References
Acosta-Martínez, V., Dowd, S., Sun, Y., & Allen, V. (2008). Tag-encoded
pyrosequencing analysis of bacterial diversity in a single soil type as
affected by management and land use. Soil Biology and
Biochemistry, 40 (11), 2762-2770. doi:10.1016/j.soilbio.2008.07.022
Azziz, G., Trasante, T., Monza, J., & Irisarri, P. (2016). The effect
of soil type, rice cultivar and water management on ammonia-oxidizing
archaea and bacteria populations. Applied Soil Ecology, 100 ,
8-17. doi:10.1016/j.apsoil.2015.11.009
Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid
extraction and purification. Canadian Journal of Biochemistry and
Physiology, 37 (8), 911-917. doi:10.1139/o59-099
Bolan, N., Hedley, M., & White, R. (1991). Processes of soil
acidification during nitrogen cycling with emphasis on legume based
pastures. Plant and Soil, 134 (1), 53-63. doi:10.1007/BF00010717
Brookes, P. C., Landman, A., Pruden, G., & Jenkinson, D. S. (1985).
Chloroform fumigation and the release of soil nitrogen: a rapid direct
extraction method to measure microbial biomass nitrogen in soil.Soil Biology & Biochemistry, 17 (6), 837-842.
doi:10.1016/0038-0717(85)90144-0
Chen, D., Yuan, L., Liu, Y., Ji, J., & Hou, H. (2017). Long-term
application of manures plus chemical fertilizers sustained high rice
yield and improved soil chemical and bacterial properties.European Journal of Agronomy, 90 , 34-42.
doi:10.1016/j.eja.2017.07.007
Christopher, S. F., & Lal, R. (2007). Nitrogen management affects
carbon sequestration in North American cropland soils. Critical
Reviews in Plant Sciences, 26 (1), 45-64. doi:10.1080/07352680601174830
Das, S., Chou, M. L., Jean, J. S., Liu, C. C., & Yang, H. J. (2016).
Water management impacts on arsenic behavior and rhizosphere bacterial
communities and activities in a rice agro-ecosystem. Science of
the Total Environment, 542 (Pt A), 642-652.
doi:10.1016/j.scitotenv.2015.10.122
Denef, K., Roobroeck, D., Manimel Wadu, M. C. W., Lootens, P., &
Boeckx, P. (2009). Microbial community composition and
rhizodeposit-carbon assimilation in differently managed temperate
grassland soils. Soil Biology and Biochemistry, 41 (1), 144-153.
doi:10.1016/j.soilbio.2008.10.008
Devi, N. B., & Yadava, P. S. (2006). Seasonal dynamics in soil
microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur,
North-east India. Applied Soil Ecology, 31 (3), 220-227.
doi:10.1016/j.apsoil.2005.05.005
Dong, W.-Y., Zhang, X.-Y., Dai, X.-Q., Fu, X.-L., Yang, F.-T., Liu,
X.-Y., . . . Schaeffer, S. (2014). Changes in soil microbial community
composition in response to fertilization of paddy soils in subtropical
China. Applied Soil Ecology, 84 , 140-147.
doi:10.1016/j.apsoil.2014.06.007
Eilers, K. G., Debenport, S., Anderson, S., & Fierer, N. (2012).
Digging deeper to find unique microbial communities: The strong effect
of depth on the structure of bacterial and archaeal communities in soil.Soil Biology and Biochemistry, 50 , 58-65.
doi:10.1016/j.soilbio.2012.03.011
Fanin, N., Kardol, P., Farrell, M., Nilsson, M.-C., Gundale, M. J., &
Wardle, D. A. (2019). The ratio of Gram-positive to Gram-negative
bacterial PLFA markers as an indicator of carbon availability in organic
soils. Soil Biology and Biochemistry, 128 , 111-114.
doi:10.1016/j.soilbio.2018.10.010
FAOSTAT, http://faostat3.fao.org/faostat-gateway/go/to/home/E, (2016).
Farrar, J., Hawes, M., Jones, D., & Lindow, S. (2003). How roots
control the flux of carbon to the rhizosphere. Ecology, 84 (4),
827-837. doi:10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2
Fierer, N. (2017). Embracing the unknown: disentangling the complexities
of the soil microbiome. Nat Rev Microbiol, 15 (10), 579-590.
doi:10.1038/nrmicro.2017.87
Frenzel, P., Rothfuss, F., & Conrad, R. (1992). Oxygen profiles and
methane turnover in a flooded rice microcosm. Biology and
Fertility of Soils, 14 , 84-89. doi:10.1007/BF00336255
Ge, T., Li, B., Zhu, Z., Hu, Y., Yuan, H., Dorodnikov, M., . . .
