References
1. Wheeldon JM, Shingledecker JP (2013) Materials for boilers operating under supercritical steam conditions. Ultra-Supercritical Coal Power Plants: Materials, Technologies and Optimisation . Optimisation, 81-103.
2. Chai G, Bostrom M, Olaison M, Forsberg U (2013) Creep and LCF Behaviors of Newly Developed Advanced Heat Resistant Austenitic Stainless Steel for A-USC. Procedia Engineer . 55 : 232-239.
3. Sandvikwww.materials.sandvik/en/products/tube-pipe-fittings-and-flanges/high-performance-materials/high-temperature-stainless-steels/sanicro-25/.
4. Sun F, Gu YF, Yan JB, Zhong ZH, Yuyama M (2016) Phenomenological and microstructural analysis of intermediate temperatures creep in a Ni-Fe-based alloy for advanced ultra-supercritical fossil power plants.Acta Mater . 102 : 70-78.
5. Kloc L, Dymáček P, Sklenička V (2018) High temperature creep of Sanicro 25 austenitic steel at low stresses. Mat Sci Eng a-Struct . 722 : 88-92.
6. Zhang Y, Jing H, Xu L, Zhao L, Han Y, Liang J (2017) Microstructure and texture study on an advanced heat-resistant alloy during creep.Mater Charact . 130 : 156-172.
7. Zhao L, Song K, Zhang Y, et al. (2019) Creep Rupture Assessment of New Heat-Resistant Sanicro 25 Steel Using Different Life Prediction Approaches. J Mater Eng Perform . 28 : 7464-7474.
8. Polák J, Petráš R, Heczko M, Kuběna I, Kruml T, Chai G (2014) Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature. Materials Science and Engineering A . 615 : 175-182.
9. Polák J, Petráš R, Heczko M, Kruml T, Chai G (2016) Evolution of the cyclic plastic response of Sanicro 25 steel cycled at ambient and elevated temperatures. Int J Fatigue . 83 : 75-83.
10. Heczko M, Polák J, Kruml T (2017) Microstructure and dislocation arrangements in Sanicro 25 steel fatigued at ambient and elevated temperatures. Mat Sci Eng a-Struc . 680 : 168-181.
11. Heczko M, Esser BD, Smith TM, et al. (2018) Atomic resolution characterization of strengthening nanoparticles in a new high-temperature-capable 43Fe-25Ni-22.5Cr austenitic stainless steel.Mat Sci Eng a-Struct . 719 : 49-60.
12. Zhang Y, Jing HY, Xu LY, Zhao L, Han YD, Zhao YX (2017) High-temperature deformation and fracture mechanisms of an advanced heat resistant Fe-Cr-Ni alloy. Mat Sci Eng a-Struct . 686 : 102-112.
13. Mazánová V, Polák J (2018) Initiation and growth of short fatigue cracks in austenitic Sanicro 25 steel. Fatigue Fract Eng M .41 : 1529-1545.
14. Mazánová V, Heczko M, Polák J (2018) Fatigue crack initiation and growth in 43Fe-25Ni-22.5Cr austenitic steel at a temperature of 700 degrees C. Int J Fatigue . 114 : 11-21.
15. Li BB, Zheng YM, Shi SW, Chen X (2019) Microcrack nucleation and early crack growth of a nuclear grade nitrogen alloyed austenitic stainless steel X2CrNiMo18.12 under thermomechanical fatigue loading.Int J Pres Ves Pip . 172 : 188-198.
16. Li HZ, Jing HY, Xu LY, et al. (2019) Cyclic damage behavior of Sanicro 25 alloy at 700 degrees C: Dispersed damage and concentrated damage. International Journal of Plasticity . 116 : 91-117.
17. Li HZ, Jing HY, Xu LY, et al. (2019) Fatigue behavior, microstructural evolution, and fatigue life model based on dislocation annihilation of an Fe-Ni-Cr alloy at 700 degrees C. International Journal of Plasticity . 118 : 105-129.
18. Li HB, Jing H, Xu L, et al. (2019) Life, dislocation evolution, and fracture mechanism of a 41Fe-25.5Ni-23.5Cr alloy during low cycle fatigue at 700°C. Int J Fatigue . 119 : 20-33.
19. Li HZ, Jing HY, Xu LY, et al. (2019) Cyclic deformation behavior of an Fe-Ni-Cr evolution and cyclic hardening model alloy at 700 degrees C: microstructural evolution and cyclic hardening model. Mat Sci Eng a-Struct . 744 : 94-111.
20. Petráš R, Škorík V, Polák J (2016) Thermomechanical fatigue and damage mechanisms in Sanicro 25 steel. Mat Sci Eng a-Struct .650 : 52-62.
21. Petráš R, Škorík V, Polák J (2016) Damage Evolution in Thermomechanical Loading of Stainless Steel. Procedia Struct Inte . 2 : 3407-3414.
22. Petráš R, Polák J (2018) Damage mechanism in austenitic steel during high temperature cyclic loading with dwells. Int J Fatigue .113 : 335-344.
23. Warner H, Calmunger M, Chai G, et al. (2018) Fracture and Damage Behavior in an Advanced Heat Resistant Austenitic Stainless Steel During LCF, TMF and CF. Proc Struct Integrity . 13 : 843-848.
24. Li BB, Zheng YM, Shi SW, Liu YM, Li YJ, Chen X (2019) Microcrack initiation mechanisms of 316LN austenitic stainless steel under in-phase thermomechanical fatigue loading. Mat Sci Eng a-Struct .752 : 1-14.
25. Polák J, Petráš R (2020) Cyclic plastic response and damage mechanisms in superaustenitic steel Sanicro 25 in high temperature cycling – Effect of tensile dwells and thermomechanical cycling.Theor Appl Fract Mec . 108 : 102641.
26. Heczko M, Esser BD, Smith TM, et al. (2017) On the origin of extraordinary cyclic strengthening of the austenitic stainless steel Sanicro 25 during fatigue at 700 degrees C. Journal of Materials Research . 32 : 4342-4353.
27. Warner H, Calmunger M, Chai GC, Johansson S, Moverare J (2019) Thermomechanical fatigue behaviour of aged heat resistant austenitic alloys. Int J Fatigue . 127 : 509-521.
28. Zurek J, Yang SM, Lin DY, Huttel T, Singheiser L, Quadakkers WJ (2015) Microstructural stability and oxidation behavior of Sanicro 25 during long-term steam exposure in the temperature range 600-750 degrees C. Mater Corros . 66 : 315-327.
29. Sourmail T (2001) Precipitation in creep resistant austenitic stainless steels. Mater Sci Tech-Lond . 17 : 1-14.
30. Li HZ, Jing HY, Xu LY, et al. (2020) Effect of strain rate induced M23C6 distribution on cyclic deformation behavior: Cyclic hardening model. International Journal of Plasticity . 127 .
31. Polák J, Petráš R, Chai GC, Škorík V (2016) Surface profile evolution and fatigue crack initiation in Sanicro 25 steel at room temperature. Mat Sci Eng a-Struct . 658 : 221-228.
32. Krupp U, Wackermann K, Christ HJ, Colliander MH, Stiller K (2017) Intergranular Oxidation Effects During Dwell-Time Fatigue of High-Strength Superalloys. Oxid Met . 88 : 3-14.