References
1. Espinoza J. Contemporary clinical applications of spatio-temporal image correlation in prenatal diagnosis. Curr Opin Obstet Gynecol. 2011;23(2):94-102.
2. Bennasar M, Martinez JM, Gomez O, et al. Intra- and interobserver repeatability of fetal cardiac examination using four-dimensional spatiotemporal image correlation in each trimester of pregnancy.Ultrasound Obstet Gynecol. 2010;35(3):318-323.
3. Espinoza J, Lee W, Comstock C, et al. Collaborative study on 4-dimensional echocardiography for the diagnosis of fetal heart defects: the COFEHD study. J Ultrasound Med. 2010;29(11):1573-1580.
4. Wanitpongpan P, Kanagawa T, Kinugasa Y, Kimura T. Spatio-temporal image correlation (STIC) used by general obstetricians is marginally clinically effective compared to 2D fetal echocardiography scanning by experts. Prenat Diagn. 2008;28(10):923-928.
5. Yagel S, Cohen SM, Rosenak D, et al. Added value of three-/four-dimensional ultrasound in offline analysis and diagnosis of congenital heart disease. Ultrasound Obstet Gynecol.2011;37(4):432-437.
6. Yeo L, Romero R. Fetal Intelligent Navigation Echocardiography (FINE): a novel method for rapid, simple, and automatic examination of the fetal heart. Ultrasound Obstet Gynecol. 2013;42(3):268-284.
7. Devore GR. The use of Z-scores in the analysis of fetal cardiac dimensions. Ultrasound Obstet Gynecol. 2005;26(6):596-598.
8. Schneider C, McCrindle BW, Carvalho JS, Hornberger LK, McCarthy KP, Daubeney PE. Development of Z-scores for fetal cardiac dimensions from echocardiography. Ultrasound Obstet Gynecol. 2005;26(6):599-605.
9. Gabbay-Benziv R, Turan OM, Harman C, Turan S. Nomograms for Fetal Cardiac Ventricular Width and Right-to-Left Ventricular Ratio. J Ultrasound Med. 2015;34(11):2049-2055.
10. Krishnan A, Pike JI, McCarter R, et al. Predictive Models for Normal Fetal Cardiac Structures. J Am Soc Echocardiogr.2016;29(12):1197-1206.
11. Shapiro I, Degani S, Leibovitz Z, Ohel G, Tal Y, Abinader EG. Fetal cardiac measurements derived by transvaginal and transabdominal cross-sectional echocardiography from 14 weeks of gestation to term.Ultrasound Obstet Gynecol. 1998;12(6):404-418.
12. Cantinotti M, Scalese M, Giordano R, et al. Limitations of Current Fetal Echocardiography Nomograms for 2D Measures: A Critical Overview and Analysis for Future Research. J Am Soc Echocardiogr.2018;31(12):1368-1372 e1310.
13. DeVore GR, Klas B, Satou G, Sklansky M. Evaluation of the right and left ventricles: An integrated approach measuring the area, length, and width of the chambers in normal fetuses. Prenat Diagn.2017;37(12):1203-1212.
14. Edwards LA, Arunamata A, Maskatia SA, et al. Fetal Echocardiographic Parameters and Surgical Outcomes in Congenital Left-Sided Cardiac Lesions. Pediatr Cardiol. 2019;40(6):1304-1313.
15. Zhou J, Zhou Q, Zhang M, Zeng S, Peng Q, Tian L. Echocardiographic follow-up and pregnancy outcome of fetuses with cardiac asymmetry at 18-22 weeks of gestation. Prenat Diagn. 2014;34(9):900-907.
16. AIUM Practice Parameter for the Performance of Fetal Echocardiography. J Ultrasound Med. 2020;39(1):E5-e16.
17. International Society of Ultrasound in Obstetrics and Gynecology, Carvalho JS, Allan LD, et al. ISUOG Practice Guidelines (updated): sonographic screening examination of the fetal heart. Ultrasound Obstet Gynecol. 2013;41(3):348-359.