Kuzyakov, Y. (2016). Rice rhizodeposition and its utilization by
microbial groups depends on N fertilization. Biology and Fertility
of Soils, 53 (1), 37-48. doi:10.1007/s00374-016-1155-z
Geisseler, D., & Scow, K. M. (2014). Long-term effects of mineral
fertilizers on soil microorganisms - A review. Soil Biology &
Biochemistry, 75 , 54-63. doi:10.1016/j.soilbio.2014.03.023
Gu, Y. F., Wang, Y. Y., Lu, S. E., Xiang, Q. J., Yu, X. M., Zhao, K., .
. . Zhang, X. P. (2017). Long-term fertilization structures bacterial
and archaeal communities along soil depth gradient in a paddy soil.Frontiers in Microbiology, 8 , 15. doi:10.3389/fmicb.2017.01516
Huang, X. Z., Wang, C., Liu, Q., Zhu, Z. K., Lynn, T. M., Shen, J. L., .
. . Wu, J. S. (2018). Abundance of microbial CO2-fixing
genes during the late rice season in a long-term management paddy field
amended with straw and straw-derived biochar. Canadian Journal of
Soil Science, 98 (2), 306-316. doi:10.1139/cjss-2017-0098
Jackson, L. E., Burger, M., & Cavagnaro, T. R. (2008). Roots, nitrogen
transformations, and ecosystem services. Annu Rev Plant Biol, 59 ,
341-363. doi:10.1146/annurev.arplant.59.032607.092932
Keeler, B. L., Hobbie, S. E., & Kellogg, L. E. (2009). Effects of
long-term nitrogen addition on microbial enzyme activity in eight
forested and grassland sites: implications for litter and soil organic
matter decomposition. Ecosystems, 12 (1), 1-15.
doi:10.1007/s10021-008-9199-z
Keiluweit, M., Bougoure, J. J., Nico, P. S., Pett-Ridge, J., Weber, P.
K., & Kleber, M. (2015). Mineral protection of soil carbon counteracted
by root exudates. Nature Climate Change, 5 (6), 588-595.
doi:10.1038/nclimate2580
Kramer, C., & Gleixner, G. (2008). Soil organic matter in soil depth
profiles: Distinct carbon preferences of microbial groups during carbon
transformation. Soil Biology and Biochemistry, 40 (2), 425-433.
doi:10.1016/j.soilbio.2007.09.016
Kramer, S., Marhan, S., Haslwimmer, H., Ruess, L., & Kandeler, E.
(2013). Temporal variation in surface and subsoil abundance and function
of the soil microbial community in an arable soil. Soil Biology &
Biochemistry, 61 , 76-85. doi:10.1016/j.soilbio.2013.02.006
Li, C., Mosier, A., Wassmann, R., Cai, Z., Zheng, X., Huang, Y., . . .
Lantin, R. (2004). Modeling greenhouse gas emissions from rice-based
production systems: Sensitivity and upscaling. Global
Biogeochemical Cycles, 18 (1), n/a-n/a. doi:10.1029/2003gb002045
Li, Z., & Yagi, K. (2004). Rice root-derived carbon input and its
effect on decomposition of old soil carbon pool under elevated
CO2. Soil Biology and Biochemistry, 36 (12),
1967-1973. doi:10.1016/j.soilbio.2004.04.041
Liu, C., Lu, M., Cui, J., Li, B., & Fang, C. M. (2014). Effects of
straw carbon input on carbon dynamics in agricultural soils: a
meta-analysis. Global Change Biology, 20 (5), 1366-1381.
doi:10.1111/gcb.12517
Loeppmann, S., Blagodatskaya, E., Pausch, J., & Kuzyakov, Y. (2016).
Enzyme properties down the soil profile - A matter of substrate quality
in rhizosphere and detritusphere. Soil Biology and Biochemistry,
103 , 274-283. doi:10.1016/j.soilbio.2016.08.023
Lynn, T. M., Liu, Q., Hu, Y., Yuan, H., Wu, X., Khai, A. A., . . . Ge,
T. (2017). Influence of land use on bacterial and archaeal diversity and
community structures in three natural ecosystems and one agricultural
soil. Arch Microbiol, 199 (5), 711-721.
doi:10.1007/s00203-017-1347-4
Ma, Q., Wu, L., Wang, J., Ma, J., Zheng, N., Hill, P. W., . . . Jones,
D. L. (2018). Fertilizer regime changes the competitive uptake of
organic nitrogen by wheat and soil microorganisms: An in-situ uptake
test using 13C, 15N labelling, and13C-PLFA analysis. Soil Biology & Biochemistry,
125 , 319-327. doi:10.1016/j.soilbio.2018.08.009
Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954).
