References:
[1] Koch, C., Wabbel, K., Eber, F.J., Krolla-Sidenstein, P., et al.,
Modified TMV Particles as Beneficial Scaffolds to Present Sensor
Enzymes. Front. Plant Sci. 2015, 6 , DOI:
10.3389/fpls.2015.01137.
[2] Portney, N.G., Tseng, R.J., Destito, G., Strable, E., et al.,
Microscale memory characteristics of virus-quantum dot hybrids.Appl. Phys. Lett. 2007, 90 , 214104.
[3] Royston, E., Ghosh, A., Kofinas, P., Harris, M.T., et al.,
Self-Assembly of Virus-Structured High Surface Area Nanomaterials and
Their Application as Battery Electrodes. Langmuir 2008,24 , 906–912.
[4] Yang, C., Manocchi, A.K., Lee, B., Yi, H., Viral templated
palladium nanocatalysts for dichromate reduction. Applied
Catalysis B: Environmental 2010, 93 , 282–291.
[5] Yang, C., Manocchi, A.K., Lee, B., Yi, H., Viral-templated
palladium nanocatalysts for Suzuki coupling reaction. J. Mater.
Chem. 2010, 21 , 187–194.
[6] Chen, X., Gerasopoulos, K., Guo, J., Brown, A., et al.,
Virus-Enabled Silicon Anode for Lithium-Ion Batteries. ACS Nano2010, 4 , 5366–5372.
[7] Mueller, R., Mädler, L., Pratsinis, S.E., Nanoparticle synthesis
at high production rates by flame spray pyrolysis. Chemical
Engineering Science 2003, 58 , 1969–1976.
[8] Sun, Y., Xia, Y., Large-Scale Synthesis of Uniform Silver
Nanowires Through a Soft, Self-Seeding, Polyol Process. Advanced
Materials 2002, 14 , 833–837.
[9] Cattaneo, S., Althahban, S., Freakley, S.J., Sankar, M., et al.,
Synthesis of highly uniform and composition-controlled gold–palladium
supported nanoparticles in continuous flow. Nanoscale 2019,11 , 8247–8259.
[10] Khorsand Zak, A., Majid, W.H.Abd., Ebrahimizadeh Abrishami, M.,
Yousefi, R., et al., Synthesis, magnetic properties and X-ray analysis
of Zn0.97X0.03O nanoparticles (X = Mn, Ni, and Co) using Scherrer and
size–strain plot methods. Solid State Sciences 2012, 14 ,
488–494.
[11] Zhang, Y., Dong, Y., Zhou, J., Li, X., et al., Application of
Plant Viruses as a Biotemplate for Nanomaterial Fabrication.Molecules 2018, 23 , 2311.
[12] Lee, S.-Y., Lim, J.-S., Harris, M.T., Synthesis and application
of virus-based hybrid nanomaterials. Biotechnology and
Bioengineering 2012, 109 , 16–30.
[13] Watson, S.M.D., Mohamed, H.D.A., Horrocks, B.R., Houlton, A.,
Electrically conductive magnetic nanowires using an electrochemical
DNA-templating route. Nanoscale 2013, 5 , 5349–5359.
[14] Zhou, J.C., Gao, Y., Martinez‐Molares, A.A., Jing, X., et al.,
Microtubule-Based Gold Nanowires and Nanowire Arrays. Small 2008,4 , 1507–1515.
[15] Malisauskas, M., Meskys, R., Morozova‐Roche, L.A., Ultrathin
silver nanowires produced by amyloid biotemplating. Biotechnology
Progress 2008, 24 , 1166–1170.
[16] Adigun, O.O., Retzlaff-Roberts, E.L., Novikova, G., Wang, L.,
et al., BSMV as a Biotemplate for Palladium Nanomaterial Synthesis.Langmuir 2017, 33 , 1716–1724.
[17] Chu, S., Brown, A.D., Culver, J.N., Ghodssi, R., Tobacco Mosaic
Virus as a Versatile Platform for Molecular Assembly and Device
Fabrication. Biotechnology Journal 2018, 13 , 1800147.
[18] Brown, A.D., Naves, L., Wang, X., Ghodssi, R., et al.,
Carboxylate-Directed In Vivo Assembly of Virus-like Nanorods and Tubes
for the Display of Functional Peptides and Residues.Biomacromolecules 2013, 14 , 3123–3129.
