References
Balci, N., W.C. Shanks, B. Mayer, & K.W. Mandernack. 2007. Oxygen and
sulfur isotope systematics of sulfate produced by bacterial and abiotic
oxidation of pyrite. Geoch. Cosmch. Acta. 71 (15), pp. 3796–3811.
Bian, Y., S. Yan & H. Xu. 2014.
Efficiency
evaluation for regional urban water use and wastewater decontamination
systems in China: A DEA approach. Resources, Conservation and Recycling
83,pp. 15-23.
Brenot, A., J. Carignan, C. France-Lanord & M. Benoît. 2007. Geological
and land use control on δ34S and δ18O of river dissolved sulfate: The
Moselle river basin, France. Chem. Geol. 244, pp. 25-41.
Calmels, D., J. Gaillardet, A. Brenot & C. France-Lanord. 2007.
Sustained sulfide oxidation by physical erosion processes in the
Mackenzie River basin: Climatic perspectives. Geol. 35, pp. 1003-1006.
Cao, X., P. Wu, S. Zhou, J. Sun & Z. Han. 2018. Tracing the origin and
geochemical processes of dissolved sulphate in a karst-dominated wetland
catchment using stable isotope indicators. J. Hydrol. 562, pp. 210-222.
Clark, I.D.& P. Fritz. 1997. Environmental Isotopes in Hydrogeology.
Lewis Publishers, New York.
Du, W., Y. Fan, X. Liu, S.C. Park & X. Tang. 2019. A game-based
production operation model for water resource management: An analysis of
the South-to-North Water Transfer Project in China. J. Clean. Prod. 228,
pp. 1482-1493.
Drzewicki, W., A. Trojanowska-Olichwer, M.O. Jędrysek, & S. Hałas.
2017. The variability of δ34S and sulfur speciation in sediments of the
Sulejów dam reservoir (Central Poland). Geochem. 77, pp. 147-157.
Feng, J., F. Chen & H. Hu. 2017. Isotopic study of the source and cycle
of sulfur in the Yamdrok Tso basin, Southern Tibet, China. Appl.
Geochem. 85, pp. 61-72.
Goldberg, T., S. Poulton & H. Strauss. 2005. Sulphur and oxygen isotope
signatures of late Neoproterozoic to early Cambrian sulphate, Yangtze
Platform, China: Diagenetic constraints and seawater evolution.
Precambrian Res. 137, pp. 223-241.
Gu, W., D. Shao & Y. Jiang. 2012. Risk Evaluation of Water Shortage in
Source Area of Middle Route Project for South-to-North Water Transfer in
China. Water Resour. Manag. 26, pp. 3479-3493.
Guo, Z., Q. Guo, S. Chen, B. Zhu, Y. Zhang, J. Yu & Z. Guo. 2019. Study
on pollution behavior and sulfate formation during the typical haze
event in Nanjing with water soluble inorganic ions and sulfur isotopes.
Atmos. Res. 217, pp. 198-207.
He, S., K.W. Hipel & D.M. Kilgour. 2014. Water Diversion Conflicts in
China: A Hierarchical Perspective. Water Resour. Manag. 28, pp.
1823-1837.
Hoefs, J. 2015. Stable Isotope Geochemistry, seventh ed. Springer,
Heidelberg.
Hosono, T., R. Delinom, T. Nakano, M. Kagabu & J. Shimada. 2011.
Evolution model of δ34S and δ18O in dissolved sulfate in volcanic fan
aquifers from recharge to coastal zone and through the Jakarta urban
area, Indonesia. Sci. Total Environ. 409, pp. 2541-2554.
Ingri, J., P. Torssander, P.S. Andersson, C.M. Morth & M. Kusakabem.
1997. Hydrogeochemistry of sulfur isotopes in the Kalix River catchment,
northern Sweden. Appl. Geochem. 12(4), pp. 483–496.
Kampschulte, A., P. Bruckschen & H.Strauss. 2001. The sulphur isotopic
composition of trace sulphates in Carboniferous brachiopods:
implications for coeval seawater, correlation with other geochemical
cycles and isotope stratigraphy. Chem. Geol. 175, pp. 165–189.
Karim A. & J. Vezier. 2000. Weathering processes in the Indus Basin:
implications from riverine carbon, sulfur, oxygen and strontium
isotopes. Chem. Geol. 170, pp. 153–177.
Killingsworth, B.A. & H. Bao. 2015. Significant Human Impact on the
Flux and δ34 S of Sulfate from the Largest River in North America.
Environ. Sci. Technol. 49, pp. 4851-4860.
Kim, D., S. Yun, S. Yoon & B. Mayer. 2019. Signature of oxygen and
sulfur isotopes of sulfate in ground and surface water reflecting
enhanced sulfide oxidation in mine areas. Appl. Geochem. 100, pp.