18. Gagnon C, Bigras JL, Fouron JC, Dallaire F. Reference Values and Z Scores for Pulsed-Wave Doppler and M-Mode Measurements in Fetal Echocardiography. J Am Soc Echocardiogr. 2016;29(5):448-460 e449.
19. Arya B, Bhat A, Vernon M, Conwell J, Lewin M. Utility of novel fetal echocardiographic morphometric measures of the aortic arch in the diagnosis of neonatal coarctation of the aorta. Prenat Diagn.2016;36(2):127-134.
20. Adriaanse BM, van Vugt JM, Haak MC. Three- and four-dimensional ultrasound in fetal echocardiography: an up-to-date overview. J Perinatol. 2016;36(9):685-693.
21. Yeo L, Romero R. New and advanced features of fetal intelligent navigation echocardiography (FINE) or 5D heart. J Matern Fetal Neonatal Med. 2020:1-19.
22. Bravo-Valenzuela NJ, Peixoto AB, Carrilho MC, et al. Fetal cardiac function by three-dimensional ultrasound using 4D-STIC and VOCAL - an update. J Ultrason. 2019;19(79):287-294.
23. Wang N, Xie HN, Peng R, Zheng J, Zhu YX. Accuracy, agreement, and reliability of fetal cardiac measurements using 4-dimensional spatiotemporal image correlation. J Ultrasound Med.2012;31(11):1719-1726.
24. Gembicki M, Hartge DR, Dracopoulos C, Weichert J. Semiautomatic Fetal Intelligent Navigation Echocardiography Has the Potential to Aid Cardiac Evaluations Even in Less Experienced Hands. J Ultrasound Med. 2020;39(2):301-309.
25. Ho SY. Anatomy and myoarchitecture of the left ventricular wall in normal and in disease. Eur J Echocardiogr. 2009;10(8):iii3-7.
26. Sengupta PP, Korinek J, Belohlavek M, et al. Left ventricular structure and function: basic science for cardiac imaging. J Am Coll Cardiol. 2006;48(10):1988-2001.
27. Junno J, Bruun E, Gutierrez JH, et al. Fetal sheep left ventricle is more sensitive than right ventricle to progressively worsening hypoxemia and acidemia. Eur J Obstet Gynecol Reprod Biol.2013;167(2):137-141.
28. Kailin JA, Santos AB, Yilmaz Furtun B, Sexson Tejtel SK, Lantin-Hermoso R. Isolated coarctation of the aorta in the fetus: A diagnostic challenge. Echocardiography. 2017;34(12):1768-1775.
29. Morgagni G. de Morbis Thoracis, Epistola XVIII. In: De sedibus et causis morborum. Venetia; 1761:162.
30. Meckel A. Verschliessung der Aorta am vierten Brustwirbel. In: Meckel JF, ed. Archiv für Anatomie und Physiologie. Leopold Voss, Leipzig; 1827:345.
31. Jarcho S. Coarctation of the aorta (Albrecht Meckel, 1827). Am J Cardiol. 1962;9:307-311.
32. Yokoyama U, Ichikawa Y, Minamisawa S, Ishikawa Y. Pathology and molecular mechanisms of coarctation of the aorta and its association with the ductus arteriosus. J Physiol Sci. 2017;67(2):259-270.
33. Bahado-Singh R, Vishweswaraiah S, Sayed NM, et al. Deep learning/artificial intelligence and the epigenomic prediction of coarctation of the aorta. Am J Obstet Gynecol. 2019;220(1):S50.
34. Beattie M, Peyvandi S, Ganesan S, Moon-Grady A. Toward Improving the Fetal Diagnosis of Coarctation of the Aorta. Pediatr Cardiol.2017;38(2):344-352.
35. Axt-Fliedner R, Hartge D, Krapp M, et al. Course and outcome of fetuses suspected of having coarctation of the aorta during gestation.Ultraschall Med. 2009;30(3):269-276.
36. Hornberger LK, Sahn DJ, Kleinman CS, Copel J, Silverman NH. Antenatal diagnosis of coarctation of the aorta: a multicenter experience. J Am Coll Cardiol. 1994;23(2):417-423.
