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Abstract. In this paper, we consider a particle moves on a space curve in

the Euclidean 3-space and resolve its acceleration and jerk vectors according

to quasi-frame. In this resolution, by appyling Siacci’s theorem, we state the
acceleration vector as the sum of its tangential and radial components, and

obtain the jerk vector along the tangential direction and radial directions in

osculating and rectifying planes. On the basis of the jerk vector formula , we
give the maximum admissible speed on a space curve at all trajectory points.

Furthermore, we present illustrative examples to explain how our results work.

1. Introduction

In Newtonian physics, it is well known that the force acting on a particle is
concerned with its acceleration through the equation F = ma. A particle, which
moves under the influence of arbitrary forces in 3-dimensional Euclidean space, has
an acceleration a which is obtained by the time derivative of the velocity vector,
and thus by two time derivative of the position vector. For some applications, to
state the acceleration vector as the sum of its tangential and normal components
is practical. However, when the angular momentum of the particle is constant, to
state the acceleration vector as the sum of its tangential and radial components is
more practical. In 1879, Siacci in [15] stated the acceleration vector as the sum of
two special oblique components in the osculating plane to the curve. After Siacci,
in 1944, Whittaker in [17] dealt with Siacci’s theorem and gave a geometrical proof
of it in the plane. Although Siacci’s formulas are very remarkable, his formulation
of the theorem is inaccurate and his proof is burdensome. Therefore, In 2011, Casey
in [2] presented a proof of Siacci’s theorem in the space by using the Serret-Frenet
frame. After that, in 2012, Küçükarslan et al. in [6] studied Siacci’s theorem for

curves in Finsler Manifold F3. In 2017, Özen et al. in [11] studied Siacci’s theorem
for the curves on regular surfaces in E3 according to Darboux frame. Recently,
in 2020, Özen et al. in [10] have studied Siacci’s theorem for the curves in E3

according to the modiefied orthogonal frame. In the same year, Özen has studied
Siacci’s theorem for the curves in Minkowski 3-space by using the Serret-Frenet
frame.

On the other hand, the jerk vector j is the time derivative of the acceleration
vector. Thus, the equality j = 1

m
dF
dt is satisfied for the particle which has a constant

mass. In 1862, Resal in [12] resolved the jerk vector along the tangent, normal and
binormal unit vectors of Serret-Frenet frame in Euclidean space. This concept is
still an issue of interest. Recently, in 2019, Özen et al. in [9] have presented a new
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decomposition of jerk vector along the tangential direction and radial directions in
osculating and rectifying planes by using the Serret- Frenet frame. In the same
year, Güner in [5] has obtained the resolution of the jerk vector for the curves in

E3 according to the Bishop frame. After that, in 2020, Özen et al. in [10] have
obtained the resolution of the jerk vector for the curves in E3 according to the
modiefied orthogonal frame.When a gymnast does gymnastic exercises or a stock-
car racer races on track or a machinist drives a high- speed train, the acceleration
changes suddenly. In these kind of situations, to estimate the lower threshold of
just noticeable jerk and upper values of the jerk that can be tolerated by humans
without undue discomfort is very important, see [13]. Also, in 2017, Tsirlin in [16],
on the basis of the jerk vector formula, gave the maximum admissible speed on a
space curve at all trajectory points.

The Serret-Frénet frame is inadequate for studying the space curves which its
curvatures have discrete points zero since, in this case, the principlal normal and
binormal vectors are discontinuous at points of inflections or along the straight
sections of the curve. Therefore, to solve this problem, Dede et al. in [3] introduced
a new adapted frame along a space curve as an alternative frame to the Serret-Frénet
frame and denoted this the quasi-frame.

Motivated by these papers, we consider a particle moves on a space curve accord-
ing to quasi-frame in the Euclidean 3-spac under the influence of arbitrary forces.
The paper is organized as follows: In Section 2, we present some basic definitions
about the Euclidean 3-spac E3, the Serret-Frénet frame and quasi-frame, and the
relation between the quasi-frame and the classical Serret-Frénet frame in the Eu-
clidean 3-spac E3. Furthermore, we resolve the acceleration vector a and the jerk
vector j of a particle moves on a space curve according to quasi basis. In Section 3,
we present alternative resolutions of acceleration and jerk vectors, and we resolve
the acceleration vector a along the radial direction and tangential direction in oscu-
lating plane, and also try to resolve the jerk vector j along the tangential direction,
radial direction in osculating plane and radial direction in the rectifying plane. In
Section 4, we present illustrative examples to explain how our results work.

