References
Andersson, N., Lofgren, A., Olofsson, M., Sellberg, A., Nilsson, B., &
Tiainen, P. (2017). Design and control of integrated chromatography
column sequences. Biotechnology Progress, 33 , 923-930.
doi:10.1002/btpr.2434
Arnold, L., Lee, K., Rucker‐Pezzini, J., & Lee, J. H. (2019).
Implementation of Fully Integrated Continuous Antibody Processing:
Effects on Productivity and COGm. Biotechnology Journal, 14 ,
1800061. doi:10.1002/biot.201800061
de Klerk, A. (2003). Voidage variation in packed beds at small column to
particle diameter ratio. AIChE Journal, 49 , 2022-2029.
doi:10.1002/aic.690490812
Dileo, M., Ley, A., Nixon, A. E., & Chen, J. (2017). Choices of capture
chromatography technology in antibody manufacturing processes.Journal of Chromatography B, 1068-1069 , 136-148.
doi:10.1016/j.jchromb.2017.09.050
Fisher, A. C., Kamga, M. H., Agarabi, C., Brorson, K., Lee, S. L., &
Yoon, S. (2019). The Current Scientific and Regulatory Landscape in
Advancing Integrated Continuous Biopharmaceutical Manufacturing.Trends in Biotechnology, 37 , 253-267.
doi:10.1016/j.tibtech.2018.08.008
Godawat, R., Brower, K., Jain, S., Konstantinov, K., Riske, F., &
Warikoo, V. (2012). Periodic counter-current chromatography – design
and operational considerations for integrated and continuous
purification of proteins. Biotechnology Journal, 7 , 1496-1508.
doi:10.1002/biot.201200068
Godawat, R., Konstantinov, K., Rohani, M., & Warikoo, V. (2015).
End-to-end integrated fully continuous production of recombinant
monoclonal antibodies. Journal of Biotechnology, 213 (Supplement
C), 13-19. doi:10.1016/j.jbiotec.2015.06.393
Gomis-Fons, J., Andersson, N., & Nilsson, B. (2020). Optimization study
on periodic counter-current chromatography integrated in a monoclonal
antibody downstream process. Journal of Chromatography A, 1621 ,
461055. doi:10.1016/j.chroma.2020.461055
Gomis-Fons, J., Löfgren, A., Andersson, N., Nilsson, B., Berghard, L.,
& Wood, S. (2019). Integration of a complete downstream process for the
automated lab-scale production of a recombinant protein. Journal
of Biotechnology, 301 , 45-51. doi:10.1016/j.jbiotec.2019.05.013
Gomis-Fons, J., Schwarz, H., Zhang, L., Andersson, N., Nilsson, B.,
Castan, A., . . . Chotteau, V. (2020). Model-based design and control of
a small-scale integrated continuous end-to-end mAb platform.Biotechnology Progress , 36, e2995. doi:10.1002/btpr.2995
Gronemeyer, P., Ditz, R., & Strube, J. (2014). Trends in Upstream and
Downstream Process Development for Antibody Manufacturing.Bioengineering (Basel), 1 , 188-212.
doi:10.3390/bioengineering1040188
Hammerschmidt, N., Tscheliessnig, A., Sommer, R., Helk, B., &
Jungbauer, A. (2014). Economics of recombinant antibody production
processes at various scales: Industry-standard compared to continuous
precipitation. Biotechnology Journal, 9 , 766-775.
doi:10.1002/biot.201300480
Juza, M., Mazzotti, M., & Morbidelli, M. (2000). Simulated moving-bed
chromatography and its application to chirotechnology. Trends in
Biotechnology, 18 , 108-118. doi:10.1016/S0167-7799(99)01419-5
Kamga, M.-H., Cattaneo, M., & Yoon, S. (2018). Integrated continuous
biomanufacturing platform with ATF perfusion and one column
chromatography operation for optimum resin utilization and productivity.Preparative Biochemistry and Biotechnology, 48 , 383-390.
doi:10.1080/10826068.2018.1446151
Karst, D. J., Steinebach, F., Soos, M., & Morbidelli, M. (2017).
