References
1. Espinoza J. Contemporary clinical applications of spatio-temporal
image correlation in prenatal diagnosis. Curr Opin Obstet
Gynecol. 2011;23(2):94-102.
2. Bennasar M, Martinez JM, Gomez O, et al. Intra- and interobserver
repeatability of fetal cardiac examination using four-dimensional
spatiotemporal image correlation in each trimester of pregnancy.Ultrasound Obstet Gynecol. 2010;35(3):318-323.
3. Espinoza J, Lee W, Comstock C, et al. Collaborative study on
4-dimensional echocardiography for the diagnosis of fetal heart defects:
the COFEHD study. J Ultrasound Med. 2010;29(11):1573-1580.
4. Wanitpongpan P, Kanagawa T, Kinugasa Y, Kimura T. Spatio-temporal
image correlation (STIC) used by general obstetricians is marginally
clinically effective compared to 2D fetal echocardiography scanning by
experts. Prenat Diagn. 2008;28(10):923-928.
5. Yagel S, Cohen SM, Rosenak D, et al. Added value of
three-/four-dimensional ultrasound in offline analysis and diagnosis of
congenital heart disease. Ultrasound Obstet Gynecol.2011;37(4):432-437.
6. Yeo L, Romero R. Fetal Intelligent Navigation Echocardiography
(FINE): a novel method for rapid, simple, and automatic examination of
the fetal heart. Ultrasound Obstet Gynecol. 2013;42(3):268-284.
7. Devore GR. The use of Z-scores in the analysis of fetal cardiac
dimensions. Ultrasound Obstet Gynecol. 2005;26(6):596-598.
8. Schneider C, McCrindle BW, Carvalho JS, Hornberger LK, McCarthy KP,
Daubeney PE. Development of Z-scores for fetal cardiac dimensions from
echocardiography. Ultrasound Obstet Gynecol. 2005;26(6):599-605.
9. Gabbay-Benziv R, Turan OM, Harman C, Turan S. Nomograms for Fetal
Cardiac Ventricular Width and Right-to-Left Ventricular Ratio. J
Ultrasound Med. 2015;34(11):2049-2055.
10. Krishnan A, Pike JI, McCarter R, et al. Predictive Models for Normal
Fetal Cardiac Structures. J Am Soc Echocardiogr.2016;29(12):1197-1206.
11. Shapiro I, Degani S, Leibovitz Z, Ohel G, Tal Y, Abinader EG. Fetal
cardiac measurements derived by transvaginal and transabdominal
cross-sectional echocardiography from 14 weeks of gestation to term.Ultrasound Obstet Gynecol. 1998;12(6):404-418.
12. Cantinotti M, Scalese M, Giordano R, et al. Limitations of Current
Fetal Echocardiography Nomograms for 2D Measures: A Critical Overview
and Analysis for Future Research. J Am Soc Echocardiogr.2018;31(12):1368-1372 e1310.
13. DeVore GR, Klas B, Satou G, Sklansky M. Evaluation of the right and
left ventricles: An integrated approach measuring the area, length, and
width of the chambers in normal fetuses. Prenat Diagn.2017;37(12):1203-1212.
14. Edwards LA, Arunamata A, Maskatia SA, et al. Fetal Echocardiographic
Parameters and Surgical Outcomes in Congenital Left-Sided Cardiac
Lesions. Pediatr Cardiol. 2019;40(6):1304-1313.
15. Zhou J, Zhou Q, Zhang M, Zeng S, Peng Q, Tian L. Echocardiographic
follow-up and pregnancy outcome of fetuses with cardiac asymmetry at
18-22 weeks of gestation. Prenat Diagn. 2014;34(9):900-907.
16. AIUM Practice Parameter for the Performance of Fetal
Echocardiography. J Ultrasound Med. 2020;39(1):E5-e16.
17. International Society of Ultrasound in Obstetrics and Gynecology,
Carvalho JS, Allan LD, et al. ISUOG Practice Guidelines (updated):
sonographic screening examination of the fetal heart. Ultrasound
Obstet Gynecol. 2013;41(3):348-359.
