References

Abbaspour, K., 2015. SWAT-Calibration and uncertainty programs (CUP). Neprashtechnology.Ca. https://doi.org/10.1007/s00402-009-1032-4
Alijanian, M., Rakhshandehroo, G.R., Mishra, A.K., Dehghani, M., 2017. Evaluation of satellite rainfall climatology using CMORPH, PERSIANN‐CDR, PERSIANN, TRMM, MSWEP over Iran. Int. J. Climatol. 37.
Anagnostou, E.N., Maggioni, V., Nikolopoulos, E.I., Meskele, T., Hossain, F., Papadopoulos, A., 2009. Benchmarking High-Resolution Global Satellite Rainfall Products to Radar and Rain-Gauge Rainfall Estimates. IEEE Trans. Geosci. Remote Sens.
Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., 1998. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
Auerbach, D.A., Easton, Z.M., Walter, M.T., Flecker, A.S., Fuka, D.R., 2016. Evaluating weather observations and the Climate Forecast System Reanalysis as inputs for hydrologic modelling in the tropics. Hydrol. Process. https://doi.org/10.1002/hyp.10860
Awange, J.L., Hu, K.X., Khaki, M., 2019. The newly merged satellite remotely sensed, gauge and reanalysis-based Multi-Source Weighted-Ensemble Precipitation: Evaluation over Australia and Africa (1981–2016). Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.03.148
B, V.T.A., C, R.R., A, Z.B., B, A.D.R.A., 2013. Hydrological evaluation of satellite-based rainfall estimates over the Volta and Baro-Akobo Basin. J. Hydrol. 499, 324–338.
Bajracharya, S.R., Palash, W., Shrestha, M.S., Khadgi, V.R., Duo, C., Das, P.J., Dorji, C., 2015. Systematic evaluation of satellite-based rainfall products over the brahmaputra basin for hydrological applications. Adv. Meteorol. https://doi.org/10.1155/2015/398687
Beck, H.E., Vergopolan, N., Ming, P., Levizzani, V., Wood, E., 2017. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. 21, 6201–6217.
Bhatta, B., Shrestha, S., Shrestha, P.K., Talchabhadel, R., 2019. Evaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River Basin. Catena. https://doi.org/10.1016/j.catena.2019.104082
Bitew, M.M., Gebremichael, M., 2011. Assessment of satellite rainfall products for streamflow simulation in medium watersheds of the Ethiopian highlands. Hydrol. Earth Syst. Sci. 15, 1147–1155. https://doi.org/10.5194/hess-15-1147-2011
Bitew, M.M., Gebremichael, M., 2010. Assessment of high-resolution satellite rainfall for streamflow simulation in medium watersheds of the East African highlands. Hydrol. Earth Syst. Sci. Discuss. 7.
Cai, Y., Jin, C., Wang, A., Guan, D., Wu, J., Yuan, F., Xu, L., 2015. Spatio-Temporal Analysis of the Accuracy of Tropical Multisatellite Precipitation Analysis 3B42 Precipitation Data in Mid-High Latitudes of China. PLoS One 10.
Cao, Y., Zhang, J., Yang, M., Lei, X., Guo, B., Yang, L., Zeng, Z., Qu, J., 2018. Application of SWAT model with CMADS data to estimate hydrological elements and parameter uncertainty based on SUFI-2 algorithm in the Lijiang River basin, China. Water (Switzerland). https://doi.org/10.3390/w10060742
Chappell, A., Renzullo, L.H., Raupach, T.J., Haylock, M., 2013. Evaluating geostatistical methods of blending satellite and gauge data to estimate near real-time daily rainfall for Australia. J. Hydrol. https://doi.org/10.1016/j.jhydrol.2013.04.024
Condom, T., Rau, P., Espinoza, J.C., 2011. Correction of TRMM 3B43 monthly precipitation data over the mountainous areas of Peru during the period 1998–2007. Hydrol. Process. 25, 1924–1933.
