LITERATURE CITED
Aguirre-Liguori, J. A.,
Ramírez-Barahona, S., Tiffin, P., & Eguiarte, L. E. (2019). Climate
change is predicted to disrupt patterns of local adaptation in wild and
cultivated maize. Proceedings of the Royal Society B: Biological
Sciences, 286(1906), 20190486.
Bay, R. A., Harrigan, R. J.,
Underwood, V. L., Gibbs, H. L., Smith, T. B., & Ruegg, K. (2018).
Genomic signals of selection predict climate-driven population declines
in a migratory bird. Science, 359(6371), 83–86.
Blois, J. L., Williams, J. W.,
Fitzpatrick, M. C., Jackson, S. T., & Ferrier, S. (2013). Space can
substitute for time in predicting climate-change effects on
biodiversity. Proceedings of the National Academy of Sciences,110(23), 9374–9379.
Bower, A. D., St Clair, J. B.,
& Erickson, V. (2014). Generalized provisional seed zones for native
plants. Ecological Applications: A Publication of the Ecological
Society of America, 24(5), 913–919.
Breiman, L. (2001). Random
Forests. Machine Learning, 45(1), 5–32.
Capblancq, T., Fitzpatrick, M.
C., Bay, R. A., Exposito-Alonso, M., & Keller, S. R. (2020). Genomic
Prediction of (Mal)Adaptation Across Current and Future Climatic
Landscapes. Annual Review of Ecology, Evolution, and
Systematics.
Chamberlain, S. (2017). rnoaa:
“NOAA” Weather Data from R. R package version 0.7.0 (Version 0.7.0).
Retrieved from
https://CRAN.R-project.org/package=rnoaa
Chhatre, V. E., Fetter, K. C.,
Gougherty, A. V., Fitzpatrick, M. C., Soolanayakanahally, R. Y.,
Zalesny, R. S., & Keller, S. R. (2019). Climatic niche predicts the
landscape structure of locally adaptive standing genetic variation (p.
817411). doi: 10.1101/817411
Dawson, T. P., Jackson, S. T.,
House, J. I., Prentice, I. C., & Mace, G. M. (2011). Beyond
predictions: Biodiversity conservation in a changing climate.Science, 332(6025), 53–58.
Ellis, N., Smith, S. J., &
Pitcher, C. R. (2012). Gradient forests: calculating importance
gradients on physical predictors. Ecology, 93(1),
156–168.
Fetter, K. C., Nelson, D. M.,
& Keller, S. R. (2019). Trade-offs and selection conflicts in hybrid
poplars indicate the stomatal ratio as an important trait regulating
disease resistance. BioRxiv. Retrieved from
https://www.biorxiv.org/content/10.1101/814046v1.abstract
Fitzpatrick, M. C., Blois, J.
L., Williams, J. W., Nieto-Lugilde, D., Maguire, K. C., & Lorenz, D. J.
(2018). How will climate novelty influence ecological forecasts? Using
the Quaternary to assess future reliability. Global Change
Biology, 24(8), 3575–3586.
Fitzpatrick, M. C., & Keller,
S. R. (2015). Ecological genomics meets community‐level modelling of
biodiversity: mapping the genomic landscape of current and future
environmental adaptation. Ecology Letters, 18(1), 1–16.
Fitzpatrick, M. C., Keller, S.
R., & Lotterhos, K. E. (2018). Comment on “Genomic signals of
selection predict climate-driven population declines in a migratory
bird.” Science, 361(6401). doi:
10.1126/science.aat7279
Frichot, E., Schoville, S. D.,
Bouchard, G., & François, O. (2013). Testing for associations between
loci and environmental gradients using latent factor mixed models.Molecular Biology and Evolution, 30(7), 1687–1699.
Gougherty, A. V., Keller, S.
R., Chhatre, V. E., & Fitzpatrick, M. C. (2020). Future climate change
promotes novel gene-climate associations in balsam poplar (Populus
balsamifera L.), a forest tree species (p. 2020.02.28.961060). doi:
10.1101/2020.02.28.961060
Gugger, P. F., Liang, C. T.,
Sork, V. L., Hodgskiss, P., & Wright, J. W. (2018). Applying landscape
genomic tools to forest management and restoration of Hawaiian koa
(Acacia koa) in a changing environment. Evolutionary
Applications, 11(2), 231–242.
