References

Arakawa, T., Kita, Y., Sato, H., & Ejima, D. (2009). MEP chromatography of antibody and Fc-fusion protein using aqueous arginine solution.Protein Expression and Purification , 63 (2), 158–163. https://doi.org/10.1016/j.pep.2008.09.011
Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & Andrew McCammon, J. (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences, 98(18) , 10037-10041. https://doi.org/10.1073/pnas.181342398.
Banerjee, S., Parimal, S., & Cramer, S. M. (2017). A molecular modeling based method to predict elution behavior and binding patches of proteins in multimodal chromatography. Journal of Chromatography A ,1511 , 45–58. https://doi.org/10.1016/j.chroma.2017.06.059
Bas, D. C., Rogers, D. M., & Jensen, J. H. (2008). Very fast prediction and rationalization of pK a values for protein2ligand complexes.Proteins , 73 (3), 765–783. https://doi.org/10.1002/prot.22102
Bayly, C. I., Cieplak, P., Cornell, W. D., & Kollman, P. A. (1993).A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges: The RESP Model . The Journal of Physical Chemistry, 97, 10269-10280.
Bilodeau, C. L., Lau, E. Y., Cramer, S. M., & Garde, S. (2019). Conformational Equilibria of Multimodal Chromatography Ligands in Water and Bound to Protein Surfaces. Journal of Physical Chemistry B, 123, 4833-4843. https://doi.org/10.1021/acs.jpcb.9b01218
Burton, S. C., Haggarty, N. W., & Harding, D. R. K. (1997). One step purification of chymosin by mixed mode chromatography.Biotechnology and Bioengineering , 56 (1), 45–55. https://doi.org/10.1002/(SICI)1097-0290(19971005)56:1<45::AID-BIT5>3.0.CO;2-V
Burton, Simon Christopher, & Harding, D. R. K. (1997). High-density ligand attachment to brominated allyl matrices and application to mixed mode chromatography of chymosin. Journal of Chromatography A ,775 (1–2), 39–50. https://doi.org/10.1016/S0021-9673(97)00515-3
Cheatham, T. E., Cieplak, P., & Kollman, P. A. (1999). A Modified Version of the Cornell et al. Force Field with Improved Sugar Pucker Phases and Helical Repeat. Journal of Biomolecular Structure and Dynamics , 16 (4), 845–862. https://doi.org/10.1080/07391102.1999.10508297
Chen, J., Tetrault, J., Zhang, Y., Wasserman, A., Conley, G., DiLeo, M., … Ley, A. (2010). The distinctive separation attributes of mixed-mode resins and their application in monoclonal antibody downstream purification process. Journal of Chromatography A ,1217 (2), 216–224. https://doi.org/10.1016/J.CHROMA.2009.09.047
Chennamsetty, N., Voynov, V., Kayser, V., Helk, B., & Trout, B. L. (2010). Prediction of Aggregation Prone Regions of Therapeutic Proteins.Journal of Physical Chemistry B, 114, 6614–6624. https://doi.org/10.1021/jp911706q
Chung, W. K., Evans, S. T., Freed, A. S., Keba, J. J., Baer, Z. C., Rege, K., & Cramer, S. M. (2010). Utilization of lysozyme charge ladders to examine the effects of protein surface charge distribution on binding affinity in ion exchange systems. Langmuir , 26 (2), 759–768. https://doi.org/10.1021/la902135t
Chung, W. K., Freed, A. S., Holstein, M. A., Mccallum, S. A., Cramer, S. M., Designed, S. M. C., & Performed, M. A. H. (2010). Evaluation of protein adsorption and preferred binding regions in multimodal chromatography using NMR. Proceedings of the National Academy of Sciences, 107(39) , 16811–16816. https://doi.org/10.1073/pnas.1002347107
Chung, W. K., Holstein, M. A., Freed, A. S., Evans, S. T., Baer, Z. C., & Cramer, S. M. (2010). Ion exchange chromatographic behavior of a homologous cytochrome C variant library obtained by controlled succinylation. Separation Science and Technology , 45 (15), 2144–2152. https://doi.org/10.1080/01496395.2010.507432
Chung, W. K., Hou, Y., Holstein, M., Freed, A., Makhatadze, G. I., & Cramer, S. M. (2010). Investigation of Protein Binding Affinity and Preferred Orientations in Ion Exchange Systems Using a Homologous Protein Library. Journal of Chromatography A , 1217 (2), 191–198. https://doi.org/10.1016/j.chroma.2009.08.005
Clarkson, J., & Campbell, I. D. (2003). Studies of protein-ligand interactions by NMR. Biochemical Society Transactions ,31 (Pt 5), 1006–1009. https://doi.org/10.1042/