18. Gagnon C, Bigras JL, Fouron JC, Dallaire F. Reference Values and Z
Scores for Pulsed-Wave Doppler and M-Mode Measurements in Fetal
Echocardiography. J Am Soc Echocardiogr. 2016;29(5):448-460 e449.
19. Arya B, Bhat A, Vernon M, Conwell J, Lewin M. Utility of novel fetal
echocardiographic morphometric measures of the aortic arch in the
diagnosis of neonatal coarctation of the aorta. Prenat Diagn.2016;36(2):127-134.
20. Adriaanse BM, van Vugt JM, Haak MC. Three- and four-dimensional
ultrasound in fetal echocardiography: an up-to-date overview. J
Perinatol. 2016;36(9):685-693.
21. Yeo L, Romero R. New and advanced features of fetal intelligent
navigation echocardiography (FINE) or 5D heart. J Matern Fetal
Neonatal Med. 2020:1-19.
22. Bravo-Valenzuela NJ, Peixoto AB, Carrilho MC, et al. Fetal cardiac
function by three-dimensional ultrasound using 4D-STIC and VOCAL - an
update. J Ultrason. 2019;19(79):287-294.
23. Wang N, Xie HN, Peng R, Zheng J, Zhu YX. Accuracy, agreement, and
reliability of fetal cardiac measurements using 4-dimensional
spatiotemporal image correlation. J Ultrasound Med.2012;31(11):1719-1726.
24. Gembicki M, Hartge DR, Dracopoulos C, Weichert J. Semiautomatic
Fetal Intelligent Navigation Echocardiography Has the Potential to Aid
Cardiac Evaluations Even in Less Experienced Hands. J Ultrasound
Med. 2020;39(2):301-309.
25. Ho SY. Anatomy and myoarchitecture of the left ventricular wall in
normal and in disease. Eur J Echocardiogr. 2009;10(8):iii3-7.
26. Sengupta PP, Korinek J, Belohlavek M, et al. Left ventricular
structure and function: basic science for cardiac imaging. J Am
Coll Cardiol. 2006;48(10):1988-2001.
27. Junno J, Bruun E, Gutierrez JH, et al. Fetal sheep left ventricle is
more sensitive than right ventricle to progressively worsening hypoxemia
and acidemia. Eur J Obstet Gynecol Reprod Biol.2013;167(2):137-141.
28. Kailin JA, Santos AB, Yilmaz Furtun B, Sexson Tejtel SK,
Lantin-Hermoso R. Isolated coarctation of the aorta in the fetus: A
diagnostic challenge. Echocardiography. 2017;34(12):1768-1775.
29. Morgagni G. de Morbis Thoracis, Epistola XVIII. In: De sedibus
et causis morborum. Venetia; 1761:162.
30. Meckel A. Verschliessung der Aorta am vierten Brustwirbel. In:
Meckel JF, ed. Archiv für Anatomie und Physiologie. Leopold Voss,
Leipzig; 1827:345.
31. Jarcho S. Coarctation of the aorta (Albrecht Meckel, 1827). Am
J Cardiol. 1962;9:307-311.
32. Yokoyama U, Ichikawa Y, Minamisawa S, Ishikawa Y. Pathology and
molecular mechanisms of coarctation of the aorta and its association
with the ductus arteriosus. J Physiol Sci. 2017;67(2):259-270.
33. Bahado-Singh R, Vishweswaraiah S, Sayed NM, et al. Deep
learning/artificial intelligence and the epigenomic prediction of
coarctation of the aorta. Am J Obstet Gynecol. 2019;220(1):S50.
34. Beattie M, Peyvandi S, Ganesan S, Moon-Grady A. Toward Improving the
Fetal Diagnosis of Coarctation of the Aorta. Pediatr Cardiol.2017;38(2):344-352.
35. Axt-Fliedner R, Hartge D, Krapp M, et al. Course and outcome of
fetuses suspected of having coarctation of the aorta during gestation.Ultraschall Med. 2009;30(3):269-276.
36. Hornberger LK, Sahn DJ, Kleinman CS, Copel J, Silverman NH.
Antenatal diagnosis of coarctation of the aorta: a multicenter
experience. J Am Coll Cardiol. 1994;23(2):417-423.