De Almeida Bressiani, D., Srinivasan, R., Jones, C.A., Mendiondo, E.M., 2015. Effects of different spatial and temporal weather data resolutions on the stream flow modeling of a semi-arid basin, Northeast Brazil. Int. J. Agric. Biol. Eng. https://doi.org/10.3965/j.ijabe.20150803.970
Deng, P., Zhang, M., Bing, J., Jia, J., Zhang, D., 2019. Evaluation of the GSMaP_Gauge products using rain gauge observations and SWAT model in the Upper Hanjiang River Basin. Atmos. Res. 219, 153–165. https://doi.org/10.1016/j.atmosres.2018.12.032
Duan, Z., Tuo, Y., Liu, J., Gao, H., Song, X., Zhang, Z., Yang, L., Mekonnen, D.F., 2019a. Hydrological evaluation of open-access precipitation and air temperature datasets using SWAT in a poorly gauged basin in Ethiopia. J. Hydrol. 569, 612–626. https://doi.org/10.1016/j.jhydrol.2018.12.026
Duan, Z., Tuo, Y., Liu, J., Gao, H., Song, X., Zhang, Z., Yang, L., Mekonnen, D.F., 2019b. Hydrological evaluation of open-access precipitation and air temperature datasets using SWAT in a poorly gauged basin in Ethiopia. J. Hydrol. https://doi.org/10.1016/j.jhydrol.2018.12.026
Fontaine, T.A., Cruickshank, T.S., Arnold, J.G., Hotchkiss, R.H., 2002. Development of a snowfall-snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT). J. Hydrol. 262, 209–223. https://doi.org/10.1016/S0022-1694(02)00029-X
Fuka, D.R., Walter, M.T., Macalister, C., Degaetano, A.T., Steenhuis, T.S., Easton, Z.M., 2014. Using the Climate Forecast System Reanalysis as weather input data for watershed models. Hydrol. Process. https://doi.org/10.1002/hyp.10073
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., 2015. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066.
Ghodichore, N., Vinnarasi, R., Dhanya, C.T., Roy, S.B., 2018. Reliability of reanalyses products in simulating precipitation and temperature characteristics over India. J. Earth Syst. Sci. 127.
Graham, R.M., Cohen, L., Ritzhaupt, N., Segger, B., Hudson, S.R., 2019. Evaluation of Six Atmospheric Reanalyses over Arctic Sea Ice from Winter to Early Summer. J. Clim. 32, 4121–4143.
Grusson, Y., Sun, X., Gascoin, S., Sauvage, S., Raghavan, S., Anctil, F., Sáchez-Pérez, J.M., 2015. Assessing the capability of the SWAT model to simulate snow, snow melt and streamflow dynamics over an alpine watershed. J. Hydrol. 531, 574–588. https://doi.org/10.1016/j.jhydrol.2015.10.070
Guoqiang, T., Zhe, L., Xianwu, X., Qingfang, H., Bin, Y., 2015. A study of substitutability of TRMM remote sensing precipitation for gauge-based observation in Ganjiang River basin. Adv. Water Sci. https://doi.org/10.14042/j.cnki.32.1309.2015.03.005
Hao, Guo, Sheng, Chen, Anming, Bao, Ali, Behrangi, Yang, Hong, 2016. Early assessment of Integrated Multi-satellite Retrievals for Global Precipitation Measurement over China. Atmos. Res.
Hao, Z., Zhang, Y., Yang, C., Li, J., Thondup, D., 2013. Effects of topography and snowmelt on hydrologic simulation in the Yellow River’s source region. Shuikexue Jinzhan/Advances Water Sci.
Harpold, A.A., Kaplan, M.L., Zion, K.P., Timothy, L., Mcnamara, J.P., Seshadri, R., Rina, S., Steele, C.M., 2017. Rain or snow: hydrologic processes, observations, prediction, and research needs. Hydrol. Earth Syst. Sci. 21, 1–48.
Hou, A.Y., Kakar, R.K., Neeck, S., Azarbarzin, A., Kummerow, C.D., Kojima, M., Oki, R., Nakamura, K., Iguchi, T., 2013. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 95, 701–722.
Hu, Y., Maskey, S., Uhlenbrook, S., Zhao, H., 2011. Streamflow trends and climate linkages in the source region of the Yellow River, China. Hydrol. Process. 25, 3399–3411. https://doi.org/10.1002/hyp.8069
Huffman, G.J., Adler, R.F., Bolvin, D.T., Nelkin, E.J., 2010a. The TRMM Multi-Satellite Precipitation Analysis (TMPA). j hydrometeor.
Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Wolff, D.B., Adler, R.F., Gu, G., Yang, H., Bowman, K.P., Stocker, E.F., 2010b. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. Satellite Rainfall Applications for Surface Hydrology.
