References
Abbaspour, K., 2015. SWAT-Calibration and uncertainty programs (CUP).
Neprashtechnology.Ca. https://doi.org/10.1007/s00402-009-1032-4
Alijanian, M., Rakhshandehroo, G.R., Mishra, A.K., Dehghani, M., 2017.
Evaluation of satellite rainfall climatology using CMORPH, PERSIANN‐CDR,
PERSIANN, TRMM, MSWEP over Iran. Int. J. Climatol. 37.
Anagnostou, E.N., Maggioni, V., Nikolopoulos, E.I., Meskele, T.,
Hossain, F., Papadopoulos, A., 2009. Benchmarking High-Resolution Global
Satellite Rainfall Products to Radar and Rain-Gauge Rainfall Estimates.
IEEE Trans. Geosci. Remote Sens.
Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., 1998. Large
area hydrologic modeling and assessment part I: Model development. J.
Am. Water Resour. Assoc.
https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
Auerbach, D.A., Easton, Z.M., Walter, M.T., Flecker, A.S., Fuka, D.R.,
2016. Evaluating weather observations and the Climate Forecast System
Reanalysis as inputs for hydrologic modelling in the tropics. Hydrol.
Process. https://doi.org/10.1002/hyp.10860
Awange, J.L., Hu, K.X., Khaki, M., 2019. The newly merged satellite
remotely sensed, gauge and reanalysis-based Multi-Source
Weighted-Ensemble Precipitation: Evaluation over Australia and Africa
(1981–2016). Sci. Total Environ.
https://doi.org/10.1016/j.scitotenv.2019.03.148
B, V.T.A., C, R.R., A, Z.B., B, A.D.R.A., 2013. Hydrological evaluation
of satellite-based rainfall estimates over the Volta and Baro-Akobo
Basin. J. Hydrol. 499, 324–338.
Bajracharya, S.R., Palash, W., Shrestha, M.S., Khadgi, V.R., Duo, C.,
Das, P.J., Dorji, C., 2015. Systematic evaluation of satellite-based
rainfall products over the brahmaputra basin for hydrological
applications. Adv. Meteorol. https://doi.org/10.1155/2015/398687
Beck, H.E., Vergopolan, N., Ming, P., Levizzani, V., Wood, E., 2017.
Global-scale evaluation of 22 precipitation datasets using gauge
observations and hydrological modeling. Hydrol. Earth Syst. Sci. 21,
6201–6217.
Bhatta, B., Shrestha, S., Shrestha, P.K., Talchabhadel, R., 2019.
Evaluation and application of a SWAT model to assess the climate change
impact on the hydrology of the Himalayan River Basin. Catena.
https://doi.org/10.1016/j.catena.2019.104082
Bitew, M.M., Gebremichael, M., 2011. Assessment of satellite rainfall
products for streamflow simulation in medium watersheds of the Ethiopian
highlands. Hydrol. Earth Syst. Sci. 15, 1147–1155.
https://doi.org/10.5194/hess-15-1147-2011
Bitew, M.M., Gebremichael, M., 2010. Assessment of high-resolution
satellite rainfall for streamflow simulation in medium watersheds of the
East African highlands. Hydrol. Earth Syst. Sci. Discuss. 7.
Cai, Y., Jin, C., Wang, A., Guan, D., Wu, J., Yuan, F., Xu, L., 2015.
Spatio-Temporal Analysis of the Accuracy of Tropical Multisatellite
Precipitation Analysis 3B42 Precipitation Data in Mid-High Latitudes of
China. PLoS One 10.
Cao, Y., Zhang, J., Yang, M., Lei, X., Guo, B., Yang, L., Zeng, Z., Qu,
J., 2018. Application of SWAT model with CMADS data to estimate
hydrological elements and parameter uncertainty based on SUFI-2
algorithm in the Lijiang River basin, China. Water (Switzerland).
https://doi.org/10.3390/w10060742
Chappell, A., Renzullo, L.H., Raupach, T.J., Haylock, M., 2013.
Evaluating geostatistical methods of blending satellite and gauge data
to estimate near real-time daily rainfall for Australia. J. Hydrol.
https://doi.org/10.1016/j.jhydrol.2013.04.024
Condom, T., Rau, P., Espinoza, J.C., 2011. Correction of TRMM 3B43
monthly precipitation data over the mountainous areas of Peru during the
period 1998–2007. Hydrol. Process. 25, 1924–1933.
De Almeida Bressiani, D., Srinivasan, R., Jones, C.A., Mendiondo, E.M.,
2015. Effects of different spatial and temporal weather data resolutions
on the stream flow modeling of a semi-arid basin, Northeast Brazil. Int.
