References
Alcalá,
F., & Custodio, E. (2008). Using the Cl/Br ratio as a tracer to
identify the origin of salinity in aquifers in Spain and Portugal. J.
Hydrol., 359(1-2), 189-207.
Appelo, C.A.J., & Postma, D. (1993). Geochemistry, Groundwater and
Pollution. A.A. Balkema, Rotterdam, 536p.
Barth, S. (1993). Boron isotope variations in nature: A synthesis. Geol.
Rundsch., 82, 640-65.
Barth, S. (1998). 11B/10B Variations
of Dissolved Boron in a Freshwater/Seawater Mixing Plume (Elbe Estuary,
North Sea). Marine Chem., 62, 1-14.
Bullen, T.D., Krabbenhoft, D.P., & Kendall, C. (1996). Kinetic and
mineralogic controls on the evolution of groundwater chemistry and87Sr/86Sr in a sandy silicate
aquifer, northern Wisconsin, USA.
Geochim. Cosmochim. Acta, 60(10),
1807-1821.
Brenot, A., Négrel, P., Petelet-Giraud, E., Millot, R., & Malcuit, E.
(2015). Insights from the salinity origins and interconnections of
aquifers in a regional scale sedimentary aquifer system (Adour-Garonne
district, SW France): Contributions of δ34S and
δ18O from dissolved sulfates and the87Sr/86Sr ratio. Appl. Geochem., 53,
27-41.
Cartwright, I. (2004).
Hydrogeochemical and isotopic constraints on the origins of dryland
salinity, Murray Basin, Victoria, Australia. Appl. Geochem., 19(8),
1233-1254.
Cartwright, I., Weaver, T., & Petrides, B. (2007). Controls on87Sr/86Sr ratios of groundwater in
silicate-dominated aquifers: SE Murray Basin, Australia. Chem. Geol.,
246(1-2), 0-123.
Cartwright, I., Weaver, T.,
Cendón, D., & Swane, I. (2010). Environmental isotopes as indicators of
inter-aquifer mixing, Wimmera region, Murray Basin, Southeast Australia.
Chem. Geol., 277(3-4), 0-226.
Cary, L., Petelet-Giraud, E., Bertrand, G., Kloppmann, W., Aquilina, L.,
Martins, V., Hirata, R., Montenegro, S., Pauwels, H., Chatton, E.,
Franzen, & M., Aurouet, A. (2015). Origins and processes of groundwater
salinization in the urban coastal aquifers of Recife (Pernambuco,
Brazil): A multi-isotope approach. Sci. Total Environ., 530-531,
411-429.
Edmunds, W.M., Bath, A.H., & Miles, D.L. (1982). Hydrochemical
evolution of the East Midlands Triassic sandstone aquifer, England.
Geochim. Cosmochim. Acta, 46(11), 2069-2081.
Edmunds, W.M., Ma, J.Z., Aeschbach-Hertig, W., Kipfer, R., &
Darbyshire, D.P.F. (2006). Groundwater recharge history and
hydrogeochemical evolution in the Minqin Basin, North West China. Appl.
Geochem., 21(12), 0-2170.
Farid, I., Zouari, K., Rigane, A., & Beji, R. (2015). Origin of the
groundwater salinity and geochemical processes in detrital and carbonate
aquifers: Case of Chougafiya basin (Central Tunisia). J. Hydrol., 530,
508-532.
Fan, B.L., Zhao, Z.Q., Tao, F.X., Li, X.D., Tao, Z.H., Gao, S., & He,
M.Y. (2016). The geochemical behavior of Mg isotopes in the Huanghe
basin, China. Chemical Geology, 426, 19-27.
Freeze, R.A., & Cherry, J.A. (1979). Groundwater Prentice-Hall,
Englewood Chffs, New Jersey.
Gamboa, C., Godfrey, L., Herrera C., Custodio E., & Soler, A. (2019).
The origin of solutes in groundwater in a hyper-arid environment: A
chemical and multi-isotope approach in the Atacama Desert, Chile. Sci.
Total Environ., 690, 329-351.
Ghassemi,
F., Jakeman, A.J., & Nix, H.A. (1995). Salinisation of land and water
resources: Human causes, extent, management, and case studies. CAB
International, Wallingford.
Gibbs, R. J. (1970). Mechanisms controlling world water chemistry.
Science, 172(3985), 870–872.
Gil-Márquez, J.M, Barberá, J.A,
Andreo, B., & Mudarra, M. (2017). Hydrological and geochemical
processes constraining groundwater salinity in wetland areas related to
evaporitic (karst) systems. A case study from Southern Spain. J.
Hydrol., 2017, 538-554.
Harrington, G.A., & Herczeg,
A.L., 2003. The importance of silicate weathering of a sedimentary
aquifer in arid Central Australia indicated by very high87Sr/ 86Sr ratios. Chem. Geol.,
199(3), 281-292.
Herrera, C., Gamboa, C., Custodio, E., Jordan, T., Godfrey, L., Jódar,
J., Luque, J.A., Vargas, J., & Sáez, A. (2018). Groundwater origin and
recharge in the hyperarid Cordillera de la Costa, Atacama Desert,
northern Chile. Sci. Total Environ., 624, 114-132.
Jørgensen, N. O., Andersen, M. S., & Engesgaard. P. (2008).