Guisan, A., Thuiller, W., &
Zimmermann, N. E. (2017). Habitat Suitability and Distribution
Models: with Applications in R. Cambridge University Press.
Günther, T., & Coop, G.
(2013). Robust identification of local adaptation from allele
frequencies. Genetics, 195(1), 205–220.
Hijmans, R. J., Cameron, S.
E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high
resolution interpolated climate surfaces for global land areas.International Journal of Climatology, 25(15), 1965–1978.
Hudson, R. R. (2002).
Generating samples under a Wright–Fisher neutral model of genetic
variation. Bioinformatics , 18(2), 337–338.
Ingvarsson, P. K., &
Bernhardsson, C. (2020). Genome‐wide signatures of environmental
adaptation in European aspen ( Populus tremula ) under current and
future climate conditions. Evolutionary Applications,13(1), 132–142.
Jia, K., Zhao, W., Maier, P.
A., Hu, X., Jin, Y., Zhou, S., … Mao, J. (2020). Landscape
genomics predicts climate change‐related genetic offset for the
widespread Platycladus orientalis (Cupressaceae). Evolutionary
Applications, 13(4), 665–676.
Keller, S. R., Levsen, N.,
Ingvarsson, P. K., Olson, M. S., & Tiffin, P. (2011). Local selection
across a latitudinal gradient shapes nucleotide diversity in Balsam
Poplar, Populus balsamifera L. Genetics, 188(4),
941–952.
Keller, S. R., Levsen, N.,
Olson, M. S., & Tiffin, P. (2012). Local adaptation in the
flowering-time gene network of balsam poplar, Populus balsamifera L.Molecular Biology and Evolution, 29(10), 3143–3152.
Keller, S. R., Olson, M. S.,
Silim, S., Schroeder, W., & Tiffin, P. (2010). Genomic diversity,
population structure, and migration following rapid range expansion in
the Balsam Poplar, Populus balsamifera. Molecular Ecology,19(6), 1212–1226.
Keller, S. R.,
Soolanayakanahally, R. Y., Guy, R. D., Silim, S. N., Olson, M. S., &
Tiffin, P. (2011). Climate-driven local adaptation of ecophysiology and
phenology in balsam poplar, Populus balsamifera L.(Salicaceae).American Journal of Botany, 98(1), 99–108.
Landguth, E. L., & Cushman,
S. A. (2010). cdpop: A spatially explicit cost distance population
genetics program. Molecular Ecology Resources, 10(1),
156–161.
Little, E. L. (1971). Atlas of
United States trees. Volume 1. Conifers and important hardwoods.Miscellaneous Publications. United States Department of
Agriculture, (1146.).
Lotterhos, K. E., & Whitlock,
M. C. (2014). Evaluation of demographic history and neutral
parameterization on the performance of FST outlier tests.Molecular Ecology, 23(9), 2178–2192.
Mahalanobis, P. C. (1936). On
the generalized distance in statistics. Proceedings of the
National Institute of Sciences of India, 2, 49–55. New Delhi.
Mahony, C. R., MacLachlan, I.
R., Lind, B. M., Yoder, J. B., Wang, T., & Aitken, S. N. (2020).
Evaluating genomic data for management of local adaptation in a changing
climate: A lodgepole pine case study. Evolutionary Applications,13(1), 116–131.
Martins, K., Gugger, P. F.,
Llanderal-Mendoza, J., González-Rodríguez, A., Fitz-Gibbon, S. T., Zhao,
J.-L., … Sork, V. L. (2018). Landscape genomics provides evidence
of climate-associated genetic variation in Mexican populations of
Quercus rugosa. Evolutionary Applications, 11(10),
1842–1858.
Mátyás, C. (1996). Climatic
adaptation of trees: rediscovering provenance tests. Euphytica,
Vol. 92, pp. 45–54. doi:
10.1007/bf00022827
Meirmans, P. G., Godbout, J.,
Lamothe, M., Thompson, S. L., & Isabel, N. (2017). History rather than
hybridization determines population structure and adaptation in Populus
balsamifera. Journal of Evolutionary Biology, 30(11),
2044–2058.
