References
Balci, N., W.C. Shanks, B. Mayer, & K.W. Mandernack. 2007. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite. Geoch. Cosmch. Acta. 71 (15), pp. 3796–3811.
Bian, Y., S. Yan & H. Xu. 2014. Efficiency evaluation for regional urban water use and wastewater decontamination systems in China: A DEA approach. Resources, Conservation and Recycling 83,pp. 15-23.
Brenot, A., J. Carignan, C. France-Lanord & M. Benoît. 2007. Geological and land use control on δ34S and δ18O of river dissolved sulfate: The Moselle river basin, France. Chem. Geol. 244, pp. 25-41.
Calmels, D., J. Gaillardet, A. Brenot & C. France-Lanord. 2007. Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin: Climatic perspectives. Geol. 35, pp. 1003-1006.
Cao, X., P. Wu, S. Zhou, J. Sun & Z. Han. 2018. Tracing the origin and geochemical processes of dissolved sulphate in a karst-dominated wetland catchment using stable isotope indicators. J. Hydrol. 562, pp. 210-222.
Clark, I.D.& P. Fritz. 1997. Environmental Isotopes in Hydrogeology. Lewis Publishers, New York.
Du, W., Y. Fan, X. Liu, S.C. Park & X. Tang. 2019. A game-based production operation model for water resource management: An analysis of the South-to-North Water Transfer Project in China. J. Clean. Prod. 228, pp. 1482-1493.
Drzewicki, W., A. Trojanowska-Olichwer, M.O. Jędrysek, & S. Hałas. 2017. The variability of δ34S and sulfur speciation in sediments of the Sulejów dam reservoir (Central Poland). Geochem. 77, pp. 147-157.
Feng, J., F. Chen & H. Hu. 2017. Isotopic study of the source and cycle of sulfur in the Yamdrok Tso basin, Southern Tibet, China. Appl. Geochem. 85, pp. 61-72.
Goldberg, T., S. Poulton & H. Strauss. 2005. Sulphur and oxygen isotope signatures of late Neoproterozoic to early Cambrian sulphate, Yangtze Platform, China: Diagenetic constraints and seawater evolution. Precambrian Res. 137, pp. 223-241.
Gu, W., D. Shao & Y. Jiang. 2012. Risk Evaluation of Water Shortage in Source Area of Middle Route Project for South-to-North Water Transfer in China. Water Resour. Manag. 26, pp. 3479-3493.
Guo, Z., Q. Guo, S. Chen, B. Zhu, Y. Zhang, J. Yu & Z. Guo. 2019. Study on pollution behavior and sulfate formation during the typical haze event in Nanjing with water soluble inorganic ions and sulfur isotopes. Atmos. Res. 217, pp. 198-207.
He, S., K.W. Hipel & D.M. Kilgour. 2014. Water Diversion Conflicts in China: A Hierarchical Perspective. Water Resour. Manag. 28, pp. 1823-1837.
Hoefs, J. 2015. Stable Isotope Geochemistry, seventh ed. Springer, Heidelberg.
Hosono, T., R. Delinom, T. Nakano, M. Kagabu & J. Shimada. 2011. Evolution model of δ34S and δ18O in dissolved sulfate in volcanic fan aquifers from recharge to coastal zone and through the Jakarta urban area, Indonesia. Sci. Total Environ. 409, pp. 2541-2554.
Ingri, J., P. Torssander, P.S. Andersson, C.M. Morth & M. Kusakabem. 1997. Hydrogeochemistry of sulfur isotopes in the Kalix River catchment, northern Sweden. Appl. Geochem. 12(4), pp. 483–496.
Kampschulte, A., P. Bruckschen & H.Strauss. 2001. The sulphur isotopic composition of trace sulphates in Carboniferous brachiopods: implications for coeval seawater, correlation with other geochemical cycles and isotope stratigraphy. Chem. Geol. 175, pp. 165–189.
Karim A. & J. Vezier. 2000. Weathering processes in the Indus Basin: implications from riverine carbon, sulfur, oxygen and strontium isotopes. Chem. Geol. 170, pp. 153–177.
Killingsworth, B.A. & H. Bao. 2015. Significant Human Impact on the Flux and δ34 S of Sulfate from the Largest River in North America. Environ. Sci. Technol. 49, pp. 4851-4860.
Kim, D., S. Yun, S. Yoon & B. Mayer. 2019. Signature of oxygen and sulfur isotopes of sulfate in ground and surface water reflecting enhanced sulfide oxidation in mine areas. Appl. Geochem. 100, pp. 143-151.