[19] Qu, Y., Yang, Y., Du, R., Zhao, M., Peroxidase activities of
gold nanowires synthesized by TMV as template and their application in
detection of cancer cells. Appl Microbiol Biotechnol 2020,104 , 3947–3957.
[20] Saunders, K., Lomonossoff, G.P., In Planta Synthesis of
Designer-Length Tobacco Mosaic Virus-Based Nano-Rods That Can Be Used to
Fabricate Nano-Wires. Front Plant Sci 2017, 8 , DOI:
10.3389/fpls.2017.01335.
[21] Brown, A.D., Naves, L., Wang, X., Ghodssi, R., et al.,
Carboxylate-Directed In Vivo Assembly of Virus-like Nanorods and Tubes
for the Display of Functional Peptides and Residues.Biomacromolecules 2013, 14 , 3123–3129.
[22] Zeltins, A., Construction and Characterization of Virus-Like
Particles: A Review. Mol Biotechnol 2013, 53 , 92–107.
[23] Kadri, A., Wege, C., Jeske, H., In vivo self-assembly of
TMV-like particles in yeast and bacteria for nanotechnological
applications. Journal of Virological Methods 2013, 189 ,
328–340.
[24] Jeong, H., Seong, B.L., Exploiting virus-like particles as
innovative vaccines against emerging viral infections. J
Microbiol. 2017, 55 , 220–230.
[25] Makarov, V.V., Skurat, E.V., Semenyuk, P.I., Abashkin, D.A., et
al., Structural Lability of Barley Stripe Mosaic Virus Virions.PLoS One 2013, 8 , DOI: 10.1371/journal.pone.0060942.
[26] Schügerl, K., Hubbuch, J., Integrated bioprocesses.Current Opinion in Microbiology 2005, 8 , 294–300.
[27] Liu, Y., Xu, Y., Zhu, Y., Culver, J.N., et al., Tin-Coated
Viral Nanoforests as Sodium-Ion Battery Anodes. ACS Nano 2013,7 , 3627–3634.
[28] Alonso, J.M., Górzny, M.Ł., Bittner, A.M., The physics of
tobacco mosaic virus and virus-based devices in biotechnology.Trends in Biotechnology 2013, 31 , 530–538.
[29] Freer, A.S., Guarnaccio, L., Wafford, K., Smith, J., et al.,
SAXS characterization of genetically engineered tobacco mosaic virus
nanorods coated with palladium in the absence of external reducing
agents. Journal of Colloid and Interface Science 2013,392 , 213–218.
[30] Lee, S.-Y., Royston, E., Culver, J.N., Harris, M.T., Improved
metal cluster deposition on a genetically engineered tobacco mosaic
virus template. Nanotechnology 2005, 16 , S435–S441.
[31] Oster, G., The Isoelectric Points of Some Strains of Tobacco
Mosaic Virus. J. Biol. Chem. 1951, 190 , 55–59.
[32] King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J.
(Eds.), Family - Virgaviridae, in: Virus Taxonomy , Elsevier, San
Diego 2012, pp. 1139–1162.
[33] Clare, D.K., Pechnikova, E.V., Skurat, E.V., Makarov, V.V., et
al., Novel Inter-Subunit Contacts in Barley Stripe Mosaic Virus Revealed
by Cryo-Electron Microscopy. Structure 2015, 23 ,
1815–1826.
[34] Kegel, W.K., van der Schoot, P., Physical Regulation of the
Self-Assembly of Tobacco Mosaic Virus Coat Protein. Biophysical
Journal 2006, 91 , 1501–1512.
[35] Butler, P.J., Self-assembly of tobacco mosaic virus: the role
of an intermediate aggregate in generating both specificity and speed.Philos Trans R Soc Lond B Biol Sci 1999, 354 , 537–550.
[36] Wang, H., Planchart, A., Stubbs, G., Caspar Carboxylates: The
Structural Basis of Tobamovirus Disassembly. Biophysical Journal1998, 74 , 633–638.
[37] Wege, C., Koch, C., From stars to stripes: RNA-directed shaping
of plant viral protein templates—structural synthetic virology for
smart biohybrid nanostructures. WIREs Nanomedicine and
Nanobiotechnology 2020, 12 , e1591.
[38] Adigun, O.O., Novikova, G., Retzlaff-Roberts, E.L., Kim, B., et
al., Decoupling and elucidation of surface-driven processes during
inorganic mineralization on virus templates. Journal of Colloid
and Interface Science 2016, 483 , 165–176.