2. Preliminaries

In this section, we present some preliminaries used in our subsequent discussions.
The Euclidean space is the metric space E3 =

(
R3, 〈, 〉

)
where the metric 〈, 〉 is the

standard inner product given by

〈X,Y 〉 = x1y1 + x2y2 + x3y3,

where X = (x1, x2, x3) and Y = (y1, y2, y3) are arbitrary vectors in E3. Based on

this metric, the norm of a vector X ∈ E3 is given by ‖X‖ =
√
〈X,X〉. A curve

α = α (s) : I ⊆ R → E3 is a unit speed curve if ‖α′ (s)‖ = 1 for all s ∈ I. In this
case, s is called arc-length parameter of the curve α (s).

Let α (s) be a space curve in E3, parameterized by arc-length s. Denote by
{T (s) , N (s) , B (s)} the moving Serret-Frénet frame along the unit speed curve
α (s), where T (s), N (s) and B (s) are the unit tangent, principal normal and
binormal vectors, respectively, and they are defined as follows

T (s) = α′ (s) , N (s) =
α′′ (s)

‖α′′ (s)‖
, B (s) = T (s)×N (s) . (2.1)
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On the other hand, the Serret-Frénet formulas are given by T ′ (s)
N ′ (s)
B′ (s)

 =

 0 κ 0
−κ 0 τ
0 −τ 0

 T (s)
N (s)
B (s)

 , (2.2)

where the curvature function κ(s) and the torsion function τ (s) are defined as
follows: κ = κ(s) = ‖T ′ (s)‖, τ = τ (s) = −〈B′ (s) , N (s)〉, [1].

Now, as alternative to the Serret-Frénet frame, donate by {T (s) , Nq (s) , Bq (s) , ξ}
the quasi-frame (or simply q-frame) along a space curve α (s), where T (s), Nq (s),
Bq (s) and ξ are the unit tangent, the quasi-normal, the quasi-binormal and the
projection vectors, respectively, and they are defined as follows:

T (s) = α′ (s) , Nq (s) =
T × ξ
‖T × ξ‖

, Bq (s) = T ×Nq, (2.3)

where ξ is the projection vector can be chosen as ξ = (1, 0, 0) or ξ = (0, 1, 0) or
ξ = (0, 0, 1). For simplicity, we can choose the projection vector ξ = (1, 0, 0) in this
paper. However, the q-frame is singular in all cases where T and ξ are parallel.
Thus, in those cases where T and ξ are parallel the projection vector ξ can be
chosen as ξ = (0, 1, 0) or ξ = (0, 0, 1). We can define Euclidean angle θ between the
principal normal N and quasi-normal Nq vectors. Then, The relation between the
quasi-frame and the classical Serret-Frénet frame is given as follows: T (s)

Nq (s)
Bq (s)

 =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 T (s)
N (s)
B (s)

 . (2.4)

Thus, we have  T (s)
N (s)
B (s)

 =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 T (s)
Nq (s)
Bq (s)

 . (2.5)

By taking the derivative of (2.4), then substituting (2.2) and (2.5) into the results,
we obtain the variation equations of the q-frame in the following form T ′ (s)

N ′q (s)
B′q (s)

 =

 0 κ1 κ2
−κ1 0 κ3
−κ2 −κ3 0

 T (s)
Nq (s)
Bq (s)

 , (2.6)

where

κ1 (s) = κ (s) cos θ, κ2 (s) = κ21 (s) + κ22 (s) , (2.7)

κ2 (s) = −κ (s) sin θ, θ = − arctan

(
κ2
κ1

)
,

κ3 (s) = θ′ (s) + τ (s) .

and the triple (κ1, κ2, κ3) is called the quasi-curvature functions of α (s), [3].
Let a particle P of mass m > 0 moves on a space curve according to quasi-frame

in Euclidean space E3 under the influence of arbitrary forces. Choose an arbitrary
fixed origin O in the space E3, and let x be the postion vector of P at time t.
Let C, parametrized by the arc-length s described at time t, be the oriented curve



