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Centro de Biotecnoloǵıa y Bioingenieŕıa, Universidad de Chile, Chile. E-mail: pmoisset@ing.uchile.cl

2
GEMA Center for Genomics, Ecology & Environment, Faculty of Interdisciplinary Studies,

Universidad Mayor, Chile.
*
E-mail: rodrigo.ramos@umayor.cl

3
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Abstract

Ecological theory recognizes the importance of the variety of species for maintaining the

functioning of ecosystems and their derived services. In this context, adaptive changes in

functional traits plays a crucial role. We assert that when studying the e↵ects of shifts in

biodiversity levels using mathematical models, they must be scale–invariant, i.e., should be

sensitive to the variety of species traits but not to raw species numbers. We present a testing

procedure for verifying scale–invariance of eco–evolutionary network models expressed as

ODEs. Furthermore, we applied our test to several influential models used for evaluating

biodiversity e↵ects on ecosystem functioning. In most of the surveyed studies the equations

used failed our test. This raises doubts about the validity of previous results and calls for

revisiting the theory derived from these studies. Our results foster the creation of artifact–free

models, a necessary step towards building a more robust theory of ecosystem functioning.
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INTRODUCTION

Few questions in ecology have received such a great attention over decades and have been

so fertile in promoting research, like the one about the relation between species diversity

and the functioning of ecosystems (McCann, 2000), which includes the stability of popula-

tions and communities. This is of particular concern in the context of current biodiversity

loss. The importance of this matter encompasses both the theoretical understanding of

ecosystems and the more pragmatic issue of conservation of ecosystem services, which are

vital for human well–being. Due to the inherent complexity of ecological systems, much

of these research lies on the use of mathematical models. From empirically–motivated

reasoning, early ecologists (Elton, 1958) postulated a positive relation between the rich-

ness of species within communities and the dampening of perturbations as well as species

persistence. This was supported by R. McArthur’s work (MacArthur, 1955) and then

challenged in the early 1970s by theoreticians (Gardner & Ashby, 1970; May, 1972), who

showed that stability of random model communities decreased with the number of species.

In the early ’90s, the more general biodiversity–ecosystem functioning (BEF) paradigm

emerged. It extended the concept of stability beyond that of species populations, towards

aggregated ecosystem properties. Concerning biodiversity, BEF relations are driven by

more than the number of species per se. For example, at a fixed number of species,

di↵erent community composition of key functional traits governs resource exploitation,

and species interactions (Gagic et al., 2015; Aubree et al., 2020). Therefore, we expect

that increasing the taxonomic diversity (species richness) without modifying functional

diversity (variety of functional traits) should not drive any changes in ecosystem func-

tioning (Loreau & De Mazancourt, 2013). Moreover, functional trait composition within

the community is subject to temporal changes due to ecological and adaptive dynamics.

These changes are known to have a strong influence on ecosystem productivity (Cadotte
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& Tucker, 2017), stability (Loreau & De Mazancourt, 2013), and resistance and tolerance

to invasions (Hector et al., 2001). However, the ecological perspective has been dominant

for considering the BEF relation.

Recently, ecologists recognized that BEF relations are history–dependent (Valdovinos

et al., 2010; Aubree et al., 2020). Every BEF relation is almost certainly a consequence

of past community adaptation. Also, ecosystems are currently facing environmental per-

turbations, and their communities are constantly experiencing adaptation due to phe-

notypic/behavioral plasticity and genetic evolution. This imposes challenges to the way

we model eco–evolutionary systems for understanding the role of species diversity in the

behavior of nature. It stands to reason that proper models for studying BEF should allow

us to distinguish between functional diversity and plain species richness. At the same

time, said models should be able to capture temporal adaptive changes of key species

traits. Besides capturing key biological features, it has been noted that ecosystem models

should exhibit some fundamental forms of logical consistency (Arditi & Michalski, 1996;

Kuang, 2002) that avoid artifacts on the e↵ects of biodiversity when increasing the num-

ber of species, i.e., scale–sensitivity. This advice, which is crucial for the BEF study, has

scarcely been heeded. Our literature survey, included in this paper, lists a number of

influential published models of ecological networks that exhibit scale–sensitivity, as well

as a few that do not. The fact that such high visibility research is liable to produce

misleading results as a consequence of the mentioned artifacts highlights the need for a

model design procedure that avoids scale–sensitivity pitfalls.

In this article, we will present and explain the problem of scale–sensitivity; then,

we will give formal criteria to detect it in ecological network models. Therefore, if a

model is being used for studying the BEF relation, especially if it includes adaptive trait

dynamics, it should probably be discarded if it fails our scale–invariance criteria. We also

suggest ways to fix the equations to obtain and use ecological network models that exhibit
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scale–invariance. We achieve this by identifying mathematical features that introduce the

scale–sensitivity and are frequently found in the ecological literature.

THE PROBLEM OF SCALE–SENSITIVITY IN ECOLOGICAL

NETWORK MODELS

The usual theoretical procedure to study the BEF relation in complex ecological net-

works, i.e., with multiple species and trophic levels, is to conduct an in silico controlled

experiment, as follows. First, ecological networks with di↵erent diversity levels are ob-

tained, usually by means of an algorithm generating quasi-empirical webs such as the

cascade (Cohen et al., 2012) or the niche model (Williams & Martinez, 2000). Di↵er-

ent diversity levels are most commonly obtained through varying the number of species

(i.e., species richness) in the network. Second, a dynamic population model is added

to each of the interacting species. Third, the model community is run for a given time

lapse, after which the system stability is assessed through an appropriate measure, such

as species persistence, local asymptotic stability, resilience, etc. (Pascual & Dunne, 2006).

Finally, the association between species richness and stability is evaluated by visualization

or statistical tools.

For evaluating the BEF relation, an essential property of ecological network models is

that they must be able to capture system responses to biodiversity changes and, at the

same time, they must be insensitive to spurious changes in species numbers that preserve

functional diversity. For example, if we have an initial population of x(0) individuals

belonging to species X, but we arbitrarily count a fraction p of x(0) (with x1(0) =

px(0), see Fig. 1) as if it belonged to a species Q, and a fraction 1 � p of x(0) (with

x2(0) = (1 � p)x(0)) as if it belonged to another species R, then the sum of individuals

belonging to pseudo–species Q and R should behave exactly the same as the population

X. In other words, artificially splitting species X into pseudo–species Q and R does not
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bring any consequence for the dynamics of the community, since the behavior of x(t) is

exactly recovered by the behavior of x1(t) + x2(t). Conversely, the existence of a t at

which x1(t) + x2(t) 6= x(t) would imply that a mere nominal split of X into Q and R

changed the community dynamics. In this case, the model outcomes are altered by a

spurious increase in the number of species, which reveals an experimental artifact in the

procedure.

