822-9832.
9. Zhou J, Chen J, Sun HY et al.
Engineering the heart: Evaluation of conductive nanomaterials for
improving implant integration and cardiac function. Sci Rep-Uk 2014;4.
10. Sun H, Lu S, Jiang XX et al.
Carbon nanotubes enhance intercalated disc assembly in cardiac myocytes
via the beta1-integrin-mediated signaling pathway. Biomaterials
2015;55:84-95.
11. Hosseinpour M, Azimirad V,
Alimohammadi M, Shahabi P, Sadighi M, Ghamkhari Nejad G. The cardiac
effects of carbon nanotubes in rat. BioImpacts : BI 2016;6:79-84.
12. Pedrotty DM, Kuzmenko V,
Karabulut E et al. Three-Dimensional Printed Biopatches With Conductive
Ink Facilitate Cardiac Conduction When Applied to Disrupted Myocardium.
Circ-Arrhythmia Elec 2019;12.
13. McCauley MD, Vitale F, Yan JS et
al. In Vivo Restoration of Myocardial Conduction With Carbon Nanotube
Fibers. Circulation Arrhythmia and electrophysiology 2019;12:e007256.
14. Bell RM, Mocanu MM, Yellon DM.
Retrograde heart perfusion: the Langendorff technique of isolated heart
perfusion. Journal of molecular and cellular cardiology 2011;50:940-50.
15. Bailey LE, Ong SD.
Krebs-Henseleit Solution as a Physiological Buffer in Perfused and
Super-Fused Preparations. J Pharmacol Method 1978;1:171-175.
16. Rao SV, Zeymer U, Douglas PS et
al. Bioabsorbable Intracoronary Matrix for Prevention of Ventricular
Remodeling After Myocardial Infarction. Journal of the American College
of Cardiology 2016;68:715-23.
17. Freeman FE, Kelly DJ. Tuning
Alginate Bioink Stiffness and Composition for Controlled Growth Factor
Delivery and to Spatially Direct MSC Fate within Bioprinted Tissues. Sci
Rep-Uk 2017;7.