[39] Dujardin, E., Peet, C., Stubbs, G., Culver, J.N., et al.,
Organization of Metallic Nanoparticles Using Tobacco Mosaic Virus
Templates. Nano Lett. 2003, 3 , 413–417.
[40] Bechtel, T.J., Weerapana, E., From structure to redox: the
diverse functional roles of disulfides and implications in disease.Proteomics 2017, 17 .
[41] Aeschbach, R., Amadoò, R., Neukom, H., Formation of dityrosine
cross-links in proteins by oxidation of tyrosine residues.Biochimica et Biophysica Acta (BBA) - Protein Structure 1976,439 , 292–301.
[42] Utrera, M., Rodríguez-Carpena, J.-G., Morcuende, D., Estévez,
M., Formation of Lysine-Derived Oxidation Products and Loss of
Tryptophan during Processing of Porcine Patties with Added Avocado
Byproducts. J. Agric. Food Chem. 2012, 60 , 3917–3926.
[43] Tsukamoto, R., Muraoka, M., Seki, M., Tabata, H., et al.,
Synthesis of CoPt and FePt3 Nanowires Using the Central Channel of
Tobacco Mosaic Virus as a Biotemplate. Chem. Mater. 2007,19 , 2389–2391.
[44] Knez, M., Bittner, A.M., Boes, F., Wege, C., et al.,
Biotemplate Synthesis of 3-nm Nickel and Cobalt Nanowires. Nano
Lett. 2003, 3 , 1079–1082.
[45] Bratsch, S.G., Standard Electrode Potentials and Temperature
Coefficients in Water at 298.15 K. Journal of Physical and
Chemical Reference Data 1989, 18 , 1–21.
[46] Freer, A.S., Gilpin, C., Mueller, L., Harris, M., A Novel
Method to Determine the Resistance of Biotemplated Nanowires.Chemical Engineering Communications 2015, 202 , 1216–1220.
[47] Srinivasan, K., Cular, S., Bhethanabotla, V.R., Sang Yup Lee,
et al., Nanomaterial sensing layer based surface acoustic wave hydrogen
sensors, in: IEEE Ultrasonics Symposium, 2005. , 2005, pp.
645–648.
[48] Zhou, J.C., Soto, C.M., Chen, M.-S., Bruckman, M.A., et al.,
Biotemplating rod-like viruses for the synthesis of copper nanorods and
nanowires. Journal of Nanobiotechnology 2012, 10 , 18.
[49] Bergin, S.M., Chen, Y.-H., Rathmell, A.R., Charbonneau, P., et
al., The effect of nanowire length and diameter on the properties of
transparent, conducting nanowire films. Nanoscale 2012, 4 ,
1996–2004.
[50] Choi, Y.-H., Chae, Y.-S., Lee, J.-H., Kwon, Y., et al.,
Mechanism of metal nanowire formation via the polyol process.Electron. Mater. Lett. 2015, 11 , 735–740.
[51] Hemmati, S., Barkey, D.P., Eggleston, L., Zukas, B., et al.,
Silver Nanowire Synthesis in a Continuous Millifluidic Reactor.ECS J. Solid State Sci. Technol. 2017, 6 , P144.
[52] Hemmati, S., Barkey, D.P., Gupta, N., Banfield, R., Synthesis
and Characterization of Silver Nanowire Suspensions for Printable
Conductive Media. ECS J. Solid State Sci. Technol. 2015,4 , P3075.
[53] Wnęk, M., Górzny, M.Ł., Ward, M.B., Wälti, C., et al.,
Fabrication and characterization of gold nano-wires templated on
virus-like arrays of tobacco mosaic virus coat proteins.Nanotechnology 2013, 24 , 025605.
[54] Lim, J.-S., Kim, S.-M., Lee, S.-Y., Stach, E.A., et al.,
Biotemplated Aqueous-Phase Palladium Crystallization in the Absence of
External Reducing Agents. Nano Lett. 2010, 10 , 3863–3867.
[55] Balci, S., Hahn, K., Kopold, P., Kadri, A., et al., Electroless
synthesis of 3 nm wide alloy nanowires insideTobacco mosaic virus.Nanotechnology 2012, 23 , 045603.
[56] Balci, S., Bittner, A.M., Hahn, K., Scheu, C., et al., Copper
nanowires within the central channel of tobacco mosaic virus particles.Electrochimica Acta 2006, 51 , 6251–6257.