143-151.
Krouse, H.R. & B. Mayer. 2000. Sulfur and oxygen isotopes in sulfate.
In: Cook, P.G., Herczeg, A.L. (Eds.), Environmental Trecers in
Subsurface Hydrology. Kluwer, Boston, pp. 195-231 (Chapter 7).
Li, S., J. Li & Q. Zhang. 2011. Water quality assessment in the rivers
along the water conveyance system of the middle route of the south to
North water transfer project (China) using multivariate statistical
techniques and receptor modeling. J. Hazard. Mater. 195, pp. 306-317.
Li, S., C. Liu, S. Patra, F. Wang, B. Wang & F. Yue. 2011. Using a dual
isotopic approach to trace sources and mixing of sulphate in Changjiang
Estuary, China. Appl. Geochem. 26, pp. S210-S213.
Li, X., Y. Gan, A. Zhou & Y. Liu. 2015. Relationship between water
discharge and sulfate sources of the Yangtze River inferred from
seasonal variations of sulfur and oxygen isotopic compositions. J.
Geochem. Explor. 153, pp. 30-39.
Li, Y., W. Xiong, W. Zhang, C. Wang & P. Wang. 2016. Life cycle
assessment of water supply alternatives in water-receiving areas of the
South-to-North Water Diversion Project in China. Water Res. 89, pp.
9-19.
Liu, J. & W. Yang. 2012. Water sustainability for China and beyond.
Science 337, pp. 649-650.
Liu, M., Q. Guo, C. Zhang, M. Zhu & J. Li. 2017. Sulfur Isotope
Geochemistry Indicating the Source of Dissolved Sulfate in Gonghe
Geothermal Waters, Northwestern China. Procedia Earth and Planetary
Science 17, pp. 157-160.
Mayer, B., J.B. Shanley, S.W. Bailey & M.J. Mitchell. 2010. Identifying
sources of stream water sulfate after a summer drought in the Sleepers
River watershed ( Vermont,USA) using hydrological,chemical,and
isotopic techniques. Appl. Geochem. 25(5), pp. 747-754.
Mo¨ rth C.M., P. Torssander, M. Kusakabe & H. Hultberg. 1999. Sulfur
isotope values in a forested catchment over four years: evidence for
oxidation and reduction processes. Biogechem. 44, pp. 51–71.
Nakano, T., I. Tayasu, E. Wada, A. Igeta, F. Hyodo & Y. Miura. 2005.
Sulfur and strontium isotope geochemistry of tributary rivers of Lake
Biwa: implications for human impact on the decadal change of lake water
quality. Sci. Total Environ. 345, pp. 1-12.
Otero, N., A. Soler & À.Canals. 2008. Controls of δ34S and δ18O in
dissolved sulphate: Learning from a detailed survey in the Llobregat
River (Spain). Appl. Geochem. 23, pp. 1166-1185.
Ono, S., M.S. Sim & T. Bosak. 2014. Predictive isotope model connects
microbes in culture and nature. Proc. Natl. Acad. Sci. U.S.A. 111, pp.
18102-18103.
Peng, Z., L. Zhang, J. Yin & H. Wang. 2018. Study of impact factors of
willingness to pay regarding water reserve of South-to-North Water
Diversion Project in Beijing based on Bayesian network model. J. Clean
Prod. 184, pp. 569-578.
Qi, L.L. 2010. Study on main factors of tertiary salt mineral sediment
in Shandong Province. Shandong University of Science and Technology,
Shandong, China, (in Chinese).
Rivas, T., S. Pozo & M. Paz. 2014. Sulphur and oxygen isotope analysis
to identify sources of sulphur in gypsum-rich black crusts developed on
granites. Sci. Total Environ. pp. 482-483, 137-147.
Rock, L. & B. Mayer. 2009. Identifying the influence of geology, land
use, and anthropogenic activities on riverine sulfate on a watershed
scale by combining hydrometric, chemical and isotopic approaches. Chem.
Geol. 262, pp. 121-130.
Schiff, S.L., J. Spoelstra, R.G. Semkin & D.S. Jeffries. 2005. Drought
induced pulses of SO42− from a
Canadian shield wetland: use of δ34S and
δ18O in SO42− to
determinesources of sulfur. Appl. Geochem. 20 (4), pp. 691–700.
Schlesinger, W.H., 2005. Biogeochemistry. vol. 8 Gulf Professional
Publishing.
Spence, J. & K. Telmer. 2005. The role of sulfur in chemical weathering
and atmospheric CO2 fluxes: Evidence from major ions, δ13CDIC, and
δ34SSO4 in rivers of the Canadian Cordillera. Geochim. Cosmochim. Ac.
69, pp. 5441-5458.
State Council, 2012. Opinions on the Implementation of the Most
Stringent. Water Resources Management, China.