37. Yeo L, Romero R. Color and power Doppler combined with Fetal Intelligent Navigation Echocardiography (FINE) to evaluate the fetal heart. Ultrasound Obstet Gynecol. 2017;50(4):476-491.
38. Sivanandam S, Nyholm J, Wey A, Bass JL. Right Ventricular Enlargement In Utero: Is It Coarctation? Pediatr Cardiol.2015;36(7):1376-1381.
39. Toole BJ, Schlosser B, McCracken CE, Stauffer N, Border WL, Sachdeva R. Importance of Relationship between Ductus and Isthmus in Fetal Diagnosis of Coarctation of Aorta. Echocardiography.2016;33(5):771-777.
40. Vigneswaran TV, Bellsham-Revell HR, Chubb H, Simpson JM. Early Postnatal Echocardiography in Neonates with a Prenatal Suspicion of Coarctation of the Aorta. Pediatr Cardiol. 2020;41(4):772-780.
41. DeVore GR, Jone PN, Satou G, Sklansky M, Cuneo BF. Aortic Coarctation: A Comprehensive Analysis of Shape, Size, and Contractility of the Fetal Heart. Fetal Diagn Ther. 2020;47(5):429-439.
42. Familiari A, Morlando M, Khalil A, et al. Risk Factors for Coarctation of the Aorta on Prenatal Ultrasound: A Systematic Review and Meta-Analysis. Circulation. 2017;135(8):772-785.
43. Crispi F, Sepulveda-Martinez A, Crovetto F, Gomez O, Bijnens B, Gratacos E. Main Patterns of Fetal Cardiac Remodeling. Fetal Diagn Ther. 2020;47(5):337-344.
44. Morgan CT, Mueller B, Thakur V, et al. Improving Prenatal Diagnosis of Coarctation of the Aorta. Can J Cardiol. 2019;35(4):453-461.
45. Torok RD, Campbell MJ, Fleming GA, Hill KD. Coarctation of the aorta: Management from infancy to adulthood. World J Cardiol.2015;7(11):765-775.
46. Riviere L. Observatio XXI, Cordis palpitatio & pulsus inaequalitas. In: Opera Medica Universa. Cellier, A; 1659:177-178.
47. Freud LR, Moon-Grady A, Escobar-Diaz MC, et al. Low rate of prenatal diagnosis among neonates with critical aortic stenosis: insight into the natural history in utero. Ultrasound Obstet Gynecol.2015;45(3):326-332.
48. Picazo-Angelin B, Zabala-Arguelles JI, Anderson RH, Sanchez-Quintana D. Anatomy of the normal fetal heart: The basis for understanding fetal echocardiography. Ann Pediatr Cardiol. 2018;11(2):164-173.
49. Friedman KG, Schidlow D, Freud L, Escobar-Diaz M, Tworetzky W. Left ventricular diastolic function and characteristics in fetal aortic stenosis. Am J Cardiol. 2014;114(1):122-127.
50. Freed MD. Aortic Stenosis. In: Emmanouilides GC AH, Riemenschneider TD, Gutgesell HP, ed. Moss and Adams’ Heart Disease in Infants, Children, and Adolescents. Lippincott Williams & Wilkins; 2008:557-567.
51. Axt-Fliedner R, Kreiselmaier P, Schwarze A, Krapp M, Gembruch U. Development of hypoplastic left heart syndrome after diagnosis of aortic stenosis in the first trimester by early echocardiography.Ultrasound Obstet Gynecol. 2006;28(1):106-109.
52. Gardiner HM, Kovacevic A, Tulzer G, et al. Natural history of 107 cases of fetal aortic stenosis from a European multicenter retrospective study. Ultrasound Obstet Gynecol. 2016;48(3):373-381.
53. Freedom R. M. BMD, Benson L. N. Hypoplastic Left Heart Syndrome. In: Emmanouilides GC AH, Riemenschneider TD, Gutgesell HP, ed. Moss and Adams’ Heart Disease in Infants, Children, and Adolescents.Lippincott Williams & Wilkins; 2008:580-589.