Process performance and product quality in an integrated continuous
antibody production process. Biotechnology and Bioengineering,
114 , 298-307. doi:10.1002/bit.26069
Konstantinov, K. B., & Cooney, C. L. (2015). White Paper on Continuous
Bioprocessing May 20–21 2014 Continuous Manufacturing Symposium.Journal of Pharmaceutical Sciences, 104 , 813-820.
doi:10.1002/jps.24268
Löfgren, A., Andersson, N., Sellberg, A., Nilsson, B., Löfgren, M., &
Wood, S. (2018). Designing an Autonomous Integrated Downstream Sequence
From a Batch Separation Process − An Industrial Case Study.Biotechnology Journal, 13, 1700691.doi:10.1002/biot.201700691
Longman, R. W. (2000). Iterative learning control and repetitive control
for engineering practice. International Journal of Control, 73 ,
930-954. doi:10.1080/002071700405905
Martins, D. L., Sencar, J., Hammerschmidt, N., Tille, B., Kinderman, J.,
Kreil, T. R., & Jungbauer, A. (2019). Continuous Solvent/Detergent
Virus Inactivation Using a Packed-Bed Reactor. Biotechnology
Journal, 14 , 1800646. doi:10.1002/biot.201800646
Mendhe, R., Thukkaram, M., Patil, N., & Rathore, A. S. (2015).
Comparison of PAT based approaches for making real‐time pooling
decisions for process chromatography–use of feed forward control.Journal of Chemical Technology and Biotechnology, 90 , 341-348.
doi:10.1002/jctb.4448
Müller‐Späth, T., Aumann, L., Melter, L., Ströhlein, G., & Morbidelli,
M. (2008). Chromatographic separation of three monoclonal antibody
variants using multicolumn countercurrent solvent gradient purification
(MCSGP). Biotechnology and Bioengineering, 100 , 1166-1177.
doi:10.1002/jctb.4448
Nilsson, B., Andersson, N., Gomis-Fons, J., & Löfgren, A. (2017).Supervisory control of integrated continuous downstream
processes. Poster presented at the Integrated Continuous
Biomanufacturing III, Cascais, Portugal. Retrieved from
https://dc.engconfintl.org/biomanufact_iii/80
Ouyang, P. R., & Pipatpaibul, P. (2010). Iterative Learning
Control: A Comparison Study. Paper presented at the ASME 2010
International Mechanical Engineering Congress and Exposition, Vancouver,
British Columbia, Canada. doi:10.1115/IMECE2010-37161
Papathanasiou, M. M., & Kontoravdi, C. (2020). Engineering challenges
in therapeutic protein product and process design. Current Opinion
in Chemical Engineering, 27 , 81-88. doi:10.1016/j.coche.2019.11.010
Rathore, A. S., Agarwal, H., Sharma, A. K., Pathak, M. & Muthukumar, S.
(2015). Continuous processing for production of biopharmaceuticals.Preparative Biochemistry and Biotechnology, 45, 836-849.
doi:10.1080/10826068.2014.985834
Rathore, A. S., & Winkle, H. (2009). Quality by design for
biopharmaceuticals. Nature Biotechnology, 27 , 26-34.
doi:10.1038/nbt0109-26
Read, E., Park, J., Shah, R., Riley, B., Brorson, K., & Rathore, A.
(2010). Process analytical technology (PAT) for biopharmaceutical
products: Part I. Concepts and applications. Biotechnology and
Bioengineering, 105 , 276-284. doi:10.1002/bit.22528
Schügerl, K., & Hubbuch, J. (2005). Integrated bioprocesses.Current Opinion in Microbiology, 8 , 294-300.
doi:10.1016/j.mib.2005.01.002
Sonnleitner, B. (1997). Bioprocess automation and bioprocess design.Journal of Biotechnology, 52 , 175-179.
doi:10.1016/S0168-1656(96)01642-2
Steinebach, F., Ulmer, N., Wolf, M., Decker, L., Schneider, V., Wälchli,
R., . . . Morbidelli, M. (2017). Design and operation of a continuous
integrated monoclonal antibody production process. Biotechnology
Progress, 33 , 1303-1313. doi:10.1002/btpr.2522
Woodcock, J. (2014). Modernizing pharmaceutical
manufacturing–continuous manufacturing as a key enabler. Lecture
presented at the MIT-CMAC International Symposium on Continuous
Manufacturing of Pharmaceuticals, Cambridge, MA, USA. Retrieved from
https://iscmp2014.mit.edu/sites/default/files/documents/ISCMP2014_Keynote_Slides.pdf
Xu, J.-X., Heng Lee, T., & Zhang, H.-W. (2004). Analysis and comparison
of iterative learning control schemes. Engineering Applications of
Artificial Intelligence, 17 , 675-686.
doi:10.1016/j.engappai.2004.08.002
Xu, J.-X., & Tan, Y. (2002). Robust optimal design and convergence
properties analysis of iterative learning control approaches.Automatica, 38 , 1867-1880. doi:10.1016/S0005-1098(02)00143-7
Zydney, A. L. (2015). Perspectives on integrated continuous
bioprocessing—opportunities and challenges. Current Opinion in
Chemical Engineering, 10 (Supplement C), 8-13.
doi:10.1016/j.coche.2015.07.005