References
Arakawa, T., Kita, Y., Sato, H., & Ejima, D. (2009). MEP chromatography
of antibody and Fc-fusion protein using aqueous arginine solution.Protein Expression and Purification , 63 (2), 158–163.
https://doi.org/10.1016/j.pep.2008.09.011
Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & Andrew McCammon, J.
(2001). Electrostatics of nanosystems: Application to microtubules
and the ribosome. Proceedings of the National Academy of
Sciences, 98(18) , 10037-10041.
https://doi.org/10.1073/pnas.181342398.
Banerjee, S., Parimal, S., & Cramer, S. M. (2017). A molecular modeling
based method to predict elution behavior and binding patches of proteins
in multimodal chromatography. Journal of Chromatography A ,1511 , 45–58. https://doi.org/10.1016/j.chroma.2017.06.059
Bas, D. C., Rogers, D. M., & Jensen, J. H. (2008). Very fast prediction
and rationalization of pK a values for protein2ligand complexes.Proteins , 73 (3), 765–783.
https://doi.org/10.1002/prot.22102
Bayly, C. I., Cieplak, P., Cornell, W. D., & Kollman, P. A. (1993).A Well-Behaved Electrostatic Potential Based Method Using Charge
Restraints for Deriving Atomic Charges: The RESP Model . The
Journal of Physical Chemistry, 97, 10269-10280.
Bilodeau, C. L., Lau, E. Y., Cramer, S. M., & Garde, S. (2019).
Conformational Equilibria of Multimodal Chromatography Ligands in Water
and Bound to Protein Surfaces. Journal of Physical Chemistry B,
123, 4833-4843. https://doi.org/10.1021/acs.jpcb.9b01218
Burton, S. C., Haggarty, N. W., & Harding, D. R. K. (1997). One step
purification of chymosin by mixed mode chromatography.Biotechnology and Bioengineering , 56 (1), 45–55.
https://doi.org/10.1002/(SICI)1097-0290(19971005)56:1<45::AID-BIT5>3.0.CO;2-V
Burton, Simon Christopher, & Harding, D. R. K. (1997). High-density
ligand attachment to brominated allyl matrices and application to mixed
mode chromatography of chymosin. Journal of Chromatography A ,775 (1–2), 39–50. https://doi.org/10.1016/S0021-9673(97)00515-3
Cheatham, T. E., Cieplak, P., & Kollman, P. A. (1999). A Modified
Version of the Cornell et al. Force Field with Improved Sugar Pucker
Phases and Helical Repeat. Journal of Biomolecular Structure and
Dynamics , 16 (4), 845–862.
https://doi.org/10.1080/07391102.1999.10508297
Chen, J., Tetrault, J., Zhang, Y., Wasserman, A., Conley, G., DiLeo, M.,
… Ley, A. (2010). The distinctive separation attributes of
mixed-mode resins and their application in monoclonal antibody
downstream purification process. Journal of Chromatography A ,1217 (2), 216–224. https://doi.org/10.1016/J.CHROMA.2009.09.047
Chennamsetty, N., Voynov, V., Kayser, V., Helk, B., & Trout, B. L.
(2010). Prediction of Aggregation Prone Regions of Therapeutic Proteins.Journal of Physical Chemistry B, 114, 6614–6624.
https://doi.org/10.1021/jp911706q
Chung, W. K., Evans, S. T., Freed, A. S., Keba, J. J., Baer, Z. C.,
Rege, K., & Cramer, S. M. (2010). Utilization of lysozyme charge
ladders to examine the effects of protein surface charge distribution on
binding affinity in ion exchange systems. Langmuir , 26 (2),
759–768. https://doi.org/10.1021/la902135t
Chung, W. K., Freed, A. S., Holstein, M. A., Mccallum, S. A., Cramer, S.