This artifact has a crucial importance for understanding the e↵ects of biodiversity

changes through modifying the number of functionally di↵erent species. Note that split-

ting a species is equivalent to adding a new species functionally identical to an existing

one.

Using a model sensitive to addition of identical species will present a serious problem in

the more general setting of adding functionally di↵erent species. When using such a model,

if a change in the number of functionally di↵erent species is followed by alterations in the

system dynamics, this result could not be attributed to functional diversity changes, since

the artifactual e↵ect of changing the number of (identical) species per se is not controlled

for. Thus, a necessary condition for any model used for evaluating the consequences of

biodiversity shifts is that its dynamics must not be altered by the addition of identical

species. In other words, the dynamical system should be scale–invariant, in the following

sense. Following Kondoh (2003), we will consider a system composed of a prey species of

abundance P and a predator species of abundance A.

Ṗ = P · (⇢� �P � '↵A)

Ȧ = A · (� � �A+ ✏'↵P )
(1)

The ecological interaction represented in Eq. (1) depicts the killing rate of prey by preda-

tors '↵AP , with consumer preference ↵ = 1 since there is only a single prey species.

Parameter ' is the predation rate coe�cient, ✏ is the conversion e�ciency of killed prey

6



into consumer abundance, ⇢ and � are the intrinsic growth rate of preys and predators,

respectively. Finally, � and � are self–interference terms, due to intraspecific competition.

All parameters are positive constants. If we increased the system’s species richness by

adding, for example, a new prey species while preserving the form of the model equations

in Kondoh (2003), we would obtain

Ṗ1 = P1 · (⇢1 � �1P1 � '1↵1A) (2)

Ṗ2 = P2 · (⇢2 � �2P2 � '2↵2A) (3)

Ȧ = A · (� � �A+ ✏1'1↵1P1 + ✏2'2↵2P2) (4)

with predator preferences ↵1 + ↵2 = 1. Species P1 and P2 are functionally identical if

and only if ↵1 = ↵2 = 1/2, ⇢1 = ⇢2, �1 = �2 and '1 = '2. To test whether this system

is scale–invariant, let us imagine that the original prey species in Eq. (1) was artificially

split into two new species (Eq. (2) and (3)), which are functionally identical. Biological

intuition suggests that the dynamics of the P1 + P2 should be identical to the dynamics

of P in Eq. (1) (Arditi & Michalski, 1996; Kuang, 2002). To obtain the dynamics of

P1 + P2 = P , we simply add Eq. (2) and (3), rendering the reduced set of equations

Ṗ = P ·
✓
⇢� �

P

2
� '

A

2

◆

Ȧ = A ·
✓
� � �A+ ✏'

P

2

◆ (5)

where ⇢ = ⇢1 = ⇢2, � = �1 = �2 and ' = '1 = '2. Clearly, Eq. (5) is not the same

as Eq. (1). Thus, the dynamics are forced by adding new species because the model is

scale–sensitive. It is easy to show that Eq. (5) presents equilibrium population densities

greater than those obtained from Eq. (1).
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Scale–sensitivity and BEF

Dividing a species into identical copies can a↵ect the dynamics of the system. Now we will

show that some important measures of ecosystem functioning can also be a↵ected. Still

considering model (1), assume that the predator population is divided into D identical

copies. Adding the equations for these copies we obtain the reduced system

Ṗ = P ·
✓
⇢� �

P

D
� '

A

D

◆

Ȧ = A ·
✓
� � �A+ ✏'

P

D

◆
.

(6)

Notice thatD appears explicitly in the right–hand side of the equations. This immediately

implies that the model is scale–sensitive. Moreover, the following ecosystem functioning

metrics are also dependent on D: population equilibria, total community biomass (at

equilibrium), feasibility (existence of positive equilibria), ecosystem production, commu-

nity resilience and local asymptotic stability. We also analyzed a competitive system

based on (6) and we obtained similar conclusions. A detailed derivation of these results

can be found in Appendix S1 in Supporting Information.

SCALE–INVARIANCE CRITERIA FOR NETWORKS

We will present a test to determine if a given model is scale–invariant. To make the

presentation more amenable, we will restrict our analysis to systems where each population

abundance is represented by a single real variable, and the state of the system is defined

only by these variables. This precludes the use of systems with stage or spatial structure,

or with trait adaptation. We will extend our method to include systems with adaptation

in a later section.

As we stated before, no ecological network should exhibit changes in its dynami-

cal properties as a consequence of either increase or decrease the number of species per
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se (Arditi & Michalski, 1996). Therefore, it is species diversity, i.e., the variety of species,

not the raw number of species, what should drive changes to the system dynamics.

For this work, and given an ecological network characterized by a set of species and

parameters that describe the interactions among them, we will make the following two

assumptions. The first one is that there is an unambiguous procedure to translate the

network into a set of ordinary di↵erential equations (ODEs). The second one is that the

operation of adding a species to a network G, yielding a network G
0 is defined, particularly

in the case when the species added (call it s0) is identical to another one (call it s) already

in the network. This is conceptually equivalent to splitting the original species s in G

into two identical pseudo–species s and s
0 in G

0. Intuitively, duplicating a species should

not alter the dynamics of the system since the combined population of species s and s
0 in

G
0 should behave exactly like the population of s in G. More formally, given a network

G, we will duplicate a species in G, yielding G
0, which contains s and s

0. For all species i

in G, the ODEs will have the form

ẋi = xi · fi(x) (7)

with initial conditions xi(0). For G0, the equations will have the form

˙̃xi = x̃i · f̃i(x̃) (8)

and initial conditions should fulfill x̃s(0) + x̃s0(0) = xs(0), and x̃i(0) = xi(0) for all other

species. We capture the intuition of duplicating being irrelevant by demanding that for

all t > 0

x̃s(t) + x̃s0(t) = xs(t)

x̃i(t) = xi(t) for all other species
(9)

The last two equations simply mean that the species abundances through time should
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behave in exactly the same way in the G network (xi variables) as the G
0 network (x̃i

variables). For the particular case of species s in G, its abundance should be exactly as

the added abundances of species s and s
0 in G

0.