Krouse, H.R. & B. Mayer. 2000. Sulfur and oxygen isotopes in sulfate. In: Cook, P.G., Herczeg, A.L. (Eds.), Environmental Trecers in Subsurface Hydrology. Kluwer, Boston, pp. 195-231 (Chapter 7).
Li, S., J. Li & Q. Zhang. 2011. Water quality assessment in the rivers along the water conveyance system of the middle route of the south to North water transfer project (China) using multivariate statistical techniques and receptor modeling. J. Hazard. Mater. 195, pp. 306-317.
Li, S., C. Liu, S. Patra, F. Wang, B. Wang & F. Yue. 2011. Using a dual isotopic approach to trace sources and mixing of sulphate in Changjiang Estuary, China. Appl. Geochem. 26, pp. S210-S213.
Li, X., Y. Gan, A. Zhou & Y. Liu. 2015. Relationship between water discharge and sulfate sources of the Yangtze River inferred from seasonal variations of sulfur and oxygen isotopic compositions. J. Geochem. Explor. 153, pp. 30-39.
Li, Y., W. Xiong, W. Zhang, C. Wang & P. Wang. 2016. Life cycle assessment of water supply alternatives in water-receiving areas of the South-to-North Water Diversion Project in China. Water Res. 89, pp. 9-19.
Liu, J. & W. Yang. 2012. Water sustainability for China and beyond. Science 337, pp. 649-650.
Liu, M., Q. Guo, C. Zhang, M. Zhu & J. Li. 2017. Sulfur Isotope Geochemistry Indicating the Source of Dissolved Sulfate in Gonghe Geothermal Waters, Northwestern China. Procedia Earth and Planetary Science 17, pp. 157-160.
Mayer, B., J.B. Shanley, S.W. Bailey & M.J. Mitchell. 2010. Identifying sources of stream water sulfate after a summer drought in the Sleepers River watershed ( Vermont,USA) using hydrological,chemical,and isotopic techniques. Appl. Geochem. 25(5), pp. 747-754.
Mo¨ rth C.M., P. Torssander, M. Kusakabe & H. Hultberg. 1999. Sulfur isotope values in a forested catchment over four years: evidence for oxidation and reduction processes. Biogechem. 44, pp. 51–71.
Nakano, T., I. Tayasu, E. Wada, A. Igeta, F. Hyodo & Y. Miura. 2005. Sulfur and strontium isotope geochemistry of tributary rivers of Lake Biwa: implications for human impact on the decadal change of lake water quality. Sci. Total Environ. 345, pp. 1-12.
Otero, N., A. Soler & À.Canals. 2008. Controls of δ34S and δ18O in dissolved sulphate: Learning from a detailed survey in the Llobregat River (Spain). Appl. Geochem. 23, pp. 1166-1185.
Ono, S., M.S. Sim & T. Bosak. 2014. Predictive isotope model connects microbes in culture and nature. Proc. Natl. Acad. Sci. U.S.A. 111, pp. 18102-18103.
Peng, Z., L. Zhang, J. Yin & H. Wang. 2018. Study of impact factors of willingness to pay regarding water reserve of South-to-North Water Diversion Project in Beijing based on Bayesian network model. J. Clean Prod. 184, pp. 569-578.
Qi, L.L. 2010. Study on main factors of tertiary salt mineral sediment in Shandong Province. Shandong University of Science and Technology, Shandong, China, (in Chinese).
Rivas, T., S. Pozo & M. Paz. 2014. Sulphur and oxygen isotope analysis to identify sources of sulphur in gypsum-rich black crusts developed on granites. Sci. Total Environ. pp. 482-483, 137-147.
Rock, L. & B. Mayer. 2009. Identifying the influence of geology, land use, and anthropogenic activities on riverine sulfate on a watershed scale by combining hydrometric, chemical and isotopic approaches. Chem. Geol. 262, pp. 121-130.
Schiff, S.L., J. Spoelstra, R.G. Semkin & D.S. Jeffries. 2005. Drought induced pulses of SO42− from a Canadian shield wetland: use of δ34S and δ18O in SO42− to determinesources of sulfur. Appl. Geochem. 20 (4), pp. 691–700.
Schlesinger, W.H., 2005. Biogeochemistry. vol. 8 Gulf Professional Publishing.
Spence, J. & K. Telmer. 2005. The role of sulfur in chemical weathering and atmospheric CO2 fluxes: Evidence from major ions, δ13CDIC, and δ34SSO4 in rivers of the Canadian Cordillera. Geochim. Cosmochim. Ac. 69, pp. 5441-5458.
State Council, 2012. Opinions on the Implementation of the Most Stringent. Water Resources Management, China.