M., Designed, S. M. C., & Performed, M. A. H. (2010). Evaluation of
protein adsorption and preferred binding regions in multimodal
chromatography using NMR. Proceedings of the National Academy of
Sciences, 107(39) , 16811–16816.
https://doi.org/10.1073/pnas.1002347107
Chung, W. K., Holstein, M. A., Freed, A. S., Evans, S. T., Baer, Z. C.,
& Cramer, S. M. (2010). Ion exchange chromatographic behavior of a
homologous cytochrome C variant library obtained by controlled
succinylation. Separation Science and Technology , 45 (15),
2144–2152. https://doi.org/10.1080/01496395.2010.507432
Chung, W. K., Hou, Y., Holstein, M., Freed, A., Makhatadze, G. I., &
Cramer, S. M. (2010). Investigation of Protein Binding Affinity and
Preferred Orientations in Ion Exchange Systems Using a Homologous
Protein Library. Journal of Chromatography A , 1217 (2),
191–198. https://doi.org/10.1016/j.chroma.2009.08.005
Clarkson, J., & Campbell, I. D. (2003). Studies of protein-ligand
interactions by NMR. Biochemical Society Transactions ,31 (Pt 5), 1006–1009. https://doi.org/10.1042/
Cramer, S. M., & Holstein, M. A. (2011). Downstream bioprocessing:
recent advances and future promise. Current Opinion in Chemical
Engineering , 1 , 27–37.
https://doi.org/10.1016/j.coche.2011.08.008
Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An
N⋅log(N) method for Ewald sums in large systems. The Journal
of Chemical Physics , 98 , 5648. https://doi.org/10.1063/1.464397
Dismer, F., & Hubbuch, J. (2007). A novel approach to characterize the
binding orientation of lysozyme on ion-exchange resins. Journal of
Chromatography A , 1149 , 312–320.
https://doi.org/10.1016/j.chroma.2007.03.074
Dismer, F., Petzold, M., & Hubbuch, J. (2008). Effects of ionic
strength and mobile phase pH on the binding orientation of lysozyme on
different ion-exchange adsorbents. Journal of Chromatography A ,1194 (1), 11–21. https://doi.org/10.1016/J.CHROMA.2007.12.085
Evans, D. J., & Holian, B. L. (1985). The Nose-Hoover thermostat.The Journal of Chemical Physics , 83 (8), 4069–4074.
https://doi.org/10.1063/1.449071
Freed, A. S., Garde, S., & Cramer, S. M. (2011). Molecular simulations
of multimodal ligand-protein binding: Elucidation of binding sites and
correlation with experiments. Journal of Physical Chemistry B ,115 (45), 13320–13327. https://doi.org/10.1021/jp2038015
Frisch, M.J.E.A., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb,
M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B.,
Petersson, G. and N. (2009). Gaussian 09, Revision a. 02.Gaussian. Inc., Wallingford, CT , 200 . Retrieved from
https://gaussian.com/g09citation/
Gagnon, P., Cheung, C.-W., Lepin, E. J., Wu, A. M., Sherman, M. A.,
Raubitschek, A. A., & Yazaki Pete Gagnon, P. J. (2010).Minibodies and Multimodal Chromatography Methods: A Convergence of
Challenge and Opportunity . Bioprocess International 8(2), 26-35.
Gagnon, P., Cheung, C., & Yazaki, P. J. (2009). Cooperative multimodal
retention of IgG , fragments , and aggregates on hydroxyapatite.Journal of Separation Science, 32 , 3857–3865.
https://doi.org/10.1002/jssc.200900055
Ghose, S., Hubbard, B., & Cramer, S. M. (2005). Protein interactions in
hydrophobic charge induction chromatography (HCIC). Biotechnology
Progress , 21 (2), 498–508. https://doi.org/10.1021/bp049712+
Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS
4: Algorithms for Highly Efficient, Load-Balanced, and Scalable
Molecular Simulation. Journal of Chemical Theory and Computation,
4, 435-447. https://doi.org/10.1021/ct700301q
Holstein, M. A., Chung, W. K., Parimal, S., Freed, A. S., Barquera, B.,
McCallum, S. A., & Cramer, S. M. (2012). Probing multimodal ligand
binding regions on ubiquitin using nuclear magnetic resonance,
chromatography, and molecular dynamics simulations. Journal of
Chromatography A , 1229 , 113–120.
https://doi.org/10.1016/j.chroma.2011.12.101
Holstein, M. A., Parimal, S., McCallum, S. A., & Cramer, S. M. (2012).