54. Vogel M, McElhinney DB, Wilkins-Haug LE, et al. Aortic stenosis and severe mitral regurgitation in the fetus resulting in giant left atrium and hydrops: pathophysiology, outcomes, and preliminary experience with pre-natal cardiac intervention. J Am Coll Cardiol.2011;57(3):348-355.
55. Fukunishi T, Miyaji K, Miyamoto T, Inoue N, Kitamura T. Aortic atresia with transposition of the great arteries. Gen Thorac Cardiovasc Surg. 2020.
56. Axt-Fliedner R, Enzensberger C, Fass N, et al. Fetal diagnosis of hypoplastic left heart, associations and outcomes in the current era.Ultraschall Med. 2012;33(7):E51-E56.
57. Gehrmann J, Krasemann T, Kehl HG, Vogt J. Hypoplastic left-heart syndrome: the first description of the pathophysiology in 1851; translation of a publication by Dr. Bardeleben from Giessen, Germany.Chest. 2001;120(4):1368-1371.
58. von Bardeleben K. Verschluss des linken ostium arteriosum in dem Herzen eines halbjährigen Kindes. Archiv für pathologische Anatomie und Physiologie und für klinische Medicin. 1851;III.
59. Opitz JM, Carey JC. Why is the construction: Hypoplastic left heart ”syndrome” a misnomer? And: What is a syndrome, anyhow? Am J Med Genet A. 2011;155A(2):360-362.
60. Dewan S, Krishnamurthy A, Kole D, et al. Model of Human Fetal Growth in Hypoplastic Left Heart Syndrome: Reduced Ventricular Growth Due to Decreased Ventricular Filling and Altered Shape. Front Pediatr.2017;5:25.
61. Stephens EH, Gupta D, Bleiweis M, Backer CL, Anderson RH, Spicer DE. Pathologic Characteristics of 119 Archived Specimens Showing the Phenotypic Features of Hypoplastic Left Heart Syndrome. Semin Thorac Cardiovasc Surg. 2020.
62. Grossfeld P, Nie S, Lin L, Wang L, Anderson RH. Hypoplastic Left Heart Syndrome: A New Paradigm for an Old Disease? J Cardiovasc Dev Dis. 2019;6(1).
63. Crucean A, Alqahtani A, Barron DJ, et al. Re-evaluation of hypoplastic left heart syndrome from a developmental and morphological perspective. Orphanet J Rare Dis. 2017;12(1):138.
64. Jadczak A, Respondek-Liberska M, Sokolowski L, et al. Hypoplastic left heart syndrome with prenatally diagnosed foramen ovale restriction: diagnosis, management and outcome. J Matern Fetal Neonatal Med.2020:1-8.
65. Graupner O, Enzensberger C, Axt-Fliedner R. New Aspects in the Diagnosis and Therapy of Fetal Hypoplastic Left Heart Syndrome.Geburtshilfe Frauenheilkd. 2019;79(8):863-872.
66. Thakur V, Munk N, Mertens L, Nield LE. Does prenatal diagnosis of hypoplastic left heart syndrome make a difference? - A systematic review. Prenat Diagn. 2016;36(9):854-863.
67. Richards B, Freel L, Stiver C, Texter K, Cua CL. Serial fetal echocardiograms in hypoplastic left heart syndrome fetuses: Does it affect immediate post-natal care? Int J Cardiol. 2020;301:80-84.
68. Tham EB, Wald R, McElhinney DB, et al. Outcome of fetuses and infants with double inlet single left ventricle. Am J Cardiol.2008;101(11):1652-1656.
69. Wolter A, Nosbusch S, Kawecki A, et al. Prenatal diagnosis of functionally univentricular heart, associations and perinatal outcomes.Prenat Diagn. 2016;36(6):545-554.
70. Holmes AF. Case of malformation of the heart. Edinburgh Trans Medico-Chir Soc. 1824;1:252–254.
71. de la Cruz MV, Miller BL. Double-Inlet Left Ventricle. Two Pathological Specimens with Comments on the Embryology alid on Its Relation to Single Ventricle. Circulation. 1968;37(2):249–260.