4 A. ELSHARKAWY AND A. M. ELSHENHAB

traced out by P . Therefore, the unit tangent vector for the curve C is given as
follows:

T =
dx

ds
. (2.8)

Then, from (2.6) and (2.8), we deduce the velocity vector v, the acceleration vector
a and the jerk j vector of P at time t with quasi-frame as follows:

v =
dx

dt
=
ds

dt
T, (2.9)

a =
dv

dt
=
d2s

dt2
T + κ1

(
ds

dt

)2

Nq + κ2

(
ds

dt

)2

Bq,

or

a =
d2s

dt2
T +

√
κ21 (s) + κ22 (s)

(
ds

dt

)2

cos θNq −
√
κ21 (s) + κ22 (s)

(
ds

dt

)2

sin θBq

(2.10)
and

j =
da

dt
= CTT + CNq

Nq + CBq
Bq, (2.11)

where

CT =
d3s

dt3
−
(
κ21 + κ22

)(ds
dt

)3

,

CNq
= cos θ

[
3
√
κ21 + κ22

(
ds

dt

)(
d2s

dt2

)
+

(
ds

dt

)3
d

ds

(√
κ21 + κ22

)]

+ sin θ

[
(κ3 − θ′)

√
κ21 + κ22

(
ds

dt

)3
]
,

CBq = − sin θ

[
3
√
κ21 + κ22

(
ds

dt

)(
d2s

dt2

)
+

(
ds

dt

)3
d

ds

(√
κ21 + κ22

)]

+ cos θ

[
(κ3 − θ′)

√
κ21 + κ22

(
ds

dt

)3
]
.

3. Alternative Resolutions of Acceleration and Jerk Vectors
According to Quasi-Frame

In this section, we resolve the acceleration vector a along the radial direction
and tangential direction in osculating plane, and also try to resolve the jerk vector
j along the tangential direction, radial direction in osculating plane and radial
direction in the rectifying plane.

The acceleration and jerk vectors in (2.10) and (2.11) can be expressed as follows:

a =
d2s

dt2
T +

√
κ21 + κ22

(
ds

dt

)2

(cos θNq − sin θBq) , (3.1)



ON THE ACCELERATION AND JERK IN MOTION ALONG A SPACE CURVE 5

and

j =

[
d3s

dt3
−
(
κ21 + κ22

)(ds
dt

)3
]
T

+

[
3
√
κ21 + κ22

(
ds

dt

)(
d2s

dt2

)
+

(
ds

dt

)3
d

ds

(√
κ21 + κ22

)]
(cos θNq − sin θBq)

+

[
(κ3 − θ′)

√
κ21 + κ22

(
ds

dt

)3
]

(sin θNq + cos θBq) . (3.2)

We note that, since we define {T,Nq, Bq} as a right-handed orthonormal basis,
the vectors {T, (cos θNq − sin θBq) , (sin θNq + cos θBq)} comprise a right-handed
orthonormal system.

Let a particle P moves on a space curve α = α (s). Therefore, P has a postion
vector according to quasi-frame. Assume that the postion vector of P be resolved
as follows:

x = λ1T − λ2 (cos θNq − sin θBq) + λ3 (sin θNq + cos θBq) , (3.3)

where

λ1 = 〈x, T 〉 , − λ2 = 〈x, (cos θNq − sin θBq)〉 , λ3 = 〈x, (sin θNq + cos θBq)〉 .
(3.4)

Denote by r and r∗ the vectors

r = λ1T − λ2 (cos θNq − sin θBq) , r∗ = λ1T + λ3 (sin θNq + cos θBq) , (3.5)

which lie in the osculating plane and rectifying plane to C at P , respectively. Then,
we have

r2 = 〈r, r〉 = λ21 + λ22, (r∗)
2

= 〈r∗, r∗〉 = λ21 + λ23, (3.6)

where r and r∗ are the lengths of the vectors r and r∗, respectively.
It is well known that the angular momentum vector HO of P about O is given

by
HO = x×mv.

