References
1. Wheeldon JM, Shingledecker JP (2013) Materials for boilers operating
under supercritical steam conditions. Ultra-Supercritical Coal
Power Plants: Materials, Technologies and Optimisation . Optimisation,
81-103.
2. Chai G, Bostrom M, Olaison M, Forsberg U (2013) Creep and LCF
Behaviors of Newly Developed Advanced Heat Resistant Austenitic
Stainless Steel for A-USC. Procedia Engineer . 55 :
232-239.
3. Sandvikwww.materials.sandvik/en/products/tube-pipe-fittings-and-flanges/high-performance-materials/high-temperature-stainless-steels/sanicro-25/.
4. Sun F, Gu YF, Yan JB, Zhong ZH, Yuyama M (2016) Phenomenological and
microstructural analysis of intermediate temperatures creep in a
Ni-Fe-based alloy for advanced ultra-supercritical fossil power plants.Acta Mater . 102 : 70-78.
5. Kloc L, Dymáček P, Sklenička V (2018) High temperature creep of
Sanicro 25 austenitic steel at low stresses. Mat Sci Eng
a-Struct . 722 : 88-92.
6. Zhang Y, Jing H, Xu L, Zhao L, Han Y, Liang J (2017) Microstructure
and texture study on an advanced heat-resistant alloy during creep.Mater Charact . 130 : 156-172.
7. Zhao L, Song K, Zhang Y, et al. (2019) Creep Rupture Assessment of
New Heat-Resistant Sanicro 25 Steel Using Different Life Prediction
Approaches. J Mater Eng Perform . 28 : 7464-7474.
8. Polák J, Petráš R, Heczko M, Kuběna I, Kruml T, Chai G (2014) Low
cycle fatigue behavior of Sanicro25 steel at room and at elevated
temperature. Materials Science and Engineering A . 615 :
175-182.
9. Polák J, Petráš R, Heczko M, Kruml T, Chai G (2016) Evolution of the
cyclic plastic response of Sanicro 25 steel cycled at ambient and
elevated temperatures. Int J Fatigue . 83 : 75-83.
10. Heczko M, Polák J, Kruml T (2017) Microstructure and dislocation
arrangements in Sanicro 25 steel fatigued at ambient and elevated
temperatures. Mat Sci Eng a-Struc . 680 : 168-181.
11. Heczko M, Esser BD, Smith TM, et al. (2018) Atomic resolution
characterization of strengthening nanoparticles in a new
high-temperature-capable 43Fe-25Ni-22.5Cr austenitic stainless steel.Mat Sci Eng a-Struct . 719 : 49-60.
12. Zhang Y, Jing HY, Xu LY, Zhao L, Han YD, Zhao YX (2017)
High-temperature deformation and fracture mechanisms of an advanced heat
resistant Fe-Cr-Ni alloy. Mat Sci Eng a-Struct . 686 :
102-112.
13. Mazánová V, Polák J (2018) Initiation and growth of short fatigue
cracks in austenitic Sanicro 25 steel. Fatigue Fract Eng M .41 : 1529-1545.
14. Mazánová V, Heczko M, Polák J (2018) Fatigue crack initiation and
growth in 43Fe-25Ni-22.5Cr austenitic steel at a temperature of 700
degrees C. Int J Fatigue . 114 : 11-21.
15. Li BB, Zheng YM, Shi SW, Chen X (2019) Microcrack nucleation and
early crack growth of a nuclear grade nitrogen alloyed austenitic
stainless steel X2CrNiMo18.12 under thermomechanical fatigue loading.Int J Pres Ves Pip . 172 : 188-198.
16. Li HZ, Jing HY, Xu LY, et al. (2019) Cyclic damage behavior of
Sanicro 25 alloy at 700 degrees C: Dispersed damage and concentrated
damage. International Journal of Plasticity . 116 :
91-117.
17. Li HZ, Jing HY, Xu LY, et al. (2019) Fatigue behavior,
microstructural evolution, and fatigue life model based on dislocation
annihilation of an Fe-Ni-Cr alloy at 700 degrees C. International
Journal of Plasticity . 118 : 105-129.
18. Li HB, Jing H, Xu L, et al. (2019) Life, dislocation evolution, and
fracture mechanism of a 41Fe-25.5Ni-23.5Cr alloy during low cycle
fatigue at 700°C. Int J Fatigue . 119 : 20-33.
19. Li HZ, Jing HY, Xu LY, et al. (2019) Cyclic deformation behavior of
an Fe-Ni-Cr evolution and cyclic hardening model alloy at 700 degrees C:
microstructural evolution and cyclic hardening model. Mat Sci Eng
a-Struct . 744 : 94-111.
20. Petráš R, Škorík V, Polák J (2016) Thermomechanical fatigue and
damage mechanisms in Sanicro 25 steel. Mat Sci Eng a-Struct .650 : 52-62.
21. Petráš R, Škorík V, Polák J (2016) Damage Evolution in
Thermomechanical Loading of Stainless Steel. Procedia Struct
Inte . 2 : 3407-3414.
22. Petráš R, Polák J (2018) Damage mechanism in austenitic steel during
high temperature cyclic loading with dwells. Int J Fatigue .113 : 335-344.
23. Warner H, Calmunger M, Chai G, et al. (2018) Fracture and Damage
Behavior in an Advanced Heat Resistant Austenitic Stainless Steel During
LCF, TMF and CF. Proc Struct Integrity . 13 : 843-848.
24. Li BB, Zheng YM, Shi SW, Liu YM, Li YJ, Chen X (2019) Microcrack
initiation mechanisms of 316LN austenitic stainless steel under in-phase
thermomechanical fatigue loading. Mat Sci Eng a-Struct .752 : 1-14.
25. Polák J, Petráš R (2020) Cyclic plastic response and damage
mechanisms in superaustenitic steel Sanicro 25 in high temperature
cycling – Effect of tensile dwells and thermomechanical cycling.Theor Appl Fract Mec . 108 : 102641.
26. Heczko M, Esser BD, Smith TM, et al. (2017) On the origin of
extraordinary cyclic strengthening of the austenitic stainless steel
Sanicro 25 during fatigue at 700 degrees C. Journal of Materials
Research . 32 : 4342-4353.
27. Warner H, Calmunger M, Chai GC, Johansson S, Moverare J (2019)
Thermomechanical fatigue behaviour of aged heat resistant austenitic
alloys. Int J Fatigue . 127 : 509-521.
28. Zurek J, Yang SM, Lin DY, Huttel T, Singheiser L, Quadakkers WJ
(2015) Microstructural stability and oxidation behavior of Sanicro 25
during long-term steam exposure in the temperature range 600-750 degrees
C. Mater Corros . 66 : 315-327.
29. Sourmail T (2001) Precipitation in creep resistant austenitic
stainless steels. Mater Sci Tech-Lond . 17 : 1-14.
30. Li HZ, Jing HY, Xu LY, et al. (2020) Effect of strain rate induced
M23C6 distribution on cyclic deformation behavior: Cyclic hardening
model. International Journal of Plasticity . 127 .
31. Polák J, Petráš R, Chai GC, Škorík V (2016) Surface profile
evolution and fatigue crack initiation in Sanicro 25 steel at room
temperature. Mat Sci Eng a-Struct . 658 : 221-228.
32. Krupp U, Wackermann K, Christ HJ, Colliander MH, Stiller K (2017)
Intergranular Oxidation Effects During Dwell-Time Fatigue of
High-Strength Superalloys. Oxid Met . 88 : 3-14.