Stam, M.C., P.R.D. Mason, C. Pallud & P. Van Cappellen. 2010. Sulfate
reducing activity and sulfur isotope fractionation by natural microbial
communities in sediments of a hypersaline soda lake (Mono Lake,
California). Chem. Geol. 278(1-2), pp. 23-30.
Sun, J., T. Kobayashi, W.H.J. Strosnider & P.Wu. 2017. Stable sulfur
and oxygen isotopes as geochemical tracers of sulfate in karst waters.
J. Hydrol. 551, pp. 245-252.
Tian, C., H. Pei, W. Hu & J. Xie. 2012. Variation of cyanobacteria with
different environmental conditions in Nansi Lake, China. J. Environ.
Sci-China 24, pp. 1394-1402.
Tuttle, M.L.W., G.N. Breit & I.M. Cozzarelli. 2009. Processes affecting
δ34S and δ18O values of dissolved sulfate in alluvium along the Canadian
River, central Oklahoma, USA. Chem. Geol. 265, pp. 455-467.
Valiente, N., R. Carrey, N. Otero, M.A. Gutiérrez-Villanueva, A. Soler
& D. Sanz. 2017. Tracing sulfate recycling in the hypersaline Pétrola
Lake (SE Spain): A combined isotopic and microbiological approach. Chem.
Geol. 473, pp. 74-89.
Wei, S., H. Yang, K. Abbaspour, J. Mousavi & A. Gnauck. 2010. Game
theory based models to analyze water conflicts in the Middle Route of
the South-to-North Water Transfer Project in China. Water Res. 44, pp.
2499-2516.
Xinchun, C., W. Mengyang, G. Xiangping, Z. Yalian, G. Yan, W. Nan & W.
Weiguang. 2017. Assessing water scarcity in agricultural production
system based on the generalized water resources and water footprint
framework. Sci. Total Environ. 609, pp. 587-597.
Yang, C., K. Telmer & J. Veizer. 1996. Chemical dynamics of the “St.
Lawrence” riverine system: dDH2O, d18OH2O, d13CDIC, d34Ssulfate, and
dissolved 87Sr/86Sr. Geochim. Cosmochim. Acta. 60, pp. 851–866.
Yang, H. & A. Zehnder. 2016. China’s Regional Water Scarcity and
Implications for Grain Supply and Trade. Environment and Planning A:
Economy and Space 33, pp.79-95.
Yang, Y.C, Z.L. Shen, D.G. Wen, G.C. Hou, H.Q. She & Z.H. Zhao. 2010.
Distribution of δ34S and δ18O in SO42-in groundwater from the Ordos
cretaceous ground-water basin and geological implications. Acta.
Geologica. Sinica: English Edition. 84(2), pp. 432-440.
Yoon, J., Y. Huh, I. Lee, S. Moon, H. Noh & J. Qin. 2008. Weathering
Processes in the Min Jiang:87Sr/86Sr,
δ34SSO4, and
δ18OSO4. Aquat. Geochem. 14, pp.
147-170.
Young, S.A., S.B. Cadieux, Y. Peng, J.R. White & L.M. Pratt. 2018.
Seasonal changes in sulfur biogeochemistry of a dilute, dimictic Arctic
lake: Implications for paired sulfur isotope records from ancient
oceans. Chem. Geol. 495, pp. 118-130.
Yu, H., N. He, Q. Wang, J. Zhu, Y. Gao & Y. Zhang. 2017. Development of
atmospheric acid deposition in China from the 1990s to the 2010s.
Environ. Pollut. 231, pp. 182-190.
Yuan, F. & B. Mayer. 2012. Chemical and isotopic evaluation of sulfur
sources and cycling in the Pecos River, New Mexico, USA. Chem. Geol.
291, pp. 13-22.
Zhang, C. & L.D. Anadon. 2014. A multi-regional input–output analysis
of domestic virtual water trade and provincial water footprint in China.
Ecol. Econ. 100, pp. 159-172.
Zhao, Z., J. Zuo & G. Zillante. 2017. Transformation of water resource
management: a case study of the South-to-North Water Diversion project.
J. Clean Prod. 163, pp. 136-145.
Zhou, J., Q. Zhang, F. Kang, Y. Zhang, L. Yuan, D. Wei & S. Lin. 2016.
Using multi-isotopes (34S, 18O,2H) to track local contamination of the groundwater
from Hongshan-Zhaili abandoned coal mine, Zibo city, Shandong province.
Int. Biodeter Biodegr.128, pp. 48-55.
Zhuang, W., S.C. Ying, A.L. Frie, Q. Wang, J. Song & Y. Liu. 2019.
Distribution, pollution status, and source apportionment of trace metals
in lake sediments under the influence of the South-to-North Water
Transfer Project, China. Sci. Total Environ. 671, pp. 108-118.