Defining species addability

Consider the model:

˙̃xi = x̃i · g̃i(x̃0, x̃1, . . . , x̃n) (10)

where the x̃i’s represent the abundances of n + 1 species and, for convenience, they are

indexed from zero. We will assume the g̃i functions are “well-behaved.” For example,

demanding the g̃i’s to be Lipschitzian is enough to guarantee the existence and uniqueness

of solutions (at least locally). This form is general enough to capture most popular models

in the ecological literature. Moreover, in population dynamics, it is usually the case that

the existence and uniqueness of the solution extend to the [0,1) interval.

Suppose that we identify two variables that seem to represent identical species. Since

we can rename variables, without loss of generality we can assume that these two variables

are x̃0 and x̃1. If they represented identical species, and we fixed the values for x̃2, . . . , x̃n,

then ˙̃x0 + ˙̃x1 would depend only on x̃0 + x̃1. Similarly, the values of ˙̃x2, . . . ,
˙̃xn would

depend exclusively on x̃0 + x̃1. Intuitively, if only the sum x̃0 + x̃1 matters, it is natural

to combine these two variables into a new one by simple addition. More formally, we will

say a function g̃i is sum–dependent if and only if it satisfies the following condition for all

x̃i � 0 and for all � 2 [0, 1]:

g̃i(x̃0, x̃1, . . . , x̃n) = g̃i (� · (x̃0 + x̃1), (1� �)(x̃0 + x̃1), x̃2, x̃3, . . . , x̃n) (11)
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An equivalent way to state the rule described in Eq. (11) is

g̃i(x̃0, x̃1, . . . , x̃n) = g̃i(x̃0 + �, x̃1 � �, x̃2, x̃3, . . . , x̃n) (12)

for all non-negative x̃i’s and all �’s such that 0  x̃0 + � and 0  x̃1 � �. Intuitively we

should be able to transfer an arbitrary amount of “mass” � from species 1 to species 0

without a↵ecting the values of any per capita e↵ect g̃i.

If the per capita growth rate of species 0 and 1 is the same, i.e.

g̃0(x̃0, x̃1, . . . , x̃n) = g̃1(x̃0, x̃1, . . . , x̃n). (13)

and also all g̃i’s are sum–dependent, we can show that x̃0 and x̃1 can be combined into a

single variable x1 = x̃0 + x̃1. Moreover, the resulting reduced set of equations preserves

the behavior of the original system described in Eq. (10) (see Appendix S2 for details).

Therefore we will say species 0 and 1 are addable if and only if Eq. (11) and Eq. (13)

are satisfied. Concisely, if two species are addable, then we can combine them and write

a reduced system. Note that we can group more than two species by using the same

technique repeatedly. Thus it is enough to define addability for two species only. Yet

another way of representing the property defined in Eq. (11) is

@g̃i

@x̃0
=

@g̃i

@x̃1
, (14)

assuming all g̃i’s are continuously di↵erentiable. Similarly, Eq. (13) can be written as

@g̃0

@x̃0
=

@g̃1

@x̃0
(15)

@g̃0

@x̃1
=

@g̃1

@x̃1
(16)

and demanding that g̃0(x̃0, x̃1, . . . , x̃n) = g̃1(x̃0, x̃1, . . . , x̃n) for one point (x̃0, x̃1). Note
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that Eq. (16) can be derived from Eq. (14) and Eq. (15). To summarize this subsection,

two species are addable in Eq. (10) if and only if Eq. (11) and Eq. (13) are satisfied.

Alternatively, Eq. (11) can be substituted for Eq. (14) while Eq. (13) can be replaced by

Eq. (15) and Eq. (16). This variety of equivalent tests can be handy, depending on what

the dynamical system to be analyzed is like.

The scale–invariance test

Conceptually, the test consists of applying, for all possible networks and species in those

networks, a sequence of a few steps, summarized in Fig. 2. Consider an arbitrary network

G and a species s in G. Write the di↵erential equations for all species in G. Then replace

s with two identical pseudo–species we will call s1 and s2. This will yield a new network

G
0. Write the di↵erential equations for G0. Now test for addability of s1 and s2 using any

of the formulas given in section Defining species addability. If they are addable, Define

s = s1+s2 and reduce the equations. Test if the reduced equations match those written for

G. A model is scale–invariant if, for all networks G and for all species s in G, duplicating

s and then reducing the equations yields the same system as the one written for G.

[Figure 2 goes about here]

We will show two applications of the scale–invariance test. The first one is on the

classic Lotka–Volterra system:

ẋi = xi ·
 
ri +

X

j

aijxj

!
(17)

Say we wish to duplicate species with index number 1 into two identical species and,

therefore, with identical parameter values. Introducing variables x̃0 and x̃1 to represent
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their abundances we obtain

˙̃x0 = x̃0 ·
 
r1 +

nX

j=2

a1,jxj + a1,1x̃0 + a1,1x̃1

!

˙̃x1 = x̃1 ·
 
r1 +

nX

j=2

a1,jxj + a1,1x̃0 + a1,1x̃1

!

˙̃xi = xi ·
 
ri +

nX

j=2

ai,jxj + ai,1x̃0 + ai,1x̃1

!
for i = 2, 3, . . . , n

(18)

This ends the splitting part. We can easily see that Eq. (11) and Eq. (13) are satisfied by

Eq. (18); therefore, species 0 and 1 are addable. Then, by creating a new variable with

value x̃0 + x̃1 and reducing the equations, we obtain a system identical to Eq. (17). Since

this holds for all species, we conclude that Eq. (17) is scale–invariant.

The second application, to show a negative example, is on Eq. (1). Copying the only

plant species gives

˙̃
P1 = P̃1 · (⇢� �P̃1 � '↵Ã) (19)

˙̃
P2 = P̃2 · (⇢� �P̃2 � '↵Ã) (20)

It is immediate that the equations fulfill neither Eq. (11) nor Eq. (13). Therefore they

fail our test for scale–invariance, which was expected after our analysis of Eq. (5).

Displaying the dynamical consequences of scale–sensitivity

We will show the importance of features that can determine scale–sensitivity when ana-

lyzing the BEF relation. For doing this, we will compare the long–term dynamics of four

very similar models, only one of them being scale–invariant. We will start from equations
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describing the dynamics of a set of plants and herbivores.