Immerzeel, W.W., Beek Van, L.P.H., Bierkens, M.F.P., 2010. Climate change will affect the Asian water towers. Science 328, 1382–5.
Immerzeel, W.W., Droogers, P., Jong, S.M.D., Bierkens, M., 2009. Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sens. Environ. 113, 40–49.
Junliang, J., Guoqing, W., Guishan, L., Ruimin, H., Qingye, H., 2013. Responses of hydrology and water resources to the climate change in the Yellow River source region. J. Arid L. Resour. Environ. 27, 137–143. https://doi.org/10.13448/j.cnki.jalre.2013.05.029
Li, Y., Wang, Y., Zheng, J., Yang, M., 2019. Investigating spatial and temporal variation of hydrological processes in western China driven by CMADS. Water (Switzerland) 11. https://doi.org/10.3390/w11030435
Liu, J., Shanguan, D., Liu, S., Ding, Y., 2018. Evaluation and hydrological simulation of CMADS and CFSR reanalysis datasets in the Qinghai-Tibet Plateau. Water (Switzerland). https://doi.org/10.3390/w10040513
Liu, X., Chang, X., 2005. A Summary of Study on RunoffVar iations in Source Reg ion of the Yellow R iver. YELLOW RIVER 27, 6–12. https://doi.org/1000 - 1379(2005)02 - 0006 -03
Lu, X., Wei, M., Tang, G., Zhang, Y., 2018. Evaluation and correction of the TRMM 3B43V7 and GPM 3IMERGM satellite precipitation products by use of ground-based data over Xinjiang, China. Environ. Earth Sci. 77, 209.
Mark, Richardson, Matthew, Lebsock, Matthew, Christensen, Graeme, Stephens, David, Bolvin, 2016. Status of high-latitude precipitation estimates from observations and reanalyses. J. Geophys. Res. D. Atmos. JGR 121, 4468–4486.
Masih, I., Maskey, S., Uhlenbrook, S., Smakhtin, V., 2011. Assessing the Impact of Areal Precipitation Input on Streamflow Simulations Using the SWAT Model1. Jawra J. Am. Water Resour. Assoc. 47, 179–195.
Meng, X., Shi, C., Liu, S., Wang, H., Lei, X., Liu, Z., Ji, X., Cai, S., Zhao, Q., 2016. CMADS Datasets and Its Application in Watershed Hydrological Simulation: A Case Study of the Heihe River Basin. Pearl River 37, 1–19. https://doi.org/10.3969/j.issn.1001-9235.2016.07.001
Meng, X., Zhang, X., Yang, M., Wang, H., Chen, J., Pan, Z., Wu, Y., 2019. Application and evaluation of the China Meteorological Assimilation Driving Datasets For The Swat Model (CMADS) in poorly gauged regions in Western China. Water (Switzerland) 11, 1–28. https://doi.org/10.3390/w11102171
Mengyaun, W., Hongwei, X., Jie, Z., Yiping, W., 2019. Runoff simulation of the Yellow River source region based on SWAT model. J. Qinghai Univ. 37, 39–46. https://doi.org/10.13901/j.cnki.qhwxxbzk.2019.01.007
Monteiro, J., Strauch, M., Srinivasan, R., Abbaspour, K., Gücker, B., 2016. Accuracy of grid precipitation data for Brazil: application in river discharge modelling of the Tocantins catchment. Hydrol. Process. 30.
Moriasi, D.N., Gitau, M.W., Pai, N., Daggupati, P., 2015. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 58, 1763–1785. https://doi.org/10.13031/trans.58.10715
Mou, L.T., Santo, H., 2018. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res. 202, 63–76.
Nash, J.E., Sutcliffe, J. V, 1970. River flow forecasting through conceptual models part I — A discussion of principles - ScienceDirect. J. Hydrol. 10, 282–290.
Nhi, P., Khoi, D.N., Hoan, N.X., 2018. Evaluation of five gridded rainfall datasets in simulating streamflow in the upper Dong Nai river basin, Vietnam. Int. J. Digit. Earth 1–17.
Noh, Y., Liu, G., Jones, A.S., H Aa R, T., 2009. Toward snowfall retrieval over land by combining satellite and in situ measurements. J. Geophys. Res. Atmos. 114.