Investigation of a Dynamic Seawater Intrusion Event using Strontium
Isotopes (87Sr/86Sr). J. Hydrol.,
348, 257-269.
Liu, Z.H., Tan, H.B., Shi, D.P., Xu, P., & I.Elenga, H. (2019). Origin
and formation mechanism of salty water in Zuli River catchment of the
Yellow River. Water Environ. Res., 1, 1-17.
Luo, C.S., Chen, W.W., & Han, W.F. (2010). Experimental study on
factors affecting the quality of ice crystal during the freezing
concentration for the brackish water. Desalination, 260(1-3), 231-238.
Maik, B., Redel, U., Blank, K., & Meyerhof, W. (2019). The human bitter
taste receptor TAS2R7 facilitates the detection of bitter salts.
Biochem. Biophys. Res. Commun., 512, 877-881.
Monjerezi,
M., D.Vogt, R., Aagaard, P., Gebru, A.G., & Saka, J.D.K. (2011). Using87Sr/86Sr, δ18O
and δ2H isotopes along with major chemical composition
to assess groundwater salinization in lower Shire valley, Malawi. Appl.
Geochem., 26(12), 0-2214.
Morell, I., Pulido-Bosch, A.,
Sánchez-Martos, F., Vallejos, A., Daniele, L., Molina, L., Calaforra,
J.M., Roig, A.F., & Renau, A. (2008). Characterization of the
Salinisation Processes in Aquifers Using Boron Isotopes; Application to
South-Eastern Spain. Water, Air, Soil Pollut., 187(1-4), 65-80.
Palmer, M.R., Spivack, A.J., &
Edmond, J.M. (1987). Temperature and pH controls over isotopic
fractionation during adsorption of boron on marine clay. Geochim.
Cosmochim. Acta, 51(9), 2319-2323.
Palmer, M.R., & Edmond, J.M. (1992). Controls over the strontium
isotope composition of river water. Geochim. Cosmochim. Acta, 56(5),
2099-2111.
Palmer, M.R., & Swihart, G.H.
(1996). Boron isotopes geochemistry: An overview. Boron: Mineralogy,
Petrology and Geochemistry. Rev. Mineral. Geochem., 33, 709-744.
Petrides, B., Cartwright, I., & R.Weaver, T. (2006). The evolution of
groundwater in the Tyrrell catchment, south-central Murray Basin,
Victoria, Australia. Hydrogeol. J., 14, 1522-1543.
Pingitore, N.E., & Eastman, M.P. (1986). The coprecipitation of
Sr2+ with calcite at 25°C and 1 atm. Geochim.
Cosmochim. Acta, 50(10), 2195-2203.
Romer, R.L., Meixner, A., &
Förster, H. (2014). Lithium and boron in late-orogenic granites –
Isotopic fingerprints for the source of crustal melts. Geochimica et
Cosmochimica Acta, 131, 98-114.
Skrzypek, G., Dogramaci, S., & F.Grierson, P. (2013). Geochemical and
hydrological processes controlling groundwater salinity of a large
inland wetland of northwest Australia. Chem. Geol., 357, 164-177.
Spivack, A.J., & Edmond, J.M. (1987). Boron isotope exchange between
seawater and the oceanic crust. Geochim. Cosmochim. Acta, 51, 1033-1043.
Tsunekawa, A., Liu, G., Yamanaka, N., & Du, S. (2014). Restoration and
Development of the Degraded Loess Plateau, China. Springer, Tokyo.
Vengosh, A., Heumann, K.G., Juraske, S., & Kasher, R. (1994). Boron
Isotope Application for Tracing Sources of Contamination in Groundwater.
Environ. Sci. Technol., 28(11), 1968-1974.
Vengosh A. (2005). Salinization and saline environments
[M]//Elsevier Science Technology: Treatise on geochemistry volume 9:
Environmental Geochemistry, 168 -333.
Werner, A.D., Bakker, M., Post, V.E.A., Vandenbohede, A., Lu, C., &
Ataie-Ashtiani, B. (2013). Seawater intrusion processes, investigation
and management: recent advances and future challenges. Adv. Water
Resour. 51, 3-26.
Sahib, L., Marandi, A., & Schüth, C. (2016). Strontium isotopes as an
indicator for groundwater salinity sources in the Kirkuk region, Iraq.
Sci. Total Environ., 562, 935-945.
Xiao, J., Zhang, F., & Jin, Z.D. (2016). Spatial characteristics and
controlling factors of chemical weathering of loess in the dry season in
the middle Loess Plateau, China. Hydrol. Process., 30, 4855-4869.
Yokoo, Y., Nakanob, T., Nishikawac, M., & Quan, H. (2004).
Mineralogical variation of Sr–Nd isotopic and elemental compositions in
loess and desert sand from the central Loess Plateau in China as a
provenance tracer of wet and dry deposition in the northwestern Pacific.
Chem. Geol., 204, 45-62.
Zhan, T., Guo, Z.T., Wu, H.B., Ge, J.Y., Zhou, X., Wu, C.L., & Zeng,
F.M. (2011). Thick Miocene eolian deposits on the Huajialing Mountains:
The geomorphic evolution of the western Loess Plateau. Sci. China: Earth
Sci., 54, 241-248.