37. Yeo L, Romero R. Color and power Doppler combined with Fetal
Intelligent Navigation Echocardiography (FINE) to evaluate the fetal
heart. Ultrasound Obstet Gynecol. 2017;50(4):476-491.
38. Sivanandam S, Nyholm J, Wey A, Bass JL. Right Ventricular
Enlargement In Utero: Is It Coarctation? Pediatr Cardiol.2015;36(7):1376-1381.
39. Toole BJ, Schlosser B, McCracken CE, Stauffer N, Border WL, Sachdeva
R. Importance of Relationship between Ductus and Isthmus in Fetal
Diagnosis of Coarctation of Aorta. Echocardiography.2016;33(5):771-777.
40. Vigneswaran TV, Bellsham-Revell HR, Chubb H, Simpson JM. Early
Postnatal Echocardiography in Neonates with a Prenatal Suspicion of
Coarctation of the Aorta. Pediatr Cardiol. 2020;41(4):772-780.
41. DeVore GR, Jone PN, Satou G, Sklansky M, Cuneo BF. Aortic
Coarctation: A Comprehensive Analysis of Shape, Size, and Contractility
of the Fetal Heart. Fetal Diagn Ther. 2020;47(5):429-439.
42. Familiari A, Morlando M, Khalil A, et al. Risk Factors for
Coarctation of the Aorta on Prenatal Ultrasound: A Systematic Review and
Meta-Analysis. Circulation. 2017;135(8):772-785.
43. Crispi F, Sepulveda-Martinez A, Crovetto F, Gomez O, Bijnens B,
Gratacos E. Main Patterns of Fetal Cardiac Remodeling. Fetal Diagn
Ther. 2020;47(5):337-344.
44. Morgan CT, Mueller B, Thakur V, et al. Improving Prenatal Diagnosis
of Coarctation of the Aorta. Can J Cardiol. 2019;35(4):453-461.
45. Torok RD, Campbell MJ, Fleming GA, Hill KD. Coarctation of the
aorta: Management from infancy to adulthood. World J Cardiol.2015;7(11):765-775.
46. Riviere L. Observatio XXI, Cordis palpitatio & pulsus inaequalitas.
In: Opera Medica Universa. Cellier, A; 1659:177-178.
47. Freud LR, Moon-Grady A, Escobar-Diaz MC, et al. Low rate of prenatal
diagnosis among neonates with critical aortic stenosis: insight into the
natural history in utero. Ultrasound Obstet Gynecol.2015;45(3):326-332.
48. Picazo-Angelin B, Zabala-Arguelles JI, Anderson RH, Sanchez-Quintana
D. Anatomy of the normal fetal heart: The basis for understanding fetal
echocardiography. Ann Pediatr Cardiol. 2018;11(2):164-173.
49. Friedman KG, Schidlow D, Freud L, Escobar-Diaz M, Tworetzky W. Left
ventricular diastolic function and characteristics in fetal aortic
stenosis. Am J Cardiol. 2014;114(1):122-127.
50. Freed MD. Aortic Stenosis. In: Emmanouilides GC AH, Riemenschneider
TD, Gutgesell HP, ed. Moss and Adams’ Heart Disease in Infants,
Children, and Adolescents. Lippincott Williams & Wilkins;
2008:557-567.
51. Axt-Fliedner R, Kreiselmaier P, Schwarze A, Krapp M, Gembruch U.
Development of hypoplastic left heart syndrome after diagnosis of aortic
stenosis in the first trimester by early echocardiography.Ultrasound Obstet Gynecol. 2006;28(1):106-109.
52. Gardiner HM, Kovacevic A, Tulzer G, et al. Natural history of 107
cases of fetal aortic stenosis from a European multicenter retrospective
study. Ultrasound Obstet Gynecol. 2016;48(3):373-381.
53. Freedom R. M. BMD, Benson L. N. Hypoplastic Left Heart Syndrome. In:
Emmanouilides GC AH, Riemenschneider TD, Gutgesell HP, ed. Moss
and Adams’ Heart Disease in Infants, Children, and Adolescents.Lippincott Williams & Wilkins; 2008:580-589.