Thus, from (2.9) and (3.3), we obtain

HO = mλ3

(
ds

dt

)
(cos θNq − sin θBq) +mλ2

(
ds

dt

)
(sin θNq + cos θBq) . (3.7)

Now we try to resolve the acceleration vector a in (2.10) along the radial direction
and tangential direction in osculating plane, and also try to resolve the jerk vec-
tor j in (2.11) along the tangential direction, radial direction in osculating plane
and radial direction in the rectifying plane. To do so, let us express the vector
(cos θNq − sin θBq) in terms of r and T . In view of (3.5), we can conclude that
this is possible if and only if λ2 6= 0. By making the physical assumption that
the component of angular momentum along the vector (sin θNq + cos θBq) never
vanishes, we can ensure that λ2 is nonzero. Secondly, let us express the vector
(sin θNq + cos θBq) in terms of r∗ and T . In view of (3.5), this possible if and only
if λ3 6= 0. By making the second physical assumption that the component of angu-
lar momentum along the vector (cos θNq − sin θBq) never vanishes, we can ensure
that λ3 is nonzero. Thus, we obtain the following equations:

cos θNq − sin θBq =
1

λ2
(−r + λ1T ) , sin θNq + cos θBq =

1

λ3
(r∗ − λ1T ) . (3.8)
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Hence, in view of (3.6), r 6= 0 and r∗ 6= 0. So, we can define the unit vectors er
and er∗ as follows:

er =
1

r
r, er∗ =

1

r∗
r∗. (3.9)

From (3.8) and (3.9), we get

cos θNq − sin θBq =
1

λ2
(−rer + λ1T ) , sin θNq + cos θBq =

1

λ3
(r∗er∗ − λ1T ) .

(3.10)
Substituting (3.10) in (3.1) and (3.2), we obtain the acceleration a vector and jerk
j vector as follows:

a =

(
d2s

dt2
+
λ1
√
κ21 + κ22
λ2

(
ds

dt

)2
)
T +

(
−r
√
κ21 + κ22
λ2

(
ds

dt

)2
)
er (3.11)

= AtT +Arer,

and

j =

[
d3s

dt3
−
(
κ21 + κ22

)(ds
dt

)3

+ 3
√
κ21 + κ22

λ1
λ2

ds

dt

d2s

dt2

+
λ1
λ2

(
ds

dt

)3
d

ds

(√
κ21 + κ22

)
− λ1 (κ3 − θ′)

λ3

√
κ21 + κ22

(
ds

dt

)3
]
T

+

[
−3r

λ2

√
κ21 + κ22

(
ds

dt

)(
d2s

dt2

)
− r

λ2

(
ds

dt

)3
d

ds

(√
κ21 + κ22

)]
er

+

[
r∗ (κ3 − θ′)

λ3

√
κ21 + κ22

(
ds

dt

)3
]
er∗ .

= JtT + Jrer + Jr∗er∗ . (3.12)

Here, At and Ar are tangential and radial Siacci components of the acceleration,
while Jt, Jr and Jr∗ are tangential and radial components of the jerk. By taking
into consideration the above conclusion about the acceleration and jerk vectors of
the particle P , we can state the following theorems:

Theorem 1. (Siacci’s Theorem According to Quasi-Frame). Let P be a particle
whose mass is m and which moves along an analytic space curve α = α (s) with
respect to quasi-frame. Assume that the component of its angular momentum which
is along the vector (sin θNq + cos θBq) never takes the value zero. In this case,
the acceleration vector a of P can be expressed as in (3.11). At lies along the
tangent line of α, while Ar is directed from the particle P towards the foot of the
perpendicular that is from the origin to osculating plane to α at P .

Theorem 2. Let P be a particle whose mass is m and which moves along an
analytic space curve α = α (s) with respect to quasi-frame. Assume that each of the
components of its angular momentum never takes vanishes. In this case, the jerk
j of P can be expressed as in (3.12). The component Jt lies along the tangent line
of α, while the component Jr lies along the line that passes through the particle P
towards the foot of the perpendicular that is from the origin to osculating plane to
α at P , and the component Jr∗ lies along the line that passes through the particle
P towards the foot of the perpendicular that is from the origin to rectifying plane
to α at P .
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Remark 1. We note that if κ3 = 0, then the quasi-frame {T (s) , Nq (s) , Bq (s)}
becomes the Bishop frame. In this case, Theorem 2 reduces to Theorem 1 in [5].