[57] Gnerlich, M., Ben-Yoav, H., Culver, J.N., Ketchum, D.R., et
al., Selective deposition of nanostructured ruthenium oxide using
Tobacco mosaic virus for micro-supercapacitors in solid Nafion
electrolyte. Journal of Power Sources 2015, 293 , 649–656.
[58] Yang, C., Meldon, J.H., Lee, B., Yi, H., Investigation on the
catalytic reduction kinetics of hexavalent chromium by viral-templated
palladium nanocatalysts. Catalysis Today 2014, 233 ,
108–116.
[59] Manocchi, A.K., Seifert, S., Lee, B., Yi, H., In Situ
Small-Angle X-ray Scattering Analysis of Palladium Nanoparticle Growth
on Tobacco Mosaic Virus Nanotemplates. Langmuir 2011, 27 ,
7052–7058.
[60] Li, D., Wang, C., Tripkovic, D., Sun, S., et al., Surfactant
Removal for Colloidal Nanoparticles from Solution Synthesis: The Effect
on Catalytic Performance. ACS Catal. 2012, 2 , 1358–1362.
[61] Koch, C., Poghossian, A., Schöning, M.J., Wege, C., Penicillin
Detection by Tobacco Mosaic Virus -Assisted Colorimetric
Biosensors. Nanotheranostics 2018, 2 , 184–196.
[62] Zhou, H., Liu, J., Xu, J.-J., Zhang, S., et al., Chapter Two -
Advances in DNA/RNA detection using nanotechnology, in: Makowski, G.S.
(Ed.), Advances in Clinical Chemistry , 1st ed., Elsevier,
Cambridge, MA 2019, pp. 31–98.
[63] Lee, S.-Y., Choi, J., Royston, E., Janes, D.B., et al.,
Deposition of Platinum Clusters on Surface-Modified Tobacco Mosaic
Virus. Journal of Nanoscience and Nanotechnology 2006, 6 ,
974–981.
[64] Kadri, A., Maiß, E., Amsharov, N., Bittner, A.M., et al.,
Engineered Tobacco mosaic virus mutants with distinct physical
characteristics in planta and enhanced metallization properties.Virus Research 2011, 157 , 35–46.
[65] Royston, E., Lee, S.-Y., Culver, J.N., Harris, M.T.,
Characterization of silica-coated tobacco mosaic virus. Journal of
Colloid and Interface Science 2006, 298 , 706–712.
[66] Atanasova, P., Hoffmann, R.C., Stitz, N., Sanctis, S., et al.,
Engineered nanostructured virus/ZnO hybrid materials with dedicated
functional properties. Bioinspired, Biomimetic and
Nanobiomaterials 2019, 8 , 2–15.
[67] Bendahmane, M., Chen, I., Asurmendi, S., Bazzini, A.A., et al.,
Coat protein-mediated resistance to TMV infection of Nicotiana tabacum
involves multiple modes of interference by coat protein. Virology2007, 366 , 107–116.
[68] Khan, A.A., Fox, E.K., Górzny, M.Ł., Nikulina, E., et al., pH
Control of the Electrostatic Binding of Gold and Iron Oxide
Nanoparticles to Tobacco Mosaic Virus. Langmuir 2013, 29 ,
2094–2098.
[69] Knez, M., Sumser, M., Bittner, A.M., Wege, C., et al.,
Spatially Selective Nucleation of Metal Clusters on the Tobacco Mosaic
Virus. Advanced Functional Materials 2004, 14 , 116–124.
[70] Altintoprak, K., Seidenstücker, A., Welle, A., Eiben, S., et
al., Peptide-equipped tobacco mosaic virus templates for selective and
controllable biomineral deposition. Beilstein Journal of
Nanotechnology 2015, 6 , 1399–1412.
[71] Geiger, F.C., Eber, F.J., Eiben, S., Mueller, A., et al., TMV
nanorods with programmed longitudinal domains of differently addressable
coat proteins. Nanoscale 2013, 5 , 3808–3816.
[72] Zhou, K., Li, F., Dai, G., Meng, C., et al., Disulfide Bond:
Dramatically Enhanced Assembly Capability and Structural Stability of
Tobacco Mosaic Virus Nanorods. Biomacromolecules 2013, 14 ,
2593–2600.
[73] Schlick, T.L., Ding, Z., Kovacs, E.W., Francis, M.B.,
Dual-Surface Modification of the Tobacco Mosaic Virus. J. Am.