Prakash, S., Mitra, A.K., Pai, D.S., AghaKouchak, A., 2016. From TRMM to GPM: How well can heavy rainfall be detected from space? Adv. Water Resour. https://doi.org/10.1016/j.advwatres.2015.11.008
Qin, Y., Chen, Z., Shen, Y., Zhang, S., Shi, R., 2014. Evaluation of Satellite Rainfall Estimates overtheChineseMainland. Remote Sens. 6, 11649–11672.
Roth, V., Lemann, T., 2016. Comparing CFSR and conventional weather data for discharge and soil loss modelling with SWAT in small catchments in the Ethiopian Highlands. Hydrol. Earth Syst. Sci. https://doi.org/10.5194/hess-20-921-2016
Ruan, H., Zou, S., Yang, D., Wang, Y., Yin, Z., Lu, Z., Li, F., Xu, B., 2017. Runoff simulation by SWAT model using high-resolution gridded precipitation in the upper Heihe River Basin, Northeastern Tibetan Plateau. Water (Switzerland) 9, 1–23. https://doi.org/10.3390/w9110866
Saha, S., Moorthi, S., Pan, H.L., Wu, X., Wang, Jiande, Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, Jun, Hou, Y.T., Chuang, H.Y., Juang, H.M.H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., Van Den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R.W., Rutledge, G., Goldberg, M., 2010. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. https://doi.org/10.1175/2010BAMS3001.1
Saha, S., Moorthi, S., Wu, X., Wang, J., Becker, E., 2014. The NCEP climate forecast system version 2. J. Clim. 27, 2185–2208.
Serreze, M.C., Barrett, A.P., Lo, F., 2005. Northern High-Latitude Precipitation as Depicted by Atmospheric Reanalyses and Satellite Retrievals. Mon. Weather Rev. 133, 3407–3430.
Shakil, Ahmad, Romshoo, Reyaz, A., Dar, Irfan, Rashid, Asif, Marazi, 2015. Implications of Shrinking Cryosphere Under Changing Climate on the Streamflows in the Lidder Catchment in the Upper Indus Basin, India. Arct. Antarct. Alp. Res.
Sheng, H.U., Qiu, H., Yang, D., Cao, M., Song, J., Jiang, W.U., Huang, C., 2017. Evaluation of the applicability of climate forecast system reanalysis weather data for hydrologic simulation: A case study in the Bahe River Basin of the Qinling Mountains, China. J. Geogr. Sci. 27, 546–564.
Shuai, Z., Yimin, W., Aijun, G., Kai, Z., Ziyan, L., 2019. Influence of uncertainties in SWAT model parameters on runoff simulation in upper reaches of the Yellow River. J. Northwest A&F Univ. (Nat. Sci. Ed) 47, 144–154. https://doi.org/10.13207/j.cnki.jnwafu.2019.08.018
Sorrel, M., 2010. The NCEP Climate Forecast System Reanalysis. Bull.amer.meteor.soc 91, 1015–1057. https://doi.org/10.1175/2010BAMS3001.1
Strauch, M., Bernhofer, C., Koide, S., Volk, M., Lorz, C., Makeschin, F., 2012. Using precipitation data ensemble for uncertainty analysis in SWAT streamflow simulation. J. Hydrol. 414, 413–424.
Tang, X., Zhang, J., Wang, G., Yang, Q., Yang, Y., Guan, T., Liu, C., Jin, J., Liu, Y., Bao, Z., 2019. Evaluating Suitability of Multiple Precipitation Products for the Lancang River Basin. Chinese Geogr. Sci. 29, 37–57. https://doi.org/10.1007/s11769-019-1015-5
Tekeli, A.E., Fouli, H., 2016. Evaluation of TRMM satellite-based precipitation indexes for flood forecasting over Riyadh City, Saudi Arabia. J. Hydrol. 471–479.
Tian, Y., Peters-Lidard, C.D., 2010. A global map of uncertainties in satellite‐based precipitation measurements. Geophys. Res. Lett. 37.
Tuo, Y., Duan, Z., Disse, M., Chiogna, G., 2016. Evaluation of precipitation input for SWAT modeling in Alpine catchment: A case study in the Adige river basin (Italy). Sci. Total Environ. 573, 66–82. https://doi.org/10.1016/j.scitotenv.2016.08.034
Villarán, L.G.O.I.C.C.F. de, 2014. Rainfall estimation in SWAT: An alternative method to simulate orographic precipitation. J. Hydrol. 509, 257–265.