Corollary 1. In Euclidean 3-space, Let the particle P move along a curve with
respect to quasi-frame and lie in the osculating plane which deos not contain the
origin of space. Assume that the component of its angular momentum vector along
the normal vector of this plane never vanishes. In that case, the jerk vector reduces
to

j =

[
d3s

dt3
−
(
κ21 + κ22

)(ds
dt

)3

+ 3
√
κ21 + κ22

λ1
λ2

ds

dt

d2s

dt2

+
λ1
λ2

(
ds

dt

)3
d

ds

(√
κ21 + κ22

)]
T

+

[
−3r

λ2

√
κ21 + κ22

(
ds

dt

)(
d2s

dt2

)
− r

λ2

(
ds

dt

)3
d

ds

(√
κ21 + κ22

)]
er.

Proof. The proof can be completed directly by considering κ3− θ′ = τ in Theorem
2, and Putting τ = 0 for the planar case. �

Corollary 2. In Euclidean 3-space, Let the particle P move along a curve with a
uniform motion with a speed V , a velocity vector v, an acceleration vector a and
a jerk j vector at time t with respect to quasi-frame such that the jerk satisfy the
condition ‖j‖ ≤ jmax, then the maximum speed V admissible on the curve at all
trajectory points must satisfy

V ≤
3
√
jmax

6
√

max Φ (s)
,

where

Φ (s) = Φ2
1 + Φ2

2 + Φ2
3 +

2λ1
r

Φ1Φ2 +
2λ1
r∗

Φ1Φ3 +
2λ21
rr∗

Φ2Φ3,

and

Φ1 (s) =

[
λ1
λ2

d

ds

(√
κ21 + κ22

)
−
(
κ21 + κ22

)
− λ1 (κ3 − θ′)

λ3

√
κ21 + κ22

]
,

Φ2 (s) = − r

λ2

d

ds

(√
κ21 + κ22

)
,

Φ3 (s) =
r∗ (κ3 − θ′)

λ3

√
κ21 + κ22.

Proof. In the case of uniform motion, Let the particle P move along a curve with
a uniform motion with ds/dt = V , d2s/dt2 = 0 and d3s/dt3 = 0. Thus, from
Theorem 2, we get

Jt =

[
λ1
λ2

d

ds

(√
κ21 + κ22

)
−
(
κ21 + κ22

)
− λ1 (κ3 − θ′)

λ3

√
κ21 + κ22

]
V 3

= Φ1 (s)V 3,

Jr = −
[
r

λ2

d

ds

(√
κ21 + κ22

)]
V 3 = Φ2 (s)V 3,
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and

Jr∗ =

[
r∗ (κ3 − θ′)

λ3

√
κ21 + κ22

]
V 3 = Φ3 (s)V 3.

Then

‖j‖ = V 3

√
Φ2

1 + Φ2
2 + Φ2

3 +
2λ1
r

Φ1Φ2 +
2λ1
r∗

Φ1Φ3 +
2λ21
rr∗

Φ2Φ3

= V 3
√

Φ.

Which implies that

V ≤
3
√
jmax

6
√

max Φ (s)
.

The proof is complete. �

4. Applications

In this section, we give illustrative examples to calculate the components of
acceleration and jerk vectors with respect to quasi-frame by applying (2.10) and
(2.11), and Theorem 1, Theorem 2 and Corollary 1. Furthermore, we calculate the
maximum admissible speed on a space curve at all trajectory points by applying
Corollary 2.

Example 1. Suppose that a particle P travels a helical curve over clothoid (Cornu
spiral or Euler spiral) in E3, and in Cartesian coordinates, the postion vector of P
is given as follows:

x =

(
1√
2

∫ t

0

cos

(
πu2

2

)
du,

1√
2

∫ t

0

sin

(
πu2

2

)
du,

t√
2

)
, (4.1)

where
∫ t
0

cos
(
πu2

2

)
du and

∫ t
0

sin
(
πu2

2

)
du are called Fresnel integrals. Recently,

this curve has many applications in the real life, for example, the highway, railway
route design or roller coasters, etc. The velocity vector, acceleration vector and jerk
vector of can be calculated as follows:

v =

(
1√
2

cos

(
πt2

2

)
,

1√
2

sin

(
πt2

2

)
,

1√
2

)
, (4.2)

a =

(
−πt√

2
sin

(
πt2

2

)
,
πt√

2
cos

(
πt2

2

)
,0

)
,

j =

(
−π2t2√

2
cos

(
πt2

2

)
− π√

2
sin

(
πt2

2

)
,
−π2t2√

2
sin

(
πt2

2

)
+

π√
2

cos

(
πt2

2

)
,0

)
.