Mobile phase modifier effects in multimodal cation exchange
chromatography. Biotechnology and Bioengineering , 109 (1),
176–186. https://doi.org/10.1002/bit.23318
Holstein, M. A., Parimal, S., McCallum, S. A., & Cramer, S. M. (2013).
Effects of urea on selectivity and protein-ligand interactions in
multimodal cation exchange chromatography. Langmuir ,29 (1), 158–167. https://doi.org/10.1021/la302360b
Hong, Y.-H., Ahn, H.-C., Lim, J., Kim, H.-M., Ji, H.-Y., Lee, S.,
… Lee, B.-J. (2009). Identification of a novel ubiquitin binding
site of STAM1 VHS domain by NMR spectroscopy. FEBS Letters ,583 (2), 287–292. https://doi.org/10.1016/j.febslet.2008.12.034
Idusogie, E. E., Presta, L. G., Totpal, K., Wong, P. Y., Meng, Y. G., &
Mulkerrin, M. G. (2000). Mapping of the C1q Binding Site on Rituxan, a
Chimeric Antibody with a Human IgG1 Fc. Journal of Immunology ,164 , 4178–4184. https://doi.org/10.4049/jimmunol.164.8.4178
Johansson, B.-L., Belew, M., Eriksson, S., Glad, G., Lind, O., Maloisel,
J.-L., & Norrman, N. (2003). Preparation and characterization of
prototypes for multi-modal separation media aimed for capture of
negatively charged biomolecules at high salt conditions. Journal
of Chromatography A , 1016 , 21–33.
https://doi.org/10.1016/S0021-9673(03)01140-3
Jorgensen, W. L. (1981). Transferable Intermolecular Potential Functions
for Water, Alcohols, and Ethers. Application to Liquid Water1.Journal of American Chemical Society, 103, 335-340.
Kaleas, K. A., Tripodi, M., Revelli, S., Sharma, V., & Pizarro, S. A.
(2014). Evaluation of a multimodal resin for selective capture of
CHO-derived monoclonal antibodies directly from harvested cell culture
fluid. Journal of Chromatography B , 969 , 256–263.
https://doi.org/10.1016/j.jchromb.2014.08.026
Karkov, H. S., Woo, J., Krogh, B. O., Ahmadian, H., & Cramer, S. M.
(2015). Evaluation of selectivity in homologous multimodal
chromatographic systems using in silico designed antibody fragment
libraries. Journal of Chromatography A , 1426 , 102–109.
https://doi.org/10.1016/j.chroma.2015.11.047
Kittelmann, J., Lang, K. M. H., Ottens, M., & Hubbuch, J. (2017).
Orientation of monoclonal antibodies in ion-exchange chromatography: A
predictive quantitative structure–activity relationship modeling
approach. Journal of Chromatography A , 1510 , 33–39.
https://doi.org/10.1016/j.chroma.2017.06.047
Lin, D.-Q., Tong, H.-F., Wang, H.-Y., & Yao, S.-J. (2012). Molecular
Insight into the Ligand−IgG Interactions for 4-Mercaptoethyl-pyridine
Based Hydrophobic Charge-Induction Chromatography. Journal of
Physical Chemistry B, 116, 1393-1400. https://doi.org/10.1021/jp206817b
Liu, H. F., Ma, J., Winter, C., & Bayer, R. (2010). mAbs Recovery and
purification process development for monoclonal antibody production.MAbs , 2 (5), 480–499.
https://doi.org/10.4161/mabs.2.5.12645
Lu, R. C., Guo, X. R., Jin, C., & Xiao, J. X. (2009). NMR studies on
binding sites and aggregation-disassociation of fluorinated surfactant
sodium perfluorooctanoate on protein ubiquitin. Biochimica et
Biophysica Acta - General Subjects , 1790 (2), 134–140.