54. Vogel M, McElhinney DB, Wilkins-Haug LE, et al. Aortic stenosis and
severe mitral regurgitation in the fetus resulting in giant left atrium
and hydrops: pathophysiology, outcomes, and preliminary experience with
pre-natal cardiac intervention. J Am Coll Cardiol.2011;57(3):348-355.
55. Fukunishi T, Miyaji K, Miyamoto T, Inoue N, Kitamura T. Aortic
atresia with transposition of the great arteries. Gen Thorac
Cardiovasc Surg. 2020.
56. Axt-Fliedner R, Enzensberger C, Fass N, et al. Fetal diagnosis of
hypoplastic left heart, associations and outcomes in the current era.Ultraschall Med. 2012;33(7):E51-E56.
57. Gehrmann J, Krasemann T, Kehl HG, Vogt J. Hypoplastic left-heart
syndrome: the first description of the pathophysiology in 1851;
translation of a publication by Dr. Bardeleben from Giessen, Germany.Chest. 2001;120(4):1368-1371.
58. von Bardeleben K. Verschluss des linken ostium arteriosum in dem
Herzen eines halbjährigen Kindes. Archiv für pathologische
Anatomie und Physiologie und für klinische Medicin. 1851;III.
59. Opitz JM, Carey JC. Why is the construction: Hypoplastic left heart
”syndrome” a misnomer? And: What is a syndrome, anyhow? Am J Med
Genet A. 2011;155A(2):360-362.
60. Dewan S, Krishnamurthy A, Kole D, et al. Model of Human Fetal Growth
in Hypoplastic Left Heart Syndrome: Reduced Ventricular Growth Due to
Decreased Ventricular Filling and Altered Shape. Front Pediatr.2017;5:25.
61. Stephens EH, Gupta D, Bleiweis M, Backer CL, Anderson RH, Spicer DE.
Pathologic Characteristics of 119 Archived Specimens Showing the
Phenotypic Features of Hypoplastic Left Heart Syndrome. Semin
Thorac Cardiovasc Surg. 2020.
62. Grossfeld P, Nie S, Lin L, Wang L, Anderson RH. Hypoplastic Left
Heart Syndrome: A New Paradigm for an Old Disease? J Cardiovasc
Dev Dis. 2019;6(1).
63. Crucean A, Alqahtani A, Barron DJ, et al. Re-evaluation of
hypoplastic left heart syndrome from a developmental and morphological
perspective. Orphanet J Rare Dis. 2017;12(1):138.
64. Jadczak A, Respondek-Liberska M, Sokolowski L, et al. Hypoplastic
left heart syndrome with prenatally diagnosed foramen ovale restriction:
diagnosis, management and outcome. J Matern Fetal Neonatal Med.2020:1-8.
65. Graupner O, Enzensberger C, Axt-Fliedner R. New Aspects in the
Diagnosis and Therapy of Fetal Hypoplastic Left Heart Syndrome.Geburtshilfe Frauenheilkd. 2019;79(8):863-872.
66. Thakur V, Munk N, Mertens L, Nield LE. Does prenatal diagnosis of
hypoplastic left heart syndrome make a difference? - A systematic
review. Prenat Diagn. 2016;36(9):854-863.
67. Richards B, Freel L, Stiver C, Texter K, Cua CL. Serial fetal
echocardiograms in hypoplastic left heart syndrome fetuses: Does it
affect immediate post-natal care? Int J Cardiol. 2020;301:80-84.
68. Tham EB, Wald R, McElhinney DB, et al. Outcome of fetuses and
infants with double inlet single left ventricle. Am J Cardiol.2008;101(11):1652-1656.
69. Wolter A, Nosbusch S, Kawecki A, et al. Prenatal diagnosis of
functionally univentricular heart, associations and perinatal outcomes.Prenat Diagn. 2016;36(6):545-554.
70. Holmes AF. Case of malformation of the heart. Edinburgh Trans
Medico-Chir Soc. 1824;1:252–254.
71. de la Cruz MV, Miller BL. Double-Inlet Left Ventricle. Two
Pathological Specimens with Comments on the Embryology alid on Its
Relation to Single Ventricle. Circulation. 1968;37(2):249–260.