Ṗi = riPi � IiP
2
i �

X

j

cijAjPi�ij

1 + �ij

P
k,�kj>0 Pk

Ȧj = qjAj � EjA
2
j +

X

i

cijAjPi�ij

1 + �ij

P
k,�kj>0 Pk

(21)

This was published, up to small notation di↵erences, in (Thébault & Fontaine, 2010). For

the scale–invariance test we assumed that if we introduced species i0 as a duplicate of i,

we would copy coe�cient values, i.e. ri = ri0 and similarly for qj, Ej, Ii, cij and �ij. Our

test shows that this model is scale–sensitive. The reason lies in the competition terms.

To generate variants of Eq. 21, which may or may not be scale–invariant, we propose the

following generalization:

Ṗi = riPi �
X

j

IijPiPj �
X

j

ĉijAjP
h
i �

h
ij

1 + �
h
ij

P
k,�kj>0 P

h
k

Ȧj = qjAj �
X

i

EijAiAj +
X

i

ĉijAjP
h
i �

h
ij

1 + �
h
ij

P
k,�kj>0 P

h
k

(22)

We made three changes to Eq. (21) to obtain Eq. (22). The first one was adding terms that

allow interspecific competition. The second was the incorporation of the Hill exponent h

that shape the functional response. The last change is about the normalization of param-

eters ĉij. We may demand that
P

i ĉij = 1, consistent with the constant interacting e↵ort

hypothesis (Suweis et al., 2014), or we may leave them unconstrained, as in (Thébault

& Fontaine, 2010). We found a scale–invariant version of Eq. (22) in which interspecific

competition coe�cients are not forced to zero, and h = 1, and the ĉij coe�cients do not

have to add up to one, i.e., are not normalized. For the scale–invariance test, in the case

of normalized ĉij’s we assumed a two step process. In the first one we copy the values,

just like before. In the second one, we renormalize the coe�cients so they add up to one,

much like we describe more formally in section Addability in normalized systems.
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For comparison, we run numerical simulations based on Eq. (22) (see Appendix S3

for simulation details) under four di↵erent sets of assumptions, one of them yielding our

scale–invariant version. In the first treatment, we include neither interspecific competi-

tion nor ĉ’s normalization and use a Hill’s exponent h = 1. This reproduces the results

in (Thébault & Fontaine, 2010). For the second one, we include interspecific competition,

we do not normalize the ĉ’s, and h = 1. For the third one, we include neither interspecific

competition nor normalization, and h = 1. For the fourth treatment, we assume inter-

specific competition, no normalization, and h = 2. Only the second set of assumptions

yields a scale–invariant model. We summarize the results in Fig. 3. We can observe stark

di↵erences in the responses of species persistence and biomass to changes in diversity

(richness). Note that the trends in Fig. 3 A, which is based upon the model in (Thébault

& Fontaine, 2010) are notoriously di↵erent from the rest of the cases. This shows that

modifying a single feature that a↵ects the scale–invariance of a model, namely competi-

tion, normalization or Hill exponent, may result in important changes to the long-term

dynamics.

Scale–invariance in models with trait adaptation

It would be straightforward to generalize the results of this paper to models not captured

by Eq. (10). For example, consider:

ẋi = xigi(x1, x2, . . . , xn) +
X

j 6=i

xjhij(x1, x2, . . . , xn) (23)

We could easily extend the conditions of addability to this equation form. However, when

modeling population dynamics, equations are typically expressed using per-capita growth

rates as in Eq. (10). Nonetheless, some models in literature do have forms that resemble

Eq. (23). For example, say x1 and x2 represent the respective abundances of the same

species but in two di↵erent terrain patches. Also, assume there is migration between said
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patches. Then, the model may be written as Eq. (23), see for example (McPeek & Holt,

1992). It is worthwhile to note that the test for models based on ODEs (Eq. (10)) can

also be adapted to discrete–time dynamical systems (see Appendix S4).

However, Eq. (10) is not general enough to capture models with adaptation. Typically,

trait adaptation is represented by adding extra variables to the model. A real variable ↵ij

may represent the preference of an individual of predator species i for prey species j. It

can be a probability of attack or a fraction of time devoted to hunting that particular prey.

Commonly, the values of ↵’s are constrained. This will be important when specifying the

test for species addability. If ↵ij represents the fraction of time individuals of species i

spends foraging on a resource j or a fraction of available energy allocated to a task, then

we must have that
P

j ↵ij = 1. This constraint must be preserved by the di↵erential

equations for all time. In this case, we say the system is normalized. A well known

normalized model is the replicator equation. A non–normalized system is the classic

optimal diet model (Stephens & Krebs, 1986). Here, it is only required that 0  ↵ij  1,

as the ↵’s are probabilities. In this paper, we will handle both scenarios.

To represent this adaptation process, in addition to the xi variables that model species’

abundance, we introduce new variables ↵ij. The time evolution of these new variables

will be described by new equations. To simplify the notation, we will express the state

variables in vector form. Then, let x = [x1, x2, . . . , xn]T . Similarly, let A = [↵ij] be an

n⇥ n matrix. We will consider systems of this form:

ẋi = xi · gi(x,A)

↵̇ij = fij(x,A)
(24)

From this general equation, in the following sections, we will split our analysis into the

non–normalized and normalized cases.
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Addability in non–normalized systems

In this case we do not impose any constraints on the values for the ↵’s. After splitting

species 1 into species 0 and 1 we obtain equations of the form

˙̃xi = x̃i · g̃i(x̃, Ã)

˙̃↵ij = f̃ij(x̃, Ã)
(25)

Note that x̃ has n + 1 elements, while Ã is an (n + 1) ⇥ (n + 1) matrix. Also note that

elements in x̃ are indexed from zero. Rows and columns of Ã are also indexed form zero.

For brevity, we can define F̃ = [fij] and write Eq. (25) as

˙̃xi = x̃i · g̃i(x̃, Ã)

˙̃Aij = F̃(x̃, Ã)
(26)

For an arbitrary matrix M we will write M
(k) and M(k) to denote the k-th column

and k-th row of M respectively. Intuitively, if two species 0 and 1 are identical, their trait

values for interaction with an arbitrary species j, must be the same for all time. This

means that we have the time invariants ↵̃0j = ↵̃1j and ↵̃i0 = ↵̃i1. This is exactly the same

as saying Ã(0) = Ã(1) & Ã(0) = Ã(1).

The conditions for reducing the system by adding variables x̃0 and x̃1 together are:

1. Initial conditions must fulfill

Ã(0)(0) = Ã(1)(0) & Ã(0)(0) = Ã(1)(0) (27)

Informally, for the two identical species their trait values for interaction with all

other species must be the same at time zero.
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2.