From (4.2), we can write the following equalities:

dx =
1√
2

cos

(
πt2

2

)
dt, dy =

1√
2

sin

(
πt2

2

)
dt, dz =

1√
2
dt.

Using (ds)
2

= (dx)
2

+ (dy)
2

+ (dz)
2
, we obtain

ds

dt
= 1,

d2s

dt2
= 0,

d3s

dt3
= 0.
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We see that the oriented curve traced out by the particle P can be parameterized by
the arc-length s = s (t) = t as follows:

δ (s) =

(
1√
2

∫ s

0

cos

(
πu2

2

)
du,

1√
2

∫ s

0

sin

(
πu2

2

)
du,

s√
2

)
. (4.3)

Then, from (2.1), we can obtain the Serret-Frénet frame as follows:

T =

(
1√
2

cos

(
πs2

2

)
,

1√
2

sin

(
πs2

2

)
,

1√
2

)
,

N =

(
−s
|s|

sin

(
πs2

2

)
,
s

|s|
cos

(
πs2

2

)
,0

)
,

B =

(
−s√
2 |s|

cos

(
πs2

2

)
,
−s√
2 |s|

sin

(
πs2

2

)
,

s√
2 |s|

)
,

and the curvature and the torsion as

κ =
π |s|√

2
, τ =

πs√
2
.

Thus, we note that the Serret-Frénet frame is inadequate for studying the space
curves which its curvatures have discrete points zero since as we shown the principlal
normal and binormal vectors are discontinuous at s = 0, and the curvature is not
differentiable as well. Therefore, to solve this problem, we use the quasi-frame as
an alternative frame to the Serret-Frénet frame. From (2.7), we obtain

κ1 =
π |s|√

2
cos θ,

κ2 = −π |s|√
2

sin θ,

κ3 = θ′ (s) +
πs√

2
, θ = − arctan

(
κ2
κ1

)
.

If we consider (2.3), we get the following quasi-frame:

T =

(
1√
2

cos

(
πs2

2

)
,

1√
2

sin

(
πs2

2

)
,

1√
2

)
,

Nq =

(
1√
2

sin

(
πs2

2

)
,
−1√

2
cos

(
πs2

2

)
,0

)
,

Bq =

(
1

2
cos

(
πs2

2

)
,
1

2
sin

(
πs2

2

)
,
−1

2

)
.

By considering (2.10) and (2.11), we get

a =
π |s|√

2
cos θNq −

π |s|√
2

sin θBq,

and

CT = −π
2s2

2
,

CNq =

(
πs√
2 |s|

cos θ +
π2s |s|

2
sin θ

)
, for s 6= 0,

CBq
=

(
− πs√

2 |s|
sin θ +

π2s |s|
2

cos θ

)
, for s 6= 0,
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where θ is the Euclidean angle between the principal normal N and quasi-normal
Nq vectors. Then

j = CTT + CNq
Nq + CBq

Bq.

Example 2. Assume that a particle P moves a long a right-handed circular helix
which lies on a clylinder of radius a and that the angular frequency ω of P is not
time dependent. In that case, in Cartesian coordinates, the postion vector of P is
given as follows:

x = (a cos (ωt) ,a sin (ωt) ,bt) , (4.4)

where t is the time and a, b are postive constants. Let the helix axis be the z-axis,
and ϕ be the helix angle satisfying tanϕ = aω

b . The velocity vector, acceleration
vector and jerk vector of can be calculated as follows:

v = (−aω sin (ωt) ,aω cos (ωt) ,b) ,

a =
(
−aω2 cos (ωt) ,−aω2 sin (ωt) ,0

)
,

j =
(
aω3 sin (ωt) ,−aω3 cos (ωt) ,0

)
.