Chem. Soc. 2005, 127 , 3718–3723.
[74] Strable, E., Prasuhn, D.E., Udit, A.K., Brown, S., et al.,
Unnatural Amino Acid Incorporation into Virus-Like Particles.Bioconjugate Chem. 2008, 19 , 866–875.
[75] Boyce, M., Bertozzi, C.R., Bringing chemistry to life.Nature Methods 2011, 8 , 638–642.
[76] Carrico, Z.M., Romanini, D.W., Mehl, R.A., Francis, M.B.,
Oxidative coupling of peptides to a virus capsid containing unnatural
amino acids. Chem. Commun. 2008, 1205–1207.
[77] Dunkelmann, D.L., Willis, J.C.W., Beattie, A.T., Chin, J.W.,
Engineered triply orthogonal pyrrolysyl–tRNA synthetase/tRNA pairs
enable the genetic encoding of three distinct non-canonical amino acids.Nature Chemistry 2020, 12 , 535–544.
[78] Carlson, E.D., Gan, R., Hodgman, C.E., Jewett, M.C., Cell-Free
Protein Synthesis: Applications Come of Age. Biotechnol Adv 2012,30 , 1185–1194.
[79] Patel, K.G., Swartz, J.R., Surface Functionalization of
Virus-Like Particles by Direct Conjugation Using Azide−Alkyne Click
Chemistry. Bioconjugate Chem. 2011, 22 , 376–387.
[80] Gibson, D.G., Young, L., Chuang, R.-Y., Venter, J.C., et al.,
Enzymatic assembly of DNA molecules up to several hundred kilobases.Nat Meth 2009, 6 , 343–345.
[81] Engler, C., Kandzia, R., Marillonnet, S., A one pot, one step,
precision cloning method with high throughput capability. PLoS
ONE 2008, 3 , e3647.
[82] Engler, C., Marillonnet, S., Combinatorial DNA assembly using
Golden Gate cloning. Methods Mol. Biol. 2013, 1073 ,
141–156.
[83] Packer, M.S., Liu, D.R., Methods for the directed evolution of
proteins. Nat Rev Genet 2015, 16 , 379–394.
[84] Chapman, R., Bourn, W.R., Shephard, E., Stutz, H., et al., The
Use of Directed Evolution to Create a Stable and Immunogenic Recombinant
BCG Expressing a Modified HIV-1 Gag Antigen. PLOS ONE 2014,9 , e103314.
[85] Wu, Z., Kan, S.B.J., Lewis, R.D., Wittmann, B.J., et al.,
Machine learning-assisted directed protein evolution with combinatorial
libraries. PNAS 2019, 116 , 8852–8858.
[86] Ravikumar, A., Arzumanyan, G.A., Obadi, M.K.A., Javanpour,
A.A., et al., Scalable, Continuous Evolution of Genes at Mutation Rates
above Genomic Error Thresholds. Cell 2018, 175 ,
1946-1957.e13.
[87] Huo, Y., Wan, X., Ling, T., Wu, J., et al., Expression and
purification of norovirus virus like particles in Escherichia coli and
their immunogenicity in mice. Molecular Immunology 2018,93 , 278–284.
[88] Trevino, S.R., Scholtz, J.M., Pace, C.N., Measuring and
Increasing Protein Solubility. Journal of Pharmaceutical Sciences2008, 97 , 4155–4166.
[89] Vormittag, P., Klamp, T., Hubbuch, J., Ensembles of
Hydrophobicity Scales as Potent Classifiers for Chimeric Virus-Like
Particle Solubility – An Amino Acid Sequence-Based Machine Learning
Approach. Front. Bioeng. Biotechnol. 2020, 8 , DOI:
10.3389/fbioe.2020.00395.
[90] Ahn, D.J., Berman, A., Charych, D., Probing the Dynamics of
Template-Directed Calcite Crystallization with in Situ FTIR. J.
Phys. Chem. 1996, 100 , 12455–12461.
[91] Shafaei, A., Khayati, G.R., A predictive model on size of
silver nanoparticles prepared by green synthesis method using hybrid
artificial neural network-particle swarm optimization algorithm.Measurement 2020, 151 , 107199.
[92] Naik, P.K., Ranjan, P., Kesari, P., Jain, S., MetalloPred: A
tool for hierarchical prediction of metal ion binding proteins using
cluster of neural networks and sequence derived features. JBPC2011, 02 , 112–123.