8x̃8Ã[Ã(0) = Ã(1) & Ã(0) = Ã(1) =) g̃0(x̃, Ã) = g̃1(x̃, Ã) & (28)

F̃ (0)(x̃, Ã) = F̃ (1)(x̃, Ã) & (29)

F̃(0)(x̃, Ã) = F̃(1)(x̃, Ã)] (30)

Since the F̃
(0), F̃ (1), F̃(0) and F̃(1) functions control the rate of change of the first

two rows and columns of Ã, we need conditions Eq. (29) and Eq. (30) to preserve

the invariants. Condition Eq. (28) is analogous to Eq. (13).

3. Fixing Ã, define �i,Ã(x̃) = g̃i(x̃, Ã) and 'i,j,Ã(x̃) = fij(x̃, Ã). The last condition is

as follows:

Ã(0) = Ã(1) & Ã(0) = Ã(1) =) �i,Ã and 'i,j,Ã must be sum–dependent. (31)

This is analogous to condition Eq. (11) for systems without adaptation.

Appendix S2 shows how from the addability criteria we just described, it follows that

species 0 and 1 can be combined into a single one. This results in an equation of the form

Eq. (24). After this, the equation matching check must be performed.

Addability in normalized systems

Recall that a system is normalized if for adaptive trait values ↵ij we have
P

j ↵ij = 1. We

have equations of the form Eq. (24) with initial conditions such that
P

j ↵ij(0) = 1. We

also assume that for all xi’s,
P

j ↵ij = 1 =)
P

j fij(x,A) = 0. Therefore
P

j ↵ij(t) = 1

is a dynamic invariant. A typical example is the replicator equation, which in our setting
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would look like:

↵̇ij = Ki↵ij ·
 
Wij(x,A)�

X

k

↵ikWik(x,A)

!
(32)

where Ki are positive adaptation rates and Wij are fitness functions. In general, as in the

non-normalized case, after duplicating species 1 into species 0 and 1 we have

˙̃xi = x̃i · g̃i(x̃, Ã)

˙̃Aij = F̃(x̃, Ã)
(33)

In this case, duplicating species is not as straightforward as before. Simply copying the

values for ↵’s, i.e. ↵̃ij = ↵ij and ↵̃0j = ↵1j will ruin normalization. A reasonable rule for

assigning trait values after duplicating species is

↵̃ij =
↵ij

1 + ↵1j

↵̃0j = ↵̃1j

(34)

This way of recomputing values for ↵’s is nothing but replicating the values for ↵1j and

↵i0 and normalizing afterwards to obtain
P

j ↵̃ij = 1. This should hold in particular for

t = 0, therefore we can compute the initial conditions for the system with duplicated

species using Eq. (34). Conditions must also hold for all t. For initial conditions we have

x̃i(0) = xi(0)

x̃0(0) + x̃1(0) = x1(0)
(35)

and

↵̃ij(0) =
↵ij(0)

1 + ↵1j(0)

↵̃0j(0) = ↵̃1j(0)

(36)
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The conditions for reducing the system by adding variables x̃0 and x̃1 together are:

1. Initial conditions must fulfill

Ã(0)(0) = Ã(1)(0) & Ã(0)(0) = Ã(1)(0) (37)

Informally, for the two identical species their trait values for interaction with all

other species must be the same at time zero.

2.

8x̃8Ã[Ã(0) = Ã(1) & Ã(0) = Ã(1) =) g̃0(x̃, Ã) = g̃1(x̃, Ã) & (38)

F̃ (0)(x̃, Ã) = F̃ (1)(x̃, Ã) & (39)

F̃(0)(x̃, Ã) = F̃(1)(x̃, Ã)] (40)

Since the F̃
(0), F̃ (1), F̃(0) and F̃(1) functions control the rate of change of the first

two rows and columns of Ã, we need conditions Eq. (39) and Eq. (40) to preserve

the invariants. Condition Eq. (38) is analogous to Eq. (13).

3. Fixing Ã, define �i,Ã(x̃) = g̃i(x̃, Ã) and 'i,j,Ã(x̃) = fij(x̃, Ã). The last condition is

as follows:

Ã(0) = Ã(1) & Ã(0) = Ã(1) =) �i,Ã and 'i,j,Ã must be sum–dependent. (41)

This is analogous to condition Eq. (11) for systems without adaptation.

Appendix S2 shows how from the addability criteria we just described, it follows that

species 0 and 1 can be combined into a single one. This results in an equation of the form

Eq. (33). After this, the equation matching check must be performed.
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LITERATURE SURVEY

We surveyed the literature to find publications studying the BEF relation in ecological

networks by theoretical means. These studies focus on the behavior of a community model

over a gradient of species richness. Although the procedures to transform a network into

a system of ODEs were straightforward, the rule to increase the number of species of

a network was not always easy to deduce. Since for each reviewed model there were

many possible species addition rules, we strived to chose the one that best preserves the

structure of the model. Our approach was to add an equation for each added species

while preserving the form of the model equations and the biological meanings of their

parameters and variables. Then, we could apply our scale–invariance testing procedure.

We summarize the salient properties of the models and state whether or not they are

scale–invariant in the sense we define in this article. We classify the models into two

main groups, those with a single state variable per species (abundance) and those with

multi-variable species description to capture trait adaptation.

Ecological interaction models of a single state-variable per species

The bioenergetic model (Williams & Martinez, 2004; Brose et al., 2006), which derived

into the allometric trophic network model (Berlow et al., 2009) is among the most widely

used set of equations that represents the dynamics of foodwebs. This model is scale–

sensitive because of three features it has. First, the equations incorporate intraspecific

but not interspecific competition among basal species. Second, the predators’ functional

responses contain a Hill exponent that can assume values greater than one (in fact, it is

often used with such values), and thus produce sigmoidal functions. Third, the functional

responses include predator preferences that must add up to one among all prey species.

Any one of these properties is enough to make it fail the test for scale–invariance described

in Subsection . The model in Bascompte et al. (2006) is of the Lotka-Volterra type for
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representing the dynamics of mutualistic ecological webs. It contains only positive in-

terspecific interaction and includes intraspecific competition. Nonetheless, it does not

contain interspecific competition, which impedes the model to pass our scale–invariance

test. Later models, such as those in Okuyama & Holland (2008) which was presented to

study mutualistic networks, and Thébault & Fontaine (2010) which can represent trophic

as well as mutualistic interaction webs, exhibit the same problem. The model in Mougi &

Kondoh (2012) represents ecological communities with di↵erent trophic and non–trophic

interaction types. In this model, they include intraspecific but not interspecific competi-

tion, which makes this model to not pass our scale–invariance test. In addition, they use a

normalization of interaction strength coe�cient as a function of the number of neighbors,

which also impedes the model to pass the test. The only one–variable per species model

we could find that passes the scale–invariance test was the one in Bastolla et al. (2009).