From (4.4), we can write the following equalities:

dx = −aω sin (ωt) dt, dy = aω cos (ωt) , dz = bdt.

Using (ds)
2

= (dx)
2

+ (dy)
2

+ (dz)
2
, the speed υ of the particle P , and its first and

second derivatives can be given by

υ =
ds

dt
=
√
a2ω2 + b2,

d2s

dt2
= 0,

d3s

dt3
= 0.

We see that the oriented curve traced out by the particle P can be parameterized by
the arc-length s = s (t) = υt as follows:

α (s) =

(
a cos

(ωs
υ

)
,a sin

(ωs
υ

)
,
bs

υ

)
. (4.5)

Then, from (2.1) and (4.5), we can obtain the Serret-Frénet frame as follows:

T =
(
− sinϕ sin

(ωs
υ

)
, sinϕ cos

(ωs
υ

)
, cosϕ

)
,

N =
(
− cos

(ωs
υ

)
,− sin

(ωs
υ

)
, 0
)
,

B =
(

cosϕ sin
(ωs
υ

)
,− cosϕ cos

(ωs
υ

)
, sinϕ

)
.

On the other hand, we can get the curvature and the torsion as

κ =
aω2

υ2
, τ =

bω

υ2
.

From (2.7), we obtain

κ1 =
aω2

υ2
cos θ,

κ2 = −aω
2

υ2
sin θ,

κ3 = θ′ (s) +
bω

υ2
, θ = − arctan

(
κ2
κ1

)
.
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If we consider the relation (2.4) between the quasi-frame and the classical Serret-
Frénet frame, we get the following quasi-frame:

T =
(
− sinϕ sin

(ωs
υ

)
, sinϕ cos

(ωs
υ

)
, cosϕ

)
,

Nq =
(
− cos θ cos

(ωs
υ

)
+ sin θ cosϕ sin

(ωs
υ

)
,

− cos θ sin
(ωs
υ

)
− sin θ cosϕ cos

(ωs
υ

)
,

sin θ sinϕ) ,

Bq =
(

sin θ cos
(ωs
υ

)
+ cos θ cosϕ sin

(ωs
υ

)
,

sin θ sin
(ωs
υ

)
− cos θ cosϕ cos

(ωs
υ

)
,

cos θ sinϕ) .

By considering (3.4) and (4.5), we get

λ1 =
bs

υ
cosϕ, λ2 = a, λ3 =

bs

υ
sinϕ. (4.6)

Also, from (3.3) and (4.5), we have

α (s) =

(
bs

υ
cosϕ

)
T − a (cos θNq − sin θBq) +

(
bs

υ
sinϕ

)
(sin θNq + cos θBq)

=

(
bs

υ
cosϕ

)
T −

(
a cos θ − bs

υ
sinϕ sin θ

)
Nq +

(
a sin θ +

bs

υ
sinϕ cos θ

)
Bq.

On the other hand, from (3.6) and (4.6), we obtain

r =

√(
bs

υ

)2

cos2 ϕ+ a2, r∗ =
bs

υ
.

Therefore, by applying Theorem 1 and Theorem 2, we get the components of the
acceleration and jerk vectors as follows:

At =
ω2b2s

a2ω2 + b2
, Ar = −ω2

√
b4s2

(a2ω2 + b2)
2 + a2,

and

Jt = −ω2
√
a2ω2 + b2, Jr = 0, Jr∗ = bω2.

On the other hand, by applying Corollary 2, if the jerk satisfy the condition ‖j‖ ≤
jmax, we can calculate the maximum admissible speed on a circular helix at all
trajectory points as follows:

Φ1 (s) =
−ω2

a2ω2 + b2
, Φ2 (s) = 0, Φ3 (s) =

bω2

(a2ω2 + b2)
3/2

.

Then

Φ (s) =
a2ω6

(a2ω2 + b2)
3 .

Which implies that

‖j‖ = aω3,
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and

V ≤
3
√
jmax

6
√

max Φ (s)
=

ω 3
√
ajmax√

a2ω2 + b2
,

then

Vmax =
ω2 3
√
a2√

a2ω2 + b2
.