Estimation of available phosphorus in soils by extraction with sodium
bicarbonate. U S Dept Agric Circ, 939 , 1-19.
Peacock, A. g., Mullen, M., Ringelberg, D., Tyler, D., Hedrick, D.,
Gale, P., & White, D. (2001). Soil microbial community responses to
dairy manure or ammonium nitrate applications. Soil Biology and
Biochemistry, 33 (7-8), 1011-1019. doi:10.1016/S0038-0717(01)00004-9
Plaza, C., Hernandez, D., Garcia-Gil, J. C., & Polo, A. (2004).
Microbial activity in pig slurry-amended soils under semiarid
conditions. Soil Biology & Biochemistry, 36 (10), 1577-1585.
doi:10.1016/j.soilbio.2004.07.017
Shen, M.-X., Yang, L.-Z., Yao, Y.-M., Wu, D.-D., Wang, J., Guo, R., &
Yin, S. (2007). Long-term effects of fertilizer managements on crop
yields and organic carbon storage of a typical rice-wheat agroecosystem
of China. Biology and Fertility of Soils, 44 (1), 187-200.
doi:10.1007/s00374-007-0194-x
Six, J., Frey, S. D., Thiet, R. K., & Batten, K. M. (2006). Bacterial
and fungal contributions to carbon sequestration in agroecosystems.Soil Science Society of America Journal, 70 (2), 555.
doi:10.2136/sssaj2004.0347
Tang, H., Xiao, X., Xu, Y., Li, C., Cheng, K., Pan, X., & Li, W.
(2019). Utilization of carbon sources in the rice rhizosphere and
nonrhizosphere soils with different long-term fertilization management.J Basic Microbiol, 59 (6), 621-631. doi:10.1002/jobm.201800736
Tang, H. M., Xiao, X. P., Wang, K., Li, W. Y., Liu, J., & Sun, J. M.
(2016). Methane and nitrous oxide emissions as affected by long-term
fertilizer management from double-cropping paddy fields in Southern
China. The Journal of Agricultural Science, 154 (8), 1378-1391.
doi:10.1017/s0021859615001355
Tang, H. M., Xu, Y. L., Xiao, X. P., Li, C., Li, W. Y., Cheng, K. K., .
. . Sun, G. (2018). Impacts of long-term fertilization on the soil
microbial communities in double-cropped paddy fields. The Journal
of Agricultural Science, 156 (7), 857-864. doi:10.1017/s0021859618000825
Thornton, B., Zhang, Z. L., Mayes, R. W., Hogberg, M. N., & Midwood, A.
J. (2011). Can gas chromatography combustion isotope ratio mass
spectrometry be used to quantify organic compound abundance? Rapid
Communications in Mass Spectrometry, 25 (17), 2433-2438.
doi:10.1002/rcm.5148
van Leeuwen, J. P., Djukic, I., Bloem, J., Lehtinen, T., Hemerik, L., de
Ruiter, P. C., & Lair, G. J. (2017). Effects of land use on soil
microbial biomass, activity and community structure at different soil
depths in the Danube floodplain. European Journal of Soil Biology,
79 , 14-20. doi:10.1016/j.ejsobi.2017.02.001
Wang, J., Chapman, S. J., & Yao, H. (2016). Incorporation of13C-labelled rice rhizodeposition into soil microbial
communities under different fertilizer applications. Applied Soil
Ecology, 101 , 11-19. doi:10.1016/j.apsoil.2016.01.010
Wang, Q. K., Wang, S. L., He, T. X., Liu, L., & Wu, J. B. (2014).
Response of organic carbon mineralization and microbial community to
leaf litter and nutrient additions in subtropical forest soils.Soil Biology & Biochemistry, 71 , 13-20.
doi:10.1016/j.soilbio.2014.01.004
Wardle, D. A., & Ghani, A. (1995). A critique of the microbial
metabolic quotient (qCO2) as a bioindicator of
disturbance and ecosystem development. Soil Biology &
Biochemistry, 27 (12), 1601-1610. doi:10.1016/0038-0717(95)00093-t
White, D. C., Davis, W. M., Nickels, J. S., King, J. D., & Bobbie, R.
J. (1979). Determination of the sedimentary microbial biomass by
extractable lipid phosphate. Oecologia, 40 (1), 51-62.
doi:10.1007/bf00388810
Whiteside, M. D., Digman, M. A., Gratton, E., & Treseder, K. K. (2012).
Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal
forest. Soil Biol Biochem, 55 . doi:10.1016/j.soilbio.2012.06.001
Wu, J., Joergensen, R. G., Pommerening, B., Chaussod, R., & Brookes, P.