72. Abbott ME. Unique case of malformation of the heart? Defect of the
interventricular septum; rudimentary right ventricle; patent foramen
ovale; great dilatation of right auricle and right auricular appendix.Montreal Med J. 1901;30:522–532.
73. Van Praagh R, Van Praagh S, Vlad P, Keith JD. Diagnosis of the
Anatomic Types of Single or Common Ventricle. Am J Cardiol.1965;15:345-366.
74. Anderson RH, Franklin RCG, Spicer DE. Anatomy of the Functionally
Univentricular Heart. World J Pediatr Congenit Heart Surg.2018;9(6):677-684.
75. Hagler D. J. EWD. Univentricular atrioventricular connection. In:
Emmanouilides GC AH, Riemenschneider TD, Gutgesell HP, ed. Moss
and Adams’ Heart Disease in Infants, Children, and Adolescents. 7th
ed.: Lippincott Williams & Wilkins; 2008:1128–1149.
76. Uemura H, Ho SY, Adachi I, Yagihara T. Morphologic spectrum of
ventriculoarterial connection in hearts with double inlet left
ventricle: implications for surgical procedures. Ann Thorac Surg.2008;86(4):1321-1327.
77. Weichert J, Axt-Fliedner R, Gembruch U, Hartge DR. Holmes heart–a
simple antenatal diagnosis of a complex cardiac anomaly? Fetal
echocardiographic findings and review. Congenit Heart Dis.2013;8(6):579-584.
78. Saleeb SF, Juraszek A, Geva T. Anatomic, imaging, and clinical
characteristics of double-inlet, double-outlet right ventricle. Am
J Cardiol. 2010;105(4):542-549.
79. Meyer SL, Jongbloed MR, Ho SY, et al. Intracardiac anatomical
relationships and potential for streaming in double inlet left
ventricles. PLoS One. 2017;12(11):e0188048.
80. Vyas H, Hagler DJ. Double inlet left ventricle. Curr Treat
Options Cardiovasc Med. 2007;9(5):391-398.
81. Lytzen R, Vejlstrup N, Bjerre J, et al. The accuracy of prenatal
diagnosis of major congenital heart disease is increasing. J
Obstet Gynaecol. 2020;40(3):308-315.
82. Lytzen R, Vejlstrup N, Bjerre J, et al. Live-Born Major Congenital
Heart Disease in Denmark: Incidence, Detection Rate, and Termination of
Pregnancy Rate From 1996 to 2013. JAMA Cardiol.2018;3(9):829-837.
83. Bakker MK, Bergman JEH, Krikov S, et al. Prenatal diagnosis and
prevalence of critical congenital heart defects: an international
retrospective cohort study. BMJ Open. 2019;9(7):e028139.
84. Vincenti M, Guillaumont S, Clarivet B, et al. Prognosis of severe
congenital heart diseases: Do we overestimate the impact of prenatal
diagnosis? Arch Cardiovasc Dis. 2019;112(4):261-269.
85. Cloete E, Bloomfield FH, Sadler L, de Laat MWM, Finucane AK, Gentles
TL. Antenatal Detection of Treatable Critical Congenital Heart Disease
Is Associated with Lower Morbidity and Mortality. J Pediatr.2019;204:66-70.
86. Khoshnood B, Lelong N, Houyel L, et al. Impact of prenatal diagnosis
on survival of newborns with four congenital heart defects: a
prospective, population-based cohort study in France (the EPICARD
Study). BMJ Open. 2017;7(11):e018285.
87. Seguela PE, Thomas J, Thambo JB. Letter in response to the article
entitled ”Prognosis of severe congenital heart diseases: Do we
overestimate the impact of prenatal diagnosis?” by Vincenti et al.Arch Cardiovasc Dis. 2019;112(5):363-364.
88. Thakur V, Dutil N, Schwartz SM, Jaeggi E. Impact of prenatal
diagnosis on the management and early outcome of critical duct-dependent
cardiac lesions. Cardiol Young. 2018;28(4):548-553.
89. Lin AE, Santoro S, High FA, Goldenberg P, Gutmark-Little I.
Congenital heart defects associated with aneuploidy syndromes: New
insights into familiar associations. Am J Med Genet C Semin Med
Genet. 2020;184(1):53-63.