Cramer, S. M., & Holstein, M. A. (2011). Downstream bioprocessing: recent advances and future promise. Current Opinion in Chemical Engineering , 1 , 27–37. https://doi.org/10.1016/j.coche.2011.08.008
Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N&sdot;log(N) method for Ewald sums in large systems. The Journal of Chemical Physics , 98 , 5648. https://doi.org/10.1063/1.464397
Dismer, F., & Hubbuch, J. (2007). A novel approach to characterize the binding orientation of lysozyme on ion-exchange resins. Journal of Chromatography A , 1149 , 312–320. https://doi.org/10.1016/j.chroma.2007.03.074
Dismer, F., Petzold, M., & Hubbuch, J. (2008). Effects of ionic strength and mobile phase pH on the binding orientation of lysozyme on different ion-exchange adsorbents. Journal of Chromatography A ,1194 (1), 11–21. https://doi.org/10.1016/J.CHROMA.2007.12.085
Evans, D. J., & Holian, B. L. (1985). The Nose-Hoover thermostat.The Journal of Chemical Physics , 83 (8), 4069–4074. https://doi.org/10.1063/1.449071
Freed, A. S., Garde, S., & Cramer, S. M. (2011). Molecular simulations of multimodal ligand-protein binding: Elucidation of binding sites and correlation with experiments. Journal of Physical Chemistry B ,115 (45), 13320–13327. https://doi.org/10.1021/jp2038015
Frisch, M.J.E.A., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. and N. (2009). Gaussian 09, Revision a. 02.Gaussian. Inc., Wallingford, CT , 200 . Retrieved from https://gaussian.com/g09citation/
Gagnon, P., Cheung, C.-W., Lepin, E. J., Wu, A. M., Sherman, M. A., Raubitschek, A. A., & Yazaki Pete Gagnon, P. J. (2010).Minibodies and Multimodal Chromatography Methods: A Convergence of Challenge and Opportunity . Bioprocess International 8(2), 26-35.
Gagnon, P., Cheung, C., & Yazaki, P. J. (2009). Cooperative multimodal retention of IgG , fragments , and aggregates on hydroxyapatite.Journal of Separation Science, 32 , 3857–3865. https://doi.org/10.1002/jssc.200900055
Ghose, S., Hubbard, B., & Cramer, S. M. (2005). Protein interactions in hydrophobic charge induction chromatography (HCIC). Biotechnology Progress , 21 (2), 498–508. https://doi.org/10.1021/bp049712+
Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. Journal of Chemical Theory and Computation, 4, 435-447. https://doi.org/10.1021/ct700301q
Holstein, M. A., Chung, W. K., Parimal, S., Freed, A. S., Barquera, B., McCallum, S. A., & Cramer, S. M. (2012). Probing multimodal ligand binding regions on ubiquitin using nuclear magnetic resonance, chromatography, and molecular dynamics simulations. Journal of Chromatography A , 1229 , 113–120. https://doi.org/10.1016/j.chroma.2011.12.101
Holstein, M. A., Parimal, S., McCallum, S. A., & Cramer, S. M. (2012). Mobile phase modifier effects in multimodal cation exchange chromatography. Biotechnology and Bioengineering , 109 (1), 176–186. https://doi.org/10.1002/bit.23318
Holstein, M. A., Parimal, S., McCallum, S. A., & Cramer, S. M. (2013). Effects of urea on selectivity and protein-ligand interactions in multimodal cation exchange chromatography. Langmuir ,29 (1), 158–167. https://doi.org/10.1021/la302360b
Hong, Y.-H., Ahn, H.-C., Lim, J., Kim, H.-M., Ji, H.-Y., Lee, S., … Lee, B.-J. (2009). Identification of a novel ubiquitin binding site of STAM1 VHS domain by NMR spectroscopy. FEBS Letters ,583 (2), 287–292. https://doi.org/10.1016/j.febslet.2008.12.034
Idusogie, E. E., Presta, L. G., Totpal, K., Wong, P. Y., Meng, Y. G., & Mulkerrin, M. G. (2000). Mapping of the C1q Binding Site on Rituxan, a Chimeric Antibody with a Human IgG1 Fc. Journal of Immunology ,164 , 4178–4184. https://doi.org/10.4049/jimmunol.164.8.4178
Johansson, B.-L., Belew, M., Eriksson, S., Glad, G., Lind, O., Maloisel, J.-L., & Norrman, N. (2003). Preparation and characterization of prototypes for multi-modal separation media aimed for capture of negatively charged biomolecules at high salt conditions. Journal of Chromatography A , 1016 , 21–33. https://doi.org/10.1016/S0021-9673(03)01140-3
Jorgensen, W. L. (1981). Transferable Intermolecular Potential Functions for Water, Alcohols, and Ethers. Application to Liquid Water1.Journal of American Chemical Society, 103, 335-340.