https://doi.org/10.1016/j.bbagen.2008.10.009
Melander, W. R., El Rassi, Z., & Horváth, C. (1989). Interplay of
hydrophobic and electrostatic interactions in biopolymer
chromatography : Effect of salts on the retention of proteins.Journal of Chromatography A , 469 , 3–27.
https://doi.org/10.1016/S0021-9673(01)96437-4
Moiani, D., Salvalaglio, M., Cavallotti, C., Bujacz, A., Redzynia, I.,
Bujacz, G., … Fassina, G. (2009). Structural Characterization of
a Protein A Mimetic Peptide Dendrimer Bound to Human IgG. Journal
of Physical Chemistry B , 113 (50), 16268–16275.
https://doi.org/10.1021/jp909405b
O’Connor, E., Aspelund, M., Bartnik, F., Berge, M., Coughlin, K.,
Kambarami, M., … Wang, W. (2017). Monoclonal antibody fragment
removal mediated by mixed mode resins. Journal of Chromatography
A , 1499 , 65–77. https://doi.org/10.1016/j.chroma.2017.03.063
Parimal, S., Garde, S., & Cramer, S. M. (2015). Interactions of
Multimodal Ligands with Proteins: Insights into Selectivity Using
Molecular Dynamics Simulations. Langmuir, 31, 7512-7523.
https://doi.org/10.1021/acs.langmuir.5b00236
Parimal, S., Garde, S., & Cramer, S. M. (2017). Effect of guanidine and
arginine on protein–ligand interactions in multimodal cation-exchange
chromatography. Biotechnology Progress , 33 (2), 435–447.
https://doi.org/10.1002/btpr.2419
Parinello, M. and Rahman, A. (1980). Crystal Structure and Pair
Potentials: A Molecular-Dynamics Study, The American Physical
Society, 45(14), 1–22.
Pezzini, J., Joucla, G., Gantier, R., Toueille, M., Lomenech, A. M., Le
Sénéchal, C., … Cabanne, C. (2011). Antibody capture by
mixed-mode chromatography: A comprehensive study from determination of
optimal purification conditions to identification of contaminating host
cell proteins. Journal of Chromatography A , 1218 (45),
8197–8208. https://doi.org/10.1016/j.chroma.2011.09.036
Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov,
R., … Lindahl, E. (2013). GROMACS 4.5: A high-throughput and
highly parallel open source molecular simulation toolkit.Bioinformatics , 29 (7), 845–854.
https://doi.org/10.1093/bioinformatics/btt055
Robinson, J., Roush, D., & Cramer, S. (2018). Domain contributions to
antibody retention in multimodal chromatography systems. Journal
of Chromatography A , 1563 , 89–98.
https://doi.org/10.1016/j.chroma.2018.05.058
Robinson, J., Roush, D., & Cramer, S. M. (2020). The effect of pH on
antibody retention in multimodal cation exchange chromatographic
systems. Journal of Chromatography A , 1617 , 460838.
https://doi.org/10.1016/j.chroma.2019.460838
Robinson, J., Snyder, M. A., Belisle, C., Liao, J., Chen, H., He, X.,
… Cramer, S. M. (2018). Investigating the impact of aromatic ring
substitutions on selectivity for a multimodal anion exchange prototype
library. Journal of Chromatography A , 1569 , 101–109.
https://doi.org/10.1016/J.CHROMA.2018.07.049
Roush, D. J., Gill, D. S., & Willson, R. C. (1994). Electrostatic
Potentials and Electrostatic Interaction Energies of Rat Cytochrome b5
and a Simulated Anion-Exchange Adsorbent Surface. Biophysical
Journal, 66, 1290-1300. https://doi.org/10.1016/S0006-3495(94)80924-5
Rule, G. S., & Hitchens, T. K. (2005). Fundamentals of protein
NMR spectroscopy . Dordrecht, Netherlands: Springer.
Schumann, F. H., Hubert, A. E., Ae, R., Maurer, T., Wolfram, A. E., Ae,
G., … Kalbitzer, R. (2007). Combined chemical shift changes and
amino acid specific chemical shift mapping of protein-protein
interactions. Journal of Biomolecular NMR , 39 , 275–289.
https://doi.org/10.1007/s10858-007-9197-z
Shukla, A. A., Hubbard, B., Tressel, T., Guhan, S., & Low, D. (2007).