C. (1990). Measurement of soil microbial biomass C by fumigation
extraction - an automated procedure. Soil Biology & Biochemistry,
22 (8), 1167-1169. doi:10.1016/0038-0717(90)90046-3
Xu, Y., Tang, H., Xiao, X., Li, W., Li, C., Sun, G., & Cheng, K.
(2018). Effects of Long-Term Fertilization Management Practices on Soil
Microbial Carbon and Microbial Biomass in Paddy Soil at Various Stages
of Rice Growth. Revista Brasileira de Ciência do Solo, 42 (0).
doi:10.1590/18069657rbcs20170111
Yan, D., Wang, D., & Yang, L. (2007). Long-term effect of chemical
fertilizer, straw, and manure on labile organic matter fractions in a
paddy soil. Biology and Fertility of Soils, 44 (1), 93-101.
doi:10.1007/s00374-007-0183-0
Yuan, H., Ge, T., Wu, X., Liu, S., Tong, C., Qin, H., . . . Wu, J.
(2012). Long-term field fertilization alters the diversity of
autotrophic bacteria based on the ribulose-1,5-biphosphate
carboxylase/oxygenase (RubisCO) large-subunit genes in paddy soil.Applied Microbiology and Biotechnology, 95 (4), 1061-1071.
doi:10.1007/s00253-011-3760-y
Yuan, H., Zhu, Z., Liu, S., Ge, T., Jing, H., Li, B., . . . Kuzyakov, Y.
(2016). Microbial utilization of rice root exudates: 13C labeling and
PLFA composition. Biology and Fertility of Soils, 52 (5), 615-627.
doi:10.1007/s00374-016-1101-0
Zhang, J. G., Bo, G. D., Zhang, Z. F., Kong, F. Y., Wang, Y., & Shen,
G. M. (2016). Effects of Straw Incorporation on Soil Nutrients, Enzymes,
and Aggregate Stability in Tobacco Fields of China.Sustainability, 8 (8). doi:10.3390/su8080710
Zhang, Q., Wang, G., & Yao, H. (2007). Phospholipid fatty acid patterns
of microbial communities in paddy soil under different fertilizer
treatments. Journal of environmental sciences, 19 (1), 55-59.
doi:10.1016/S1001-0742(07)60009-6
Zhang, Q. C., Shamsi, I. H., Xu, D. T., Wang, G. H., Lin, X., Jilani,
G., . . . Chaudhry, A. N. (2012). Chemical fertilizer and organic manure
inputs in soil exhibit a vice versa pattern of microbial community
structure. Applied Soil Ecology, 57 , 1-8.
doi:10.1016/j.apsoil.2012.02.012
Zhran, M., Ge, T., Tong, Y., Deng, Y., Wei, X., Lynn, T. M., . . .
Gunina, A. (2020). Assessment of depth‐dependent microbial carbon‐use
efficiency in long‐term fertilized paddy soil using an18O–H2O approach. Land
Degradation & Development . doi:10.1002/ldr.3708
Zhu, S. S., Vivanco, J. M., & Manter, D. K. (2016). Nitrogen fertilizer
rate affects root exudation, the rhizosphere microbiome and
nitrogen-use-efficiency of maize. Applied Soil Ecology, 107 ,
324-333. doi:10.1016/j.apsoil.2016.07.009
Zhu, Z., Ge, T., Hu, Y., Zhou, P., Wang, T., Shibistova, O., . . . Wu,
J. (2017). Fate of rice shoot and root residues, rhizodeposits, and
microbial assimilated carbon in paddy soil - part 2: turnover and
microbial utilization. Plant and Soil, 416 (1-2), 243-257.
doi:10.1007/s11104-017-3210-4
Zhu, Z., Ge, T., Liu, S., Hu, Y., Ye, R., Xiao, M., . . . Wu, J. (2018).
Rice rhizodeposits affect organic matter priming in paddy soil: The role
of N fertilization and plant growth for enzyme activities,
CO2 and CH4 emissions. Soil
Biology and Biochemistry, 116 , 369-377.
doi:10.1016/j.soilbio.2017.11.001
Table 1 Total phospholipid fatty acids (PLFAs) (mg C
kg-1) in paddy soil under fertilization regimes at
different soil depths (mean± SE, n=3). Statistical significances based
on one-way analysis of variance and Duncan’s test
(P< 0.05). Different lower-case letters represent
significant differences in soil depth within a fertilization regime.
Different uppercase letters represent significant differences in
fertilization regime within soil depth. Fame: fatty acid methyl esters;
CK: no fertilizer; NPK: chemical fertilizers; ST: rice straw combined
with chemical fertilizers; OM: 70% NPK + 30% chicken manure. G−:
Gram-negative bacteria; G+: Gram-positive bacteria.