72. Abbott ME. Unique case of malformation of the heart? Defect of the interventricular septum; rudimentary right ventricle; patent foramen ovale; great dilatation of right auricle and right auricular appendix.Montreal Med J. 1901;30:522–532.
73. Van Praagh R, Van Praagh S, Vlad P, Keith JD. Diagnosis of the Anatomic Types of Single or Common Ventricle. Am J Cardiol.1965;15:345-366.
74. Anderson RH, Franklin RCG, Spicer DE. Anatomy of the Functionally Univentricular Heart. World J Pediatr Congenit Heart Surg.2018;9(6):677-684.
75. Hagler D. J. EWD. Univentricular atrioventricular connection. In: Emmanouilides GC AH, Riemenschneider TD, Gutgesell HP, ed. Moss and Adams’ Heart Disease in Infants, Children, and Adolescents. 7th ed.: Lippincott Williams & Wilkins; 2008:1128–1149.
76. Uemura H, Ho SY, Adachi I, Yagihara T. Morphologic spectrum of ventriculoarterial connection in hearts with double inlet left ventricle: implications for surgical procedures. Ann Thorac Surg.2008;86(4):1321-1327.
77. Weichert J, Axt-Fliedner R, Gembruch U, Hartge DR. Holmes heart–a simple antenatal diagnosis of a complex cardiac anomaly? Fetal echocardiographic findings and review. Congenit Heart Dis.2013;8(6):579-584.
78. Saleeb SF, Juraszek A, Geva T. Anatomic, imaging, and clinical characteristics of double-inlet, double-outlet right ventricle. Am J Cardiol. 2010;105(4):542-549.
79. Meyer SL, Jongbloed MR, Ho SY, et al. Intracardiac anatomical relationships and potential for streaming in double inlet left ventricles. PLoS One. 2017;12(11):e0188048.
80. Vyas H, Hagler DJ. Double inlet left ventricle. Curr Treat Options Cardiovasc Med. 2007;9(5):391-398.
81. Lytzen R, Vejlstrup N, Bjerre J, et al. The accuracy of prenatal diagnosis of major congenital heart disease is increasing. J Obstet Gynaecol. 2020;40(3):308-315.
82. Lytzen R, Vejlstrup N, Bjerre J, et al. Live-Born Major Congenital Heart Disease in Denmark: Incidence, Detection Rate, and Termination of Pregnancy Rate From 1996 to 2013. JAMA Cardiol.2018;3(9):829-837.
83. Bakker MK, Bergman JEH, Krikov S, et al. Prenatal diagnosis and prevalence of critical congenital heart defects: an international retrospective cohort study. BMJ Open. 2019;9(7):e028139.
84. Vincenti M, Guillaumont S, Clarivet B, et al. Prognosis of severe congenital heart diseases: Do we overestimate the impact of prenatal diagnosis? Arch Cardiovasc Dis. 2019;112(4):261-269.
85. Cloete E, Bloomfield FH, Sadler L, de Laat MWM, Finucane AK, Gentles TL. Antenatal Detection of Treatable Critical Congenital Heart Disease Is Associated with Lower Morbidity and Mortality. J Pediatr.2019;204:66-70.
86. Khoshnood B, Lelong N, Houyel L, et al. Impact of prenatal diagnosis on survival of newborns with four congenital heart defects: a prospective, population-based cohort study in France (the EPICARD Study). BMJ Open. 2017;7(11):e018285.
87. Seguela PE, Thomas J, Thambo JB. Letter in response to the article entitled ”Prognosis of severe congenital heart diseases: Do we overestimate the impact of prenatal diagnosis?” by Vincenti et al.Arch Cardiovasc Dis. 2019;112(5):363-364.
88. Thakur V, Dutil N, Schwartz SM, Jaeggi E. Impact of prenatal diagnosis on the management and early outcome of critical duct-dependent cardiac lesions. Cardiol Young. 2018;28(4):548-553.
89. Lin AE, Santoro S, High FA, Goldenberg P, Gutmark-Little I. Congenital heart defects associated with aneuploidy syndromes: New insights into familiar associations. Am J Med Genet C Semin Med Genet. 2020;184(1):53-63.