Stam, M.C., P.R.D. Mason, C. Pallud & P. Van Cappellen. 2010. Sulfate reducing activity and sulfur isotope fractionation by natural microbial communities in sediments of a hypersaline soda lake (Mono Lake, California). Chem. Geol. 278(1-2), pp. 23-30.
Sun, J., T. Kobayashi, W.H.J. Strosnider & P.Wu. 2017. Stable sulfur and oxygen isotopes as geochemical tracers of sulfate in karst waters. J. Hydrol. 551, pp. 245-252.
Tian, C., H. Pei, W. Hu & J. Xie. 2012. Variation of cyanobacteria with different environmental conditions in Nansi Lake, China. J. Environ. Sci-China 24, pp. 1394-1402.
Tuttle, M.L.W., G.N. Breit & I.M. Cozzarelli. 2009. Processes affecting δ34S and δ18O values of dissolved sulfate in alluvium along the Canadian River, central Oklahoma, USA. Chem. Geol. 265, pp. 455-467.
Valiente, N., R. Carrey, N. Otero, M.A. Gutiérrez-Villanueva, A. Soler & D. Sanz. 2017. Tracing sulfate recycling in the hypersaline Pétrola Lake (SE Spain): A combined isotopic and microbiological approach. Chem. Geol. 473, pp. 74-89.
Wei, S., H. Yang, K. Abbaspour, J. Mousavi & A. Gnauck. 2010. Game theory based models to analyze water conflicts in the Middle Route of the South-to-North Water Transfer Project in China. Water Res. 44, pp. 2499-2516.
Xinchun, C., W. Mengyang, G. Xiangping, Z. Yalian, G. Yan, W. Nan & W. Weiguang. 2017. Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework. Sci. Total Environ. 609, pp. 587-597.
Yang, C., K. Telmer & J. Veizer. 1996. Chemical dynamics of the “St. Lawrence” riverine system: dDH2O, d18OH2O, d13CDIC, d34Ssulfate, and dissolved 87Sr/86Sr. Geochim. Cosmochim. Acta. 60, pp. 851–866.
Yang, H. & A. Zehnder. 2016. China’s Regional Water Scarcity and Implications for Grain Supply and Trade. Environment and Planning A: Economy and Space 33, pp.79-95.
Yang, Y.C, Z.L. Shen, D.G. Wen, G.C. Hou, H.Q. She & Z.H. Zhao. 2010. Distribution of δ34S and δ18O in SO42-in groundwater from the Ordos cretaceous ground-water basin and geological implications. Acta. Geologica. Sinica: English Edition. 84(2), pp. 432-440.
Yoon, J., Y. Huh, I. Lee, S. Moon, H. Noh & J. Qin. 2008. Weathering Processes in the Min Jiang:87Sr/86Sr, δ34SSO4, and δ18OSO4. Aquat. Geochem. 14, pp. 147-170.
Young, S.A., S.B. Cadieux, Y. Peng, J.R. White & L.M. Pratt. 2018. Seasonal changes in sulfur biogeochemistry of a dilute, dimictic Arctic lake: Implications for paired sulfur isotope records from ancient oceans. Chem. Geol. 495, pp. 118-130.
Yu, H., N. He, Q. Wang, J. Zhu, Y. Gao & Y. Zhang. 2017. Development of atmospheric acid deposition in China from the 1990s to the 2010s. Environ. Pollut. 231, pp. 182-190.
Yuan, F. & B. Mayer. 2012. Chemical and isotopic evaluation of sulfur sources and cycling in the Pecos River, New Mexico, USA. Chem. Geol. 291, pp. 13-22.
Zhang, C. & L.D. Anadon. 2014. A multi-regional input–output analysis of domestic virtual water trade and provincial water footprint in China. Ecol. Econ. 100, pp. 159-172.
Zhao, Z., J. Zuo & G. Zillante. 2017. Transformation of water resource management: a case study of the South-to-North Water Diversion project. J. Clean Prod. 163, pp. 136-145.
Zhou, J., Q. Zhang, F. Kang, Y. Zhang, L. Yuan, D. Wei & S. Lin. 2016. Using multi-isotopes (34S, 18O,2H) to track local contamination of the groundwater from Hongshan-Zhaili abandoned coal mine, Zibo city, Shandong province. Int. Biodeter Biodegr.128, pp. 48-55.
Zhuang, W., S.C. Ying, A.L. Frie, Q. Wang, J. Song & Y. Liu. 2019. Distribution, pollution status, and source apportionment of trace metals in lake sediments under the influence of the South-to-North Water Transfer Project, China. Sci. Total Environ. 671, pp. 108-118.