It is used to represent the dynamics of mutualistic networks.

Ecological interaction models with trait adaptation

The model in Kondoh (2003) represents foodweb interactions with adaptive dynamics of

foraging consumer species preferences. The model fails the scale–invariance test because

of two reasons. First, it does not include interspecific competition, but only intraspecific

ones. Second, if i were a consumer species with a single resource, and we added n �

1 identical copies of that resource to the model, this would lead to a decreased total

consumption rate by species i. Assuming that all resource species are identical, then the

consumption term would be:
1

n
eijfij

X

j2resources(i)

Xj (42)

which reveals that total consumption is n times smaller than expected from a scale–

invariant model. A variant with di↵erent functional responses was published in Kondoh

et al. (2005). This model fails the scale–invariance test because of the same two reasons
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as the one in Kondoh (2003). In this variant, after duplicating the resource species, the

consumption term turns into:

Ji
1

n
fij

Pn
j2i’s resources Xj

Hi +
1
n

Pn
j2i’s resources Xj

(43)

which reveals than total consumption decreases with the addition of identical resource

species. The same class of artifact is found in Garcia-Domingo & Saldana (2007, 2008),

and Guill & Drossel (2008). Hence, they are all scale–sensitive.

The model in Kondoh (2007) represents the adaptive defenses of species against their

consumers, and has two alternative assumptions: a) consumer–specific defenses, and b)

non–specific defenses. Both alternative models are scale–sensitive because of the lack of

interspecific competition among basal species. Moreover, in model a), the dynamics are

dependent on the number of species due to constraints to e↵ort/time budgets available to

defend and grow. This is similar to the problem presented in Eq. (1). This scale–sensitivity

would hold even if we added interspecific competition among basals. By contrast, if we

added those terms to model b), we would note two things. First, for an arbitrary species,

the per capita growth rate is independent of the duplication of an interacting species.

Second, the fitness gradient, which is used to define the adaptation dynamics, is also

independent of duplicating species. Then, adding the competition terms would render b)

scale–invariant.

The study of Uchida & Drossel (2007) describes a foodweb model in which species have

adaptive behavior, allocating foraging and defense e↵orts. The model is scale–sensitive

because of the lack of interspecific competition terms. Besides, adaptive dynamics are

dependent on the number of species due to the normalization of the e↵ort allocation

coe�cients fij and vij. This normalization is similar to that of the example in Eq. (1)

through Eq. (5). In Uchida et al. (2007), a number of foodweb models are presented. The

variants without adaptive dynamics are scale–invariant. However, when they introduce
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trait adaptation to the equations, the normalized trait values prevent the model from being

scale–invariant. This is regardless of the type of normalization or functional response they

choose.

Another approach for representing adaptive behavior is using game theory to select

the trait values at a given time. In this vein, Drossel et al. (2001) introduce a model with

foraging adaptation in which species achieve an evolutionary stable strategy. The authors

a�rm that their equations satisfy the logical consistency properties defined in Arditi

& Michalski (1996). The adaptation model in Drossel et al. (2001) relies on an implicit

definition of predator preference coe�cients, which would be represented by the ↵ij values

in our notation. Since the changes in adaptive behavior are not represented by means of

di↵erential equations, the model is not expressed as Eq. (24). Variants of the equations

were used in Drossel et al. (2004); McKane (2004); Quince et al. (2005a,b) and Powell &

McKane (2008). Some models use trait values to determine coe�cients in the equations.

Such is the case as the eco-evolutionary model in Loeuille & Loreau (2005). This model

is scale–invariant because it can be transformed into a generalized Lotka–Volterra model.

The only caveat is that the rule to define the single trait associated with each species

when duplicating it must be copying its value. This is analogous to the rule for non–

normalized systems we described in Subsection . In Loeuille & Loreau (2005), the trait

values are not used to model adaptation in the way we considered in this paper. The

model can, however, be modified to do so. This was the case in Aubree et al. (2020),

where they apply a game–theoretical approach to determine trait values, much like what

is described in Drossel et al. (2001). The main drawback of this approach is that it requires

solving a set of coupled nonlinear equations to determine the trait values every time they

are needed. An approximation based on di↵erential equations of the form Eq. (24) is

proposed in Calcagno et al. (2017). It is not scale–invariant but can be easily transformed

into one by, for example, removing the ni factor in Eq.(22) in the Supplementary Note 2.
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There are more complex models. For example, they may consider population age

structure, such as Ramos-Jiliberto et al. (2018), which uses partial di↵erential equations.

Others represent the stage–structure of populations, such as Valdovinos et al. (2013, 2016).

These fall beyond what can be expressed as Eq. (24) and therefore require further study.

DISCUSSION

The importance of biodiversity as a determinant of ecosystem functioning and the provi-

sion of services has been asserted before in the literature (Hooper et al., 2005, 2012). This

is known as the BEF relation (Gonzalez et al., 2020), where biodiversity is sometimes

understood as species richness. Whenever evaluating this relation through mathematical

models, one should be wary about artifacts that may be introduced. In particular, for

most BEF studies, we should use scale–invariant models, i.e. those that preserve sys-

tem dynamics when introducing functionally identical species (Arditi & Michalski, 1996;

Kuang, 2002). The key point is that even when no identical species are added, the artifacts

may be still present. Whenever a scale–sensitive model is used, it is hard to discriminate

between a significant BEF relation, attributable to biodiversity e↵ects, and a spurious

relation arisen from scale–sensitivity.