Downstream processing of monoclonal antibodies-Application of platform
approaches. Journal of Chromatography B , 848 , 28–39.
https://doi.org/10.1016/j.jchromb.2006.09.026
Silva, D., & Vranken, B. F. (2012). ACPYPE-AnteChamber PYthon
Parser interfacE . BMC Research Notes, 5, 1-8.
Srinivasan, K., Banerjee, S., Parimal, S., Sejergaard, L., Berkovich,
R., Barquera, B., … Cramer, S. M. (2017). Single Molecule Force
Spectroscopy and Molecular Dynamics Simulations as a Combined Platform
for Probing Protein Face-Specific Binding. Langmuir , 33 ,
10851-10860. https://doi.org/10.1021/acs.langmuir.7b03011
Srinivasan, K., Parimal, S., Lopez, M. M., McCallum, S. A., & Cramer,
S. M. (2014). Investigation into the molecular and thermodynamic basis
of protein interactions in multimodal chromatography using
functionalized nanoparticles. Langmuir , 30 (44),
13205–13216. https://doi.org/10.1021/la502141q
Sun, Y., Welsh, W. J., & Latour, R. A. (2005). Prediction of the
Orientations of Adsorbed Protein Using an Empirical Energy Function with
Implicit Solvation. Langmuir, 21, 5616-5626.
https://doi.org/10.1021/la046932o
Wang, J., Cieplak, P., & Kollman, P. A. (2000). How Well Does a
Restrained Electrostatic Potential (RESP) Model Perform in Calculating
Conformational Energies of Organic and Biological Molecules?Journal of Computational Chemistry , 21 (12), 1049–1074.
https://doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2001).Antechamber, An Accessory Software Package For Molecular
Mechanical Calculations. Journal of American Chemical Society, 222, 41.
Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A.
(2004). Development and testing of a general Amber force field.Journal of Computational Chemistry , 25 (9), 1157–1174.
https://doi.org/10.1002/jcc.20035
Williamson, M. P. (2013). Progress in Nuclear Magnetic Resonance
Spectroscopy Using chemical shift perturbation to characterise ligand
binding. Progress in Nuclear Magnetic Resonance Spectroscopy ,73 , 1–16. https://doi.org/10.1016/j.pnmrs.2013.02.001
Woo, J. A., Chen, H., Snyder, M. A., Chai, Y., Frost, R. G., & Cramer,
S. M. (2015). Defining the property space for chromatographic ligands
from a homologous series of mixed-mode ligands. Journal of
Chromatography A , 1407 , 58–68.
https://doi.org/10.1016/j.chroma.2015.06.017
Woo, J., Parimal, S., Brown, M. R., Heden, R., & Cramer, S. M. (2015).
The effect of geometrical presentation of multimodal cation-exchange
ligands on selective recognition of hydrophobic regions on protein
surfaces. Journal of Chromatography A , 1412 , 33–42.
https://doi.org/10.1016/j.chroma.2015.07.072
Yao, Y., & Lenhoff, A. M. (2004). Electrostatic Contributions to
Protein Retention in Ion-Exchange Chromatography. 1. Cytochrome c
Variants. Analytical Chemistry , 59 (3), 6743.
https://doi.org/10.1021/ac049327z
Yu, G., Liu, J., & Zhou, J. (2015). Mesoscopic Coarse-Grained
Simulations of Hydrophobic Charge Induction Chromatography ( HCIC ) for
Protein Purification. AIChE Journal , 61 (6), 2035–2047.
https://doi.org/10.1002/aic
Zhang, L., Zhao, G., & Sun, Y. (2009). Molecular Insight into Protein
Conformational Transition in Hydrophobic Charge Induction
Chromatography: A Molecular Dynamics Simulation. J. Phys. Chem.
B , 113 , 6873–6880. https://doi.org/10.1021/jp809754k