90. van Nisselrooij AEL, Teunissen AKK, Clur SA, et al. Why are congenital heart defects being missed? Ultrasound Obstet Gynecol.2020;55(6):747-757.
91. Bak GS, Shaffer BL, Madriago E, et al. Detection of fetal cardiac anomalies: cost-effectiveness of increased number of cardiac views.Ultrasound Obstet Gynecol. 2020;55(6):758-767.
92. Liu H, Zhou J, Feng QL, et al. Fetal echocardiography for congenital heart disease diagnosis: a meta-analysis, power analysis and missing data analysis. Eur J Prev Cardiol. 2015;22(12):1531-1547.
93. Pinto NM, Henry KA, Grobman WA, et al. Physician Barriers and Facilitators for Screening for Congenital Heart Disease With Routine Obstetric Ultrasound: A National United States Survey. J Ultrasound Med. 2020;39(6):1143-1153.
94. Kusanovic JP, Nien JK, Goncalves LF, et al. The use of inversion mode and 3D manual segmentation in volume measurement of fetal fluid-filled structures: comparison with Virtual Organ Computer-aided AnaLysis (VOCAL). Ultrasound Obstet Gynecol. 2008;31(2):177-186.
95. Simioni C, Nardozza LM, Araujo Junior E, et al. Heart stroke volume, cardiac output, and ejection fraction in 265 normal fetus in the second half of gestation assessed by 4D ultrasound using spatio-temporal image correlation. J Matern Fetal Neonatal Med. 2011;24(9):1159-1167.
96. Rizzo G, Capponi A, Pietrolucci ME, Arduini D. Role of sonographic automatic volume calculation in measuring fetal cardiac ventricular volumes using 4-dimensional sonography: comparison with virtual organ computer-aided analysis. J Ultrasound Med. 2010;29(2):261-270.
97. Messing B, Gilboa Y, Lipschuetz M, Valsky DV, Cohen SM, Yagel S. Fetal tricuspid annular plane systolic excursion (f-TAPSE): evaluation of fetal right heart systolic function with conventional M-mode ultrasound and spatiotemporal image correlation (STIC) M-mode.Ultrasound Obstet Gynecol. 2013;42(2):182-188.
98. Bravo-Valenzuela NJ, Peixoto AB, Mattar R, Melo Junior JF, da Silva Pares DB, Araujo Junior E. Fetal Cardiac Function and Ventricular Volumes Determined by Three-Dimensional Ultrasound Using STIC and VOCAL Methods in Fetuses from Pre-gestational Diabetic Women. Pediatr Cardiol. 2020.
99. Melo Junior JF, Bravo-Valenzuela NJ, Nardozza LMM, et al. References Values of Fetal Heart Myocardial Volume by Three-Dimensional Ultrasound using Spatiotemporal Image Correlation and Virtual Organ Computer-Aided Analysis Methods and Their Applicability in Pregestational Diabetic Women. Am J Perinatol. 2019.
100. Tanis JC, Mohammed N, Bennasar M, et al. Online versus offline spatiotemporal image correlation (STIC) M-mode for the evaluation of cardiac longitudinal annular displacement in fetal growth restriction.J Matern Fetal Neonatal Med. 2018;31(14):1845-1850.
101. Tedesco GD, de Souza Bezerra M, Barros FS, et al. Reference Ranges of Fetal Cardiac Biometric Parameters Using Three-Dimensional Ultrasound with Spatiotemporal Image Correlation M Mode and Their Applicability in Congenital Heart Diseases. Pediatr Cardiol. 2017;38(2):271-279.
102. Guasina F, Bellussi F, Morganelli G, Salsi G, Pilu G, Simonazzi G. Electronic spatiotemporal image correlation improves four-dimensional fetal echocardiography. Ultrasound Obstet Gynecol.2018;51(3):357-360.
103. Shih JC, Shyu MK, Su YN, Chiang YC, Lin CH, Lee CN. ’Big-eyed frog’ sign on spatiotemporal image correlation (STIC) in the antenatal diagnosis of transposition of the great arteries. Ultrasound Obstet Gynecol. 2008;32(6):762-768.