Kaleas, K. A., Tripodi, M., Revelli, S., Sharma, V., & Pizarro, S. A. (2014). Evaluation of a multimodal resin for selective capture of CHO-derived monoclonal antibodies directly from harvested cell culture fluid. Journal of Chromatography B , 969 , 256–263. https://doi.org/10.1016/j.jchromb.2014.08.026
Karkov, H. S., Woo, J., Krogh, B. O., Ahmadian, H., & Cramer, S. M. (2015). Evaluation of selectivity in homologous multimodal chromatographic systems using in silico designed antibody fragment libraries. Journal of Chromatography A , 1426 , 102–109. https://doi.org/10.1016/j.chroma.2015.11.047
Kittelmann, J., Lang, K. M. H., Ottens, M., & Hubbuch, J. (2017). Orientation of monoclonal antibodies in ion-exchange chromatography: A predictive quantitative structure–activity relationship modeling approach. Journal of Chromatography A , 1510 , 33–39. https://doi.org/10.1016/j.chroma.2017.06.047
Lin, D.-Q., Tong, H.-F., Wang, H.-Y., & Yao, S.-J. (2012). Molecular Insight into the Ligand−IgG Interactions for 4-Mercaptoethyl-pyridine Based Hydrophobic Charge-Induction Chromatography. Journal of Physical Chemistry B, 116, 1393-1400. https://doi.org/10.1021/jp206817b
Liu, H. F., Ma, J., Winter, C., & Bayer, R. (2010). mAbs Recovery and purification process development for monoclonal antibody production.MAbs , 2 (5), 480–499. https://doi.org/10.4161/mabs.2.5.12645
Lu, R. C., Guo, X. R., Jin, C., & Xiao, J. X. (2009). NMR studies on binding sites and aggregation-disassociation of fluorinated surfactant sodium perfluorooctanoate on protein ubiquitin. Biochimica et Biophysica Acta - General Subjects , 1790 (2), 134–140. https://doi.org/10.1016/j.bbagen.2008.10.009
Melander, W. R., El Rassi, Z., & Horváth, C. (1989). Interplay of hydrophobic and electrostatic interactions in biopolymer chromatography : Effect of salts on the retention of proteins.Journal of Chromatography A , 469 , 3–27. https://doi.org/10.1016/S0021-9673(01)96437-4
Moiani, D., Salvalaglio, M., Cavallotti, C., Bujacz, A., Redzynia, I., Bujacz, G., … Fassina, G. (2009). Structural Characterization of a Protein A Mimetic Peptide Dendrimer Bound to Human IgG. Journal of Physical Chemistry B , 113 (50), 16268–16275. https://doi.org/10.1021/jp909405b
O’Connor, E., Aspelund, M., Bartnik, F., Berge, M., Coughlin, K., Kambarami, M., … Wang, W. (2017). Monoclonal antibody fragment removal mediated by mixed mode resins. Journal of Chromatography A , 1499 , 65–77. https://doi.org/10.1016/j.chroma.2017.03.063
Parimal, S., Garde, S., & Cramer, S. M. (2015). Interactions of Multimodal Ligands with Proteins: Insights into Selectivity Using Molecular Dynamics Simulations. Langmuir, 31, 7512-7523. https://doi.org/10.1021/acs.langmuir.5b00236
Parimal, S., Garde, S., & Cramer, S. M. (2017). Effect of guanidine and arginine on protein–ligand interactions in multimodal cation-exchange chromatography. Biotechnology Progress , 33 (2), 435–447. https://doi.org/10.1002/btpr.2419
Parinello, M. and Rahman, A. (1980). Crystal Structure and Pair Potentials: A Molecular-Dynamics Study, The American Physical Society, 45(14), 1–22.
Pezzini, J., Joucla, G., Gantier, R., Toueille, M., Lomenech, A. M., Le Sénéchal, C., … Cabanne, C. (2011). Antibody capture by mixed-mode chromatography: A comprehensive study from determination of optimal purification conditions to identification of contaminating host cell proteins. Journal of Chromatography A , 1218 (45), 8197–8208. https://doi.org/10.1016/j.chroma.2011.09.036
Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., … Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit.Bioinformatics , 29 (7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
Robinson, J., Roush, D., & Cramer, S. (2018). Domain contributions to antibody retention in multimodal chromatography systems. Journal of Chromatography A , 1563 , 89–98. https://doi.org/10.1016/j.chroma.2018.05.058
Robinson, J., Roush, D., & Cramer, S. M. (2020). The effect of pH on antibody retention in multimodal cation exchange chromatographic systems. Journal of Chromatography A , 1617 , 460838. https://doi.org/10.1016/j.chroma.2019.460838
Robinson, J., Snyder, M. A., Belisle, C., Liao, J., Chen, H., He, X., … Cramer, S. M. (2018). Investigating the impact of aromatic ring substitutions on selectivity for a multimodal anion exchange prototype library. Journal of Chromatography A , 1569 , 101–109. https://doi.org/10.1016/J.CHROMA.2018.07.049
Roush, D. J., Gill, D. S., & Willson, R. C. (1994). Electrostatic Potentials and Electrostatic Interaction Energies of Rat Cytochrome b5 and a Simulated Anion-Exchange Adsorbent Surface. Biophysical Journal, 66, 1290-1300. https://doi.org/10.1016/S0006-3495(94)80924-5
Rule, G. S., & Hitchens, T. K. (2005). Fundamentals of protein NMR spectroscopy . Dordrecht, Netherlands: Springer.