90. van Nisselrooij AEL, Teunissen AKK, Clur SA, et al. Why are
congenital heart defects being missed? Ultrasound Obstet Gynecol.2020;55(6):747-757.
91. Bak GS, Shaffer BL, Madriago E, et al. Detection of fetal cardiac
anomalies: cost-effectiveness of increased number of cardiac views.Ultrasound Obstet Gynecol. 2020;55(6):758-767.
92. Liu H, Zhou J, Feng QL, et al. Fetal echocardiography for congenital
heart disease diagnosis: a meta-analysis, power analysis and missing
data analysis. Eur J Prev Cardiol. 2015;22(12):1531-1547.
93. Pinto NM, Henry KA, Grobman WA, et al. Physician Barriers and
Facilitators for Screening for Congenital Heart Disease With Routine
Obstetric Ultrasound: A National United States Survey. J
Ultrasound Med. 2020;39(6):1143-1153.
94. Kusanovic JP, Nien JK, Goncalves LF, et al. The use of inversion
mode and 3D manual segmentation in volume measurement of fetal
fluid-filled structures: comparison with Virtual Organ Computer-aided
AnaLysis (VOCAL). Ultrasound Obstet Gynecol. 2008;31(2):177-186.
95. Simioni C, Nardozza LM, Araujo Junior E, et al. Heart stroke volume,
cardiac output, and ejection fraction in 265 normal fetus in the second
half of gestation assessed by 4D ultrasound using spatio-temporal image
correlation. J Matern Fetal Neonatal Med. 2011;24(9):1159-1167.
96. Rizzo G, Capponi A, Pietrolucci ME, Arduini D. Role of sonographic
automatic volume calculation in measuring fetal cardiac ventricular
volumes using 4-dimensional sonography: comparison with virtual organ
computer-aided analysis. J Ultrasound Med. 2010;29(2):261-270.
97. Messing B, Gilboa Y, Lipschuetz M, Valsky DV, Cohen SM, Yagel S.
Fetal tricuspid annular plane systolic excursion (f-TAPSE): evaluation
of fetal right heart systolic function with conventional M-mode
ultrasound and spatiotemporal image correlation (STIC) M-mode.Ultrasound Obstet Gynecol. 2013;42(2):182-188.
98. Bravo-Valenzuela NJ, Peixoto AB, Mattar R, Melo Junior JF, da Silva
Pares DB, Araujo Junior E. Fetal Cardiac Function and Ventricular
Volumes Determined by Three-Dimensional Ultrasound Using STIC and VOCAL
Methods in Fetuses from Pre-gestational Diabetic Women. Pediatr
Cardiol. 2020.
99. Melo Junior JF, Bravo-Valenzuela NJ, Nardozza LMM, et al. References
Values of Fetal Heart Myocardial Volume by Three-Dimensional Ultrasound
using Spatiotemporal Image Correlation and Virtual Organ Computer-Aided
Analysis Methods and Their Applicability in Pregestational Diabetic
Women. Am J Perinatol. 2019.
100. Tanis JC, Mohammed N, Bennasar M, et al. Online versus offline
spatiotemporal image correlation (STIC) M-mode for the evaluation of
cardiac longitudinal annular displacement in fetal growth restriction.J Matern Fetal Neonatal Med. 2018;31(14):1845-1850.
101. Tedesco GD, de Souza Bezerra M, Barros FS, et al. Reference Ranges
of Fetal Cardiac Biometric Parameters Using Three-Dimensional Ultrasound
with Spatiotemporal Image Correlation M Mode and Their Applicability in
Congenital Heart Diseases. Pediatr Cardiol. 2017;38(2):271-279.
102. Guasina F, Bellussi F, Morganelli G, Salsi G, Pilu G, Simonazzi G.
Electronic spatiotemporal image correlation improves four-dimensional
fetal echocardiography. Ultrasound Obstet Gynecol.2018;51(3):357-360.
103. Shih JC, Shyu MK, Su YN, Chiang YC, Lin CH, Lee CN. ’Big-eyed frog’
sign on spatiotemporal image correlation (STIC) in the antenatal
diagnosis of transposition of the great arteries. Ultrasound
Obstet Gynecol. 2008;32(6):762-768.