Naimi, B., Hamm, N. A. S.,
Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is
positional uncertainty a problem for species distribution modelling?Ecography, 37(2), 191–203.
Olson, M. S., Levsen, N.,
Soolanayakanahally, R. Y., Guy, R. D., Schroeder, W. R., Keller, S. R.,
& Tiffin, P. (2013). The adaptive potential of Populus balsamifera L.
to phenology requirements in a warmer global climate. Molecular
Ecology, 22(5), 1214–1230.
Pecl, G. T., Araújo, M. B.,
Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I.-C., …
Williams, S. E. (2017). Biodiversity redistribution under climate
change: Impacts on ecosystems and human well-being. Science,355(6332). doi:
10.1126/science.aai9214
Peres-Neto, P. R., & Jackson,
D. A. (2001). How well do multivariate data sets match? The advantages
of a Procrustean superimposition approach over the Mantel test.Oecologia, 129(2), 169–178.
Pike, C., Potter, K. M.,
Berrang, P., Crane, B., Baggs, J., Leites, L., & Luther, T. (2020). New
Seed-Collection Zones for the Eastern United States: The Eastern Seed
Zone Forum. Journal of Forestry, Vol. 118, pp. 444–451. doi:
10.1093/jofore/fvaa013
R Core Team. (2018). R:
A language and environment for statistical computing. R Foundation for
Statistical Computing. Austria: Vienna.
Ruegg, K., Bay, R. A.,
Anderson, E. C., Saracco, J. F., Harrigan, R. J., Whitfield, M.,
… Smith, T. B. (2018). Ecological genomics predicts climate
vulnerability in an endangered southwestern songbird. Ecology
Letters, 21(7), 1085–1096.
Sala, O. E., Chapin, F. S.,
Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., … Wall, D.
H. (2000). Biodiversity - Global biodiversity scenarios for the year
2100. Science, 287, 1770–1774.
Savolainen, O., Lascoux, M.,
& Merilä, J. (2013). Ecological genomics of local adaptation.Nature Reviews. Genetics, 14(11), 807–820.
Soolanayakanahally, R. Y.,
Guy, R. D., Silim, S. N., Drewes, E. C., & Schroeder, W. R. (2009).
Enhanced assimilation rate and water use efficiency with latitude
through increased photosynthetic capacity and internal conductance in
balsam poplar (Populus balsamifera L.). Plant, Cell &
Environment, 32(12), 1821–1832.
Soolanayakanahally, R. Y.,
Guy, R. D., Silim, S. N., & Song, M. (2013). Timing of photoperiodic
competency causes phenological mismatch in balsam poplar (Populus
balsamifera L.). Plant, Cell & Environment, 36(1),
116–127.
Thornton, P. E., Thornton, M.
M., Mayer, B. W., Wilhelmi, N., Wei, Y., Devarakonda, R., & Cook, R. B.
(2014). Daymet: Daily Surface Weather Data on a 1-km Grid for
North America, Version 2. Oak Ridge National Laboratory (ORNL).
Urban, M. C. (2015).
Accelerating extinction risk from climate change. Science,348(6234), 571–573.
Urban, M. C., Bocedi, G.,
Hendry, A. P., Mihoub, J.-B., Pe’er, G., Singer, A., … Travis, J.
M. J. (2016). Improving the forecast for biodiversity under climate
change. Science, 353(6304). doi:
10.1126/science.aad8466
Wang, T., Hamann, A., Yanchuk,
A., O’Neill, G. A., & Aitken, S. N. (2006). Use of response functions
in selecting lodgepole pine populations for future climates.Global Change Biology, Vol. 12, pp. 2404–2416. doi:
10.1111/j.1365-2486.2006.01271.x
Wang, T., O’Neill, G. A., &
Aitken, S. N. (2010). Integrating environmental and genetic effects to
predict responses of tree populations to climate. Ecological
Applications: A Publication of the Ecological Society of America,20(1), 153–163.
Wüest, R. O., Zimmermann, N.
E., Zurell, D., Alexander, J. M., Fritz, S. A., Hof, C., …
Others. (2020). Macroecology in the age of Big Data–Where to go from
here? Journal of Biogeography, 47(1), 1–12.