Villarini, G., Krajewski, W.F., Smith, J.A., 2009. New paradigm for statistical validation of satellite precipitation estimates: Application to a large sample of the TMPA 0.25° 3-hourly estimates over Oklahoma. J. Geophys. Res. Atmos. 114.
Viviroli, D., Weingartner, R., 2004. The hydrological significance of mountains: from regional to global scale. Hydrol. Earth Syst. Sci. 8.
Wang, N., Liu, Wenbin, Sun, F., Yao, Z., Wang, H., Liu, Wanqing, 2020. Evaluating satellite-based and reanalysis precipitation datasets with gauge-observed data and hydrological modeling in the Xihe River Basin, China. Atmos. Res. 234. https://doi.org/10.1016/j.atmosres.2019.104746
Wu, Z., Du, H., Zhao, D., Li, M., Meng, X., Zong, S., 2012. Estimating daily global solar radiation during the growing season in Northeast China using the ngstrm–Prescott model. Theor. Appl. Climatol. 108, 495–503.
Xu, Z., He, W., 2006. Spatial and Temporal Characteristics and Change Trend of Climatic Elements in the Headwater Region of the Yellow River in Recent 40 Years. Plateau Meteoro Logy 25, 906–913. https://doi.org/10.1016/S1003-6326(06)60040-X (In Chinese)
Yan, L., Di, L., Liangliang, B., Caijin, Z., Zhongying, H., Xingdong, L., Wen, W., Shaohong, S., Yuntao, Y., 2020. A review on water resources stereoscopic monitoring systems based on multisource data. J. Remote Sensing(Chinese) 24, 787–803. https://doi.org/10.11834/jrs.20200123
Yang, M., Liu, G., Chen, T., Chen, Y., Xia, C., 2020. Evaluation of GPM IMERG precipitation products with the point rain gauge records over Sichuan, China. Atmos. Res. 246, 105101. https://doi.org/10.1016/j.atmosres.2020.105101
Yong, B., Chen, B., Gourley, J.J., Ren, L., Hong, Y., Chen, X., Wang, W., Chen, S., Gong, L., 2014. Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks: Is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extr. J. Hydrol. 508, 77–87.
Yuan, F., Berndtsson, R., Zhang, L., Uvo, C.B., Hao, Z., Wang, X., Yasuda, H., 2015. Hydro climatic trend and periodicity for the source region of the Yellow river. J. Hydrol. Eng. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001182
Yuan, F., Wang, B., Shi, C., Cui, W., Zhao, C., Liu, Y., Ren, L., Zhang, L., Zhu, Y., Chen, T., Jiang, S., Yang, X., 2018. Evaluation of hydrological utility of IMERG Final run V05 and TMPA 3B42V7 satellite precipitation products in the Yellow River source region, China. J. Hydrol. https://doi.org/10.1016/j.jhydrol.2018.06.045
Yw, A., Lga, B., Hz, C., Bing, Z.A., Mld, A., 2019. Hydroclimate assessment of gridded precipitation products for the Tibetan Plateau. Sci. Total Environ. 660, 1555–1564.
Zhang, L., Meng, X., Wang, H., Yang, M., Cai, S., 2020. Investigate the applicability of CMADS and CFSR reanalysis in Northeast China. Water (Switzerland). https://doi.org/10.3390/W12040996
Zhenchun, H., Yueguan,Zhang, Chuanguo,Yang, Jiawei,Li, Thondup, D., 2013. Effects of topography and snowmelt on hydrologic simulation in the Yellow River’s source region. Adv. Water Sci. Methodol. 24, 311–318. https://doi.org/10.14042/j.cnki.32.1309.2013.03.018
Zhu, Q., Xuan, W., Liu, L., Xu, Y.P., 2016. Evaluation and hydrological application of precipitation estimates derived from PERSIANN-CDR, TRMM 3B42V7, and NCEP-CFSR over humid regions in China. Hydrol. Process. 30, 3061–3083. https://doi.org/10.1002/hyp.10846
Zhu, X., Zhang, M., Wang, S., Qiang, F., Zeng, T., Ren, Z., Dong, L., 2015. Comparison of monthly precipitation derived from high-resolution gridded datasets in arid Xinjiang, central Asia. Quat. Int. 358, 160–170.