Hence we present a test to verify scale–invariance of ecological network models. We

provide an operational definition of the test that complements Arditi and Michalski’s con-

ceptual approach to logical consistency. The procedures we describe here were successfully

applied in a straightforward way to all models we cited in section Defining species addabil-

ity as long as they were expressed as Eq. (10). Moreover, in Eq. (11) through Eq. (16),

we provide alternative versions of the tests. All versions are equivalent, but some may

be easier to apply than others when analyzing a particular model. As a key contribution

of our study, we also present a generalized version of the test that can be applied to

eco–evolutionary models, i.e., those that include trait adaptation. This feature tends to
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increase stability in ecological networks, as noted in Valdovinos et al. (2010). To the best

of our knowledge, the issue of scale–invariance in systems with adaptive trait dynamics

has not been explored before. In our generalization, we considered systems in which trait

values are either normalized or non-normalized. Interestingly, the tests for both cases

are nearly identical. However, the procedure to add variables of identical species is more

complicated in the case of normalized models due to the need for preserving the nor-

malization of trait values. In Appendix S2 we provide the formulas describing how to

write the equations after merging the duplicated species. Our approach was to describe

the test to handle the renormalization rule described in Eq. (34). This rule is reasonable

but somewhat arbitrary. However, the same procedure we used to derive the di↵erential

equations for the trait values, i.e., Eq. (S2.21) through Eq. (S2.26) can be used for other

rules. Our test can be extended to similar models. For example, we considered equations

of the form Eq. (23). These can represent populations with age or spatial structure, which

has been partially explored by Kuang (2002).

To determine whether or nor an ecological network model is scale–invariant, we need

unambiguous definitions for the rule to translate networks into ODEs, and for the rule to

grow a network by splitting an arbitrary species into two identical ones. While surveying

articles we noted that the form of the equations, and the rule to write them for a particular

network were clear. Yet, the operation for duplicating species was di�cult to infer. Under

these conditions, it is hard to ascertain scale–invariance and, consequently, the weight of

the evidence supporting BEF relations. Then, if we want to rule out the possibility of

scale induced artifacts, the model specification should leave no doubts about how to add

species to an existing network. This issue should be dealt with whenever presenting a

model for studies aimed at determining the e↵ects of biodiversity shifts.

As we mentioned, our survey of the literature on ecological network models showed

a pervasive ambiguity in the rule to grow networks. We then had to rely on reasonable
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assumptions to apply our test. Subject to these assumptions, most surveyed systems

were found to be scale–sensitive. This is striking since many of those systems form the

foundation of the current theory about BEF. The remarkable exceptions are in the works

of Bastolla et al. (2009); Drossel et al. (2001); Loeuille & Loreau (2005) and later devel-

opments. The preponderance of scale–sensitive models undermines the development of

current biodiversity theory. As a result, this may hamper the much–needed application of

this theory to environmental policymaking, ecosystem management, and conservation ef-

forts. It is worthwhile to note that the venerable Lotka–Volterra model is scale–invariant,

as we showed in section The scale–invariance test. This formulation has been used as a

starting point to create more sophisticated developments, particularly in the context of

studying the e↵ects of biodiversity. Unfortunately, many of these extensions had features

that corrupted the scale–invariance. The main culprits are the lack of interspecific com-

petition in the presence of intraspecific one, using a Hill exponent other than one, and

improper use of normalized trait values in eco–evolutionary models. The replicator equa-

tion is typically used to describe the trajectory of trait values in normalized systems with

trait adaptation. Neither normalization nor the replicator equation immediately implies

scale–sensitivity. The way in which the normalized trait values appear in the di↵erential

equations is what causes scale–sensitivity. Scale–invariant models with normalized trait

values do exist. An example of this can be found in Drossel et al. (2001). Although this

model does not follow the form Eq. (24), it does ensure the invariant described in Eq. (9),

which describes species addability. Our findings suggest the need to revisit a number

of classic results in the area. For example, our experiments based on the original model

by Thébault & Fontaine (2010) and our slightly modified version, which is scale–invariant,

yielded qualitative di↵erences in the relationship between species diversity and stability

and biomass. Our analysis serves to identify the causes of scale–sensitivity, and it also

helps to find solutions for it. Since most of the causes for scale–sensitivity of published
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models fall in the three groups mentioned before, i.e., competition, Hill exponent, and

normalized trait values, it is usually easy to modify the models, so they become scale–

invariant. Our approach has the advantage of providing an operational test that can

directly apply to models that have the form Eq. (10) or, with more generality, Eq. (24).

However, these do not cover every possible formulation found in the ecological networks

literature. For example, the equations modeling adaptation found in Drossel et al. (2001)

and in Loeuille & Loreau (2005) follow a game–theoretical approach that does not use

di↵erential equations to describe the time evolution of trait values. Instead, they assume

an evolutionary stable equilibrium that has to be computed by solving an algebraic set

of equations. This is conceptually similar to have an infinite rate of adaptation in our

equations. For example, we could assign very large values to the Ki adaptations rates in

Eq. (32). This suggests that our test could be extended to a game–theoretical adaptation

model.

We address the problem of scale–invariance in models that consider time evolution.

That is, we study the addability issue during the transient phase, as we describe in Eq. (9).

This contrasts with the point of view in which only the stable asymptotic behavior of mod-

els matters. Such an approach may give misleading answers since many real ecosystems

exhibit long phases of transient, non-equilibrium ecological dynamics (Hastings et al.,

2018). Although Hastings et al. refer mainly to population abundance dynamics, we

could ask similar questions about trait value dynamics when there is adaptation. For

example, in Drossel et al. (2001) and in Loeuille & Loreau (2005), it is assumed that trait

values will reach equilibrium instantaneously when abundances are fixed. This is appro-

priate when trait values adaptation is much faster than changes in population abundance.

When describing behavioral adaptation, such as modifying preferences for prey, the as-

sumption is completely valid. However, if we consider genetic adaptation where the time

scales are at least as long as those in ecological dynamics (Mustonen & Lässig, 2009),
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then transient evolutionary dynamics may matter (Bisschop et al., 2019).

Promising research avenues include extensions of the test in several directions of par-

ticular interest. One of them is spatial heterogeneity that a↵ects trait and population

dynamics. This problem can be addressed assuming continuous or discrete space struc-

tures. An example of the former would be the growth of biofilms; for the later, we

have meta–ecosystem and classical metacommunity models. The case for single–species

metapopulations has been discussed in Kuang (2002). Another possible extension useful

in the context of studying the BEF would be the inclusion of age or stage structure.

Again, these can be discrete, continuous, or even a combination of both (Ramos-Jiliberto

et al., 2018). Note that for continuous space or age structure, the preferred approach

is to rely on partial di↵erential equations, which would require to develop a more in-

volved scale–invariance test. Another interesting aspect is considering network dynamics

(Ramos-Jiliberto et al., 2012). This topic is readily capturing the attention of ecologists

since recent empirical long-term records of ecological networks indicate a high interaction

turnover (Petanidou et al., 2008; CaraDonna et al., 2017; Chaco↵ et al., 2018). In models

considering additions/deletions of species and links, this could determine discontinuous

changes on the value of state variables, such as populations abundances or trait values.