Example 3. Assume that a particle P moves a long the logarithmic spiral curve.
In Cartesian coordinates, the postion vector of P is given as follows:

x =
(
eωt cos (ωt) ,0,eωt sin (ωt)

)
, (4.7)

where t is the time and ω the angular frequency. The velocity vector, acceleration
vector and jerk vector of can be calculated as follows:

v = ω
(
eωt cos (ωt)− eωt sin (ωt) ,0, eωt sin (ωt) + eωt cos (ωt)

)
,

a = 2ω2
(
−eωt sin (ωt) ,0,eωt cos (ωt)

)
,

j = 2ω3
(
−eωt sin (ωt)− eωt cos (ωt) ,0,eωt cos (ωt)− eωt sin (ωt)

)
.

From (4.7), we can write the following equalities:

dx = ωeωt (cos (ωt)− sin (ωt)) dt, dz = ωeωt (sin (ωt) + cos (ωt)) dt.

Using (ds)
2

= (dx)
2

+ (dy)
2

+ (dz)
2
, we obtain

ds

dt
=
√

2ωeωt,
d2s

dt2
=
√

2ω2eωt,
d3s

dt3
=
√

2ω3eωt.

We see that the oriented curve traced out by the particle P can be parameterized by
the arc-length s = s (t) =

√
2 (eωt − 1) as follows:

α∗ (s) =
s+
√

2√
2

(
cos ln

(
s+
√

2√
2

)
,0, sin ln

(
s+
√

2√
2

))
. (4.8)

Then, from (2.1) and (4.8), we can obtain the Serret-Frénet frame as follows:

T =
1√
2

(
cos ln

(
s+
√

2√
2

)
− sin ln

(
s+
√

2√
2

)
, 0, cos ln

(
s+
√

2√
2

)
+ sin ln

(
s+
√

2√
2

))
,

N =
1√
2

(
− cos ln

(
s+
√

2√
2

)
− sin ln

(
s+
√

2√
2

)
, 0, cos ln

(
s+
√

2√
2

)
− sin ln

(
s+
√

2√
2

))
,

B = (0,−1, 0) .

On the other hand, we can get the curvature and the torsion as

κ =
1

s+
√

2
, τ = 0.

From (2.7), we obtain

κ1 =
1

s+
√

2
cos θ,

κ2 = − 1

s+
√

2
sin θ,

κ3 = θ′ (s) , θ = − arctan

(
κ2
κ1

)
.
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If we consider the relation (2.4) between the quasi-frame and the classical Serret-
Frénet frame, we get the following quasi-frame:

T =
1√
2

(
cos ln

(
s+
√

2√
2

)
− sin ln

(
s+
√

2√
2

)
, 0, cos ln

(
s+
√

2√
2

)
+ sin ln

(
s+
√

2√
2

))
,

Nq =

(
1√
2

cos θ

(
− cos ln

(
s+
√

2√
2

)
− sin ln

(
s+
√

2√
2

))
,− sin θ,

1√
2

cos θ

(
cos ln

(
s+
√

2√
2

)
− sin ln

(
s+
√

2√
2

)))
,

Bq =

(
−1√

2
sin θ

(
− cos ln

(
s+
√

2√
2

)
− sin ln

(
s+
√

2√
2

))
,− cos θ,

−1√
2

sin θ

(
cos ln

(
s+
√

2√
2

)
− sin ln

(
s+
√

2√
2

)))
,

By considering (3.4) and (4.8), we get

λ1 =
s+
√

2

2
, λ2 =

s+
√

2

2
, λ3 = 0. (4.9)

Also, from (3.3) and (4.8), we have

α∗ (s) =

(
s+
√

2

2

)
T −

(
s+
√

2

2

)
cos θNq +

(
s+
√

2

2

)
sin θBq.

vc v On the other hand, from (3.6) and (4.9), we obtain

r =
s+
√

2√
2

= eωt, r∗ =
s+
√

2

2
=

1√
2
eωt.

Therefore, by applying Theorem 1 and Corollary 1 and , we get the components of
the acceleration and jerk vectors as follows:

At = 2
√

2ω2eωt, Ar = −2ω2eωt,

and

Jt = 4
√

2ω3eωt, Jr =
1

2
ω3eωt.
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