Schumann, F. H., Hubert, A. E., Ae, R., Maurer, T., Wolfram, A. E., Ae, G., … Kalbitzer, R. (2007). Combined chemical shift changes and amino acid specific chemical shift mapping of protein-protein interactions. Journal of Biomolecular NMR , 39 , 275–289. https://doi.org/10.1007/s10858-007-9197-z
Shukla, A. A., Hubbard, B., Tressel, T., Guhan, S., & Low, D. (2007). Downstream processing of monoclonal antibodies-Application of platform approaches. Journal of Chromatography B , 848 , 28–39. https://doi.org/10.1016/j.jchromb.2006.09.026
Silva, D., & Vranken, B. F. (2012). ACPYPE-AnteChamber PYthon Parser interfacE . BMC Research Notes, 5, 1-8.
Srinivasan, K., Banerjee, S., Parimal, S., Sejergaard, L., Berkovich, R., Barquera, B., … Cramer, S. M. (2017). Single Molecule Force Spectroscopy and Molecular Dynamics Simulations as a Combined Platform for Probing Protein Face-Specific Binding. Langmuir , 33 , 10851-10860. https://doi.org/10.1021/acs.langmuir.7b03011
Srinivasan, K., Parimal, S., Lopez, M. M., McCallum, S. A., & Cramer, S. M. (2014). Investigation into the molecular and thermodynamic basis of protein interactions in multimodal chromatography using functionalized nanoparticles. Langmuir , 30 (44), 13205–13216. https://doi.org/10.1021/la502141q
Sun, Y., Welsh, W. J., & Latour, R. A. (2005). Prediction of the Orientations of Adsorbed Protein Using an Empirical Energy Function with Implicit Solvation. Langmuir, 21, 5616-5626. https://doi.org/10.1021/la046932o
Wang, J., Cieplak, P., & Kollman, P. A. (2000). How Well Does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules?Journal of Computational Chemistry , 21 (12), 1049–1074. https://doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2001).Antechamber, An Accessory Software Package For Molecular Mechanical Calculations. Journal of American Chemical Society, 222, 41.
Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general Amber force field.Journal of Computational Chemistry , 25 (9), 1157–1174. https://doi.org/10.1002/jcc.20035
Williamson, M. P. (2013). Progress in Nuclear Magnetic Resonance Spectroscopy Using chemical shift perturbation to characterise ligand binding. Progress in Nuclear Magnetic Resonance Spectroscopy ,73 , 1–16. https://doi.org/10.1016/j.pnmrs.2013.02.001
Woo, J. A., Chen, H., Snyder, M. A., Chai, Y., Frost, R. G., & Cramer, S. M. (2015). Defining the property space for chromatographic ligands from a homologous series of mixed-mode ligands. Journal of Chromatography A , 1407 , 58–68. https://doi.org/10.1016/j.chroma.2015.06.017
Woo, J., Parimal, S., Brown, M. R., Heden, R., & Cramer, S. M. (2015). The effect of geometrical presentation of multimodal cation-exchange ligands on selective recognition of hydrophobic regions on protein surfaces. Journal of Chromatography A , 1412 , 33–42. https://doi.org/10.1016/j.chroma.2015.07.072
Yao, Y., & Lenhoff, A. M. (2004). Electrostatic Contributions to Protein Retention in Ion-Exchange Chromatography. 1. Cytochrome c Variants. Analytical Chemistry , 59 (3), 6743. https://doi.org/10.1021/ac049327z
Yu, G., Liu, J., & Zhou, J. (2015). Mesoscopic Coarse-Grained Simulations of Hydrophobic Charge Induction Chromatography ( HCIC ) for Protein Purification. AIChE Journal , 61 (6), 2035–2047. https://doi.org/10.1002/aic
Zhang, L., Zhao, G., & Sun, Y. (2009). Molecular Insight into Protein Conformational Transition in Hydrophobic Charge Induction Chromatography: A Molecular Dynamics Simulation. J. Phys. Chem. B , 113 , 6873–6880. https://doi.org/10.1021/jp809754k