For example, in a normalized system, if a predator reduces its diet breadth, the prefer-

ences for all the remaining preys in its diet must be renormalized. In such discrete events,

scale–invariance should also be preserved.

A future research challenge is finding criteria for developing proper theoretical models

that include the interplay among space heterogeneity, age/stage population structure,

and network dynamics. These issues are of paramount importance in epidemiological

dynamics in the framework of biodiversity–driven dilution/amplification e↵ects on disease

propagation (Civitello et al., 2015; Luis et al., 2018). This topic has been studied using

essentially the same models and techniques as we described here but without addressing
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scale–invariance (Du↵y & Collins, 2019). These advances could be an important step

toward a deeper understanding of the role of biodiversity in the stability and functioning

of ecosystems and social-ecological systems. If we intend to achieve robust predictions

about ecosystems and we admit the importance of mathematical modeling to achieve this

goal (Valdovinos, 2019), then ecologists must be especially careful when formulating new

models, and when interpreting model outcomes.
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Bastolla, U., Fortuna, M.A., Pascual-Garćıa, A., Ferrera, A., Luque, B. & Bascompte, J.

(2009). The architecture of mutualistic networks minimizes competition and increases

biodiversity. Nature, 458, 1018.

Berlow, E.L., Dunne, J.A., Martinez, N.D., Stark, P.B., Williams, R.J. & Brose, U.

30



(2009). Simple prediction of interaction strengths in complex food webs. Proceedings

of the National Academy of Sciences, 106, 187–191.

Bisschop, K., Mortier, F., Etienne, R. & Bonte, D. (2019). Transient local adaptation and

source–sink dynamics in experimental populations experiencing spatially heterogeneous

environments. Proceedings of the Royal Society B: Biological Sciences, 286, 20190738.

Brose, U., Williams, R.J. & Martinez, N.D. (2006). Allometric scaling enhances stability

in complex food webs. Ecology letters, 9, 1228–1236.

Cadotte, M.W. & Tucker, C.M. (2017). Should environmental filtering be abandoned?

Trends in ecology & evolution, 32, 429–437.

Calcagno, V., Jarne, P., Loreau, M., Mouquet, N. & David, P. (2017). Diversity spurs

diversification in ecological communities. Nature communications, 8, 1–9.

CaraDonna, P.J., Petry, W.K., Brennan, R.M., Cunningham, J.L., Bronstein, J.L., Waser,

N.M. & Sanders, N.J. (2017). Interaction rewiring and the rapid turnover of plant–

pollinator networks. Ecology letters, 20, 385–394.

Chaco↵, N.P., Resasco, J. & Vázquez, D.P. (2018). Interaction frequency, network posi-

tion, and the temporal persistence of interactions in a plant–pollinator network. Ecology,

99, 21–28.

Civitello, D.J., Cohen, J., Fatima, H., Halstead, N.T., Liriano, J., McMahon, T.A., Or-

tega, C.N., Sauer, E.L., Sehgal, T., Young, S. et al. (2015). Biodiversity inhibits par-

asites: broad evidence for the dilution e↵ect. Proceedings of the National Academy of

Sciences, 112, 8667–8671.

Cohen, J.E., Briand, F. & Newman, C.M. (2012). Community food webs: data and theory.

vol. 20. Springer Science & Business Media.

31



Drossel, B., Higgs, P.G. & McKane, A.J. (2001). The influence of predator–prey popula-

tion dynamics on the long-term evolution of food web structure. Journal of Theoretical

Biology, 208, 91–107.

Drossel, B., McKane, A.J. & Quince, C. (2004). The impact of nonlinear functional

responses on the long-term evolution of food web structure. Journal of Theoretical

Biology, 229, 539–548.

Du↵y, K.J. & Collins, O.C. (2019). Consumer-resource coexistence as a means of reducing

infectious disease. Journal of biological dynamics, 13, 177–191.

Elton, C.S. (1958). The ecology of invasions by animals and plants. University of Chicago

Press.

Gagic, V., Bartomeus, I., Jonsson, T., Taylor, A., Winqvist, C., Fischer, C., Slade, E.M.,

Ste↵an-Dewenter, I., Emmerson, M., Potts, S.G. et al. (2015). Functional identity and

diversity of animals predict ecosystem functioning better than species-based indices.

Proceedings of the Royal Society B: Biological Sciences, 282, 20142620.

Garcia-Domingo, J.L. & Saldana, J. (2007). Food-web complexity emerging from ecolog-

ical dynamics on adaptive networks. Journal of theoretical biology, 247, 819–826.

Garcia-Domingo, J.L. & Saldana, J. (2008). E↵ects of heterogeneous interaction strengths

on food web complexity. Oikos, 117, 336–343.

Gardner, M.R. & Ashby, W.R. (1970). Connectance of large dynamic (cybernetic) sys-

tems: critical values for stability. Nature, 228, 784–784.

Gonzalez, A., Germain, R.M., Srivastava, D.S., Filotas, E., Dee, L.E., Gravel, D., Thomp-
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Figure 1 The concept of scale–invariance. (A) The consumers (snails) are represented

by a single population of size x that feeds on a resource (plant) of population size y.

(B) The consumer population is artificially split into two separate variables, x1 and x2.

Bottom plots illustrate example trajectories of the resource and consumer populations.

In the plot of panel (B), the sum of variables x1 and x2 must equal the value of variable

x of panel (A), at every time.

Figure 2 Test for scale–invariance in ecological networks. Sequence of steps for conduct-

ing our scale–invariance test.

Figure 3 Sample simulations of Eq. (22). (A) Hill exponent h = 1, no normalization of

ĉ’s, no interspecific competition. (B) h = 1, no normalization, competition. (C) h = 1,

normalization, competition. (D) h = 2, no normalization, competition. Black lines with

green/red error areas show plant/herbivore persistences. Green/red lines with grey error

areas show plant/herbivore biomasses. Mean ± 95% confidence intervals are shown.
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Fig 1: In A, the consumers (snails) are represented by a single population of size x that feeds 
on a resource (plant) of population size y. In B, the consumer population is artificially split into 
two separate variables, x1 and x2. Bottom plots illustrate example trajectories of the resource 

and consumer populations. In the plot of B, the sum of variables x1 and x2 must equal the value 
of variable x at every time.
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