J. Agric. Biol. Eng. https://doi.org/10.3965/j.ijabe.20150803.970
Deng, P., Zhang, M., Bing, J., Jia, J., Zhang, D., 2019. Evaluation of
the GSMaP_Gauge products using rain gauge observations and SWAT model
in the Upper Hanjiang River Basin. Atmos. Res. 219, 153–165.
https://doi.org/10.1016/j.atmosres.2018.12.032
Duan, Z., Tuo, Y., Liu, J., Gao, H., Song, X., Zhang, Z., Yang, L.,
Mekonnen, D.F., 2019a. Hydrological evaluation of open-access
precipitation and air temperature datasets using SWAT in a poorly gauged
basin in Ethiopia. J. Hydrol. 569, 612–626.
https://doi.org/10.1016/j.jhydrol.2018.12.026
Duan, Z., Tuo, Y., Liu, J., Gao, H., Song, X., Zhang, Z., Yang, L.,
Mekonnen, D.F., 2019b. Hydrological evaluation of open-access
precipitation and air temperature datasets using SWAT in a poorly gauged
basin in Ethiopia. J. Hydrol.
https://doi.org/10.1016/j.jhydrol.2018.12.026
Fontaine, T.A., Cruickshank, T.S., Arnold, J.G., Hotchkiss, R.H., 2002.
Development of a snowfall-snowmelt routine for mountainous terrain for
the soil water assessment tool (SWAT). J. Hydrol. 262, 209–223.
https://doi.org/10.1016/S0022-1694(02)00029-X
Fuka, D.R., Walter, M.T., Macalister, C., Degaetano, A.T., Steenhuis,
T.S., Easton, Z.M., 2014. Using the Climate Forecast System Reanalysis
as weather input data for watershed models. Hydrol. Process.
https://doi.org/10.1002/hyp.10073
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla,
S., Husak, G., Rowland, J., Harrison, L., Hoell, A., 2015. The climate
hazards infrared precipitation with stations—a new environmental
record for monitoring extremes. Sci. Data 2, 150066.
Ghodichore, N., Vinnarasi, R., Dhanya, C.T., Roy, S.B., 2018.
Reliability of reanalyses products in simulating precipitation and
temperature characteristics over India. J. Earth Syst. Sci. 127.
Graham, R.M., Cohen, L., Ritzhaupt, N., Segger, B., Hudson, S.R., 2019.
Evaluation of Six Atmospheric Reanalyses over Arctic Sea Ice from Winter
to Early Summer. J. Clim. 32, 4121–4143.
Grusson, Y., Sun, X., Gascoin, S., Sauvage, S., Raghavan, S., Anctil,
F., Sáchez-Pérez, J.M., 2015. Assessing the capability of the SWAT model
to simulate snow, snow melt and streamflow dynamics over an alpine
watershed. J. Hydrol. 531, 574–588.
https://doi.org/10.1016/j.jhydrol.2015.10.070
Guoqiang, T., Zhe, L., Xianwu, X., Qingfang, H., Bin, Y., 2015. A study
of substitutability of TRMM remote sensing precipitation for
gauge-based observation in Ganjiang River basin. Adv. Water Sci.
https://doi.org/10.14042/j.cnki.32.1309.2015.03.005
Hao, Guo, Sheng, Chen, Anming, Bao, Ali, Behrangi, Yang, Hong, 2016.
Early assessment of Integrated Multi-satellite Retrievals for Global
Precipitation Measurement over China. Atmos. Res.
Hao, Z., Zhang, Y., Yang, C., Li, J., Thondup, D., 2013. Effects of
topography and snowmelt on hydrologic simulation in the Yellow River’s
source region. Shuikexue Jinzhan/Advances Water Sci.
Harpold, A.A., Kaplan, M.L., Zion, K.P., Timothy, L., Mcnamara, J.P.,
Seshadri, R., Rina, S., Steele, C.M., 2017. Rain or snow: hydrologic
processes, observations, prediction, and research needs. Hydrol. Earth
Syst. Sci. 21, 1–48.
Hou, A.Y., Kakar, R.K., Neeck, S., Azarbarzin, A., Kummerow, C.D.,
Kojima, M., Oki, R., Nakamura, K., Iguchi, T., 2013. The Global
Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 95,
701–722.
Hu, Y., Maskey, S., Uhlenbrook, S., Zhao, H., 2011. Streamflow trends
and climate linkages in the source region of the Yellow River, China.
Hydrol. Process. 25, 3399–3411. https://doi.org/10.1002/hyp.8069
Huffman, G.J., Adler, R.F., Bolvin, D.T., Nelkin, E.J., 2010a. The TRMM
Multi-Satellite Precipitation Analysis (TMPA). j hydrometeor.
Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Wolff, D.B., Adler, R.F., Gu,
G., Yang, H., Bowman, K.P., Stocker, E.F., 2010b. The TRMM
Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear,
Combined-Sensor Precipitation Estimates at Fine Scales. Satellite
Rainfall Applications for Surface Hydrology.
Immerzeel, W.W., Beek Van, L.P.H., Bierkens, M.F.P., 2010. Climate
change will affect the Asian water towers. Science 328, 1382–5.
Immerzeel, W.W., Droogers, P., Jong, S.M.D., Bierkens, M., 2009.
Large-scale monitoring of snow cover and runoff simulation in Himalayan
river basins using remote sensing. Remote Sens. Environ. 113, 40–49.
Junliang, J., Guoqing, W., Guishan, L., Ruimin, H., Qingye, H., 2013.
Responses of hydrology and water resources to the climate change in the
Yellow River source region. J. Arid L. Resour. Environ. 27, 137–143.
https://doi.org/10.13448/j.cnki.jalre.2013.05.029
Li, Y., Wang, Y., Zheng, J., Yang, M., 2019. Investigating spatial and
temporal variation of hydrological processes in western China driven by
CMADS. Water (Switzerland) 11. https://doi.org/10.3390/w11030435
Liu, J., Shanguan, D., Liu, S., Ding, Y., 2018. Evaluation and
hydrological simulation of CMADS and CFSR reanalysis datasets in the
Qinghai-Tibet Plateau. Water (Switzerland).
https://doi.org/10.3390/w10040513
Liu, X., Chang, X., 2005. A Summary of Study on RunoffVar iations in
Source Reg ion of the Yellow R iver. YELLOW RIVER 27, 6–12.
https://doi.org/1000 - 1379(2005)02 - 0006 -03
Lu, X., Wei, M., Tang, G., Zhang, Y., 2018. Evaluation and correction of
the TRMM 3B43V7 and GPM 3IMERGM satellite precipitation products by use
of ground-based data over Xinjiang, China. Environ. Earth Sci. 77, 209.
Mark, Richardson, Matthew, Lebsock, Matthew, Christensen, Graeme,
Stephens, David, Bolvin, 2016. Status of high-latitude precipitation
estimates from observations and reanalyses. J. Geophys. Res. D. Atmos.
JGR 121, 4468–4486.
Masih, I., Maskey, S., Uhlenbrook, S., Smakhtin, V., 2011. Assessing the
Impact of Areal Precipitation Input on Streamflow Simulations Using the
SWAT Model1. Jawra J. Am. Water Resour. Assoc. 47, 179–195.
Meng, X., Shi, C., Liu, S., Wang, H., Lei, X., Liu, Z., Ji, X., Cai, S.,
Zhao, Q., 2016. CMADS Datasets and Its Application in Watershed
Hydrological Simulation: A Case Study of the Heihe River Basin. Pearl
River 37, 1–19. https://doi.org/10.3969/j.issn.1001-9235.2016.07.001
Meng, X., Zhang, X., Yang, M., Wang, H., Chen, J., Pan, Z., Wu, Y.,
2019. Application and evaluation of the China Meteorological
Assimilation Driving Datasets For The Swat Model (CMADS) in poorly
gauged regions in Western China. Water (Switzerland) 11, 1–28.
https://doi.org/10.3390/w11102171
Mengyaun, W., Hongwei, X., Jie, Z., Yiping, W., 2019. Runoff simulation
of the Yellow River source region based on SWAT model. J. Qinghai Univ.
37, 39–46. https://doi.org/10.13901/j.cnki.qhwxxbzk.2019.01.007
Monteiro, J., Strauch, M., Srinivasan, R., Abbaspour, K., Gücker, B.,
2016. Accuracy of grid precipitation data for Brazil: application in
river discharge modelling of the Tocantins catchment. Hydrol. Process.
30.
Moriasi, D.N., Gitau, M.W., Pai, N., Daggupati, P., 2015. Hydrologic and
water quality models: Performance measures and evaluation criteria.
Trans. ASABE 58, 1763–1785. https://doi.org/10.13031/trans.58.10715
Mou, L.T., Santo, H., 2018. Comparison of GPM IMERG, TMPA 3B42 and
PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res.
202, 63–76.
Nash, J.E., Sutcliffe, J. V, 1970. River flow forecasting through
conceptual models part I — A discussion of principles - ScienceDirect.
J. Hydrol. 10, 282–290.
Nhi, P., Khoi, D.N., Hoan, N.X., 2018. Evaluation of five gridded
rainfall datasets in simulating streamflow in the upper Dong Nai river
basin, Vietnam. Int. J. Digit. Earth 1–17.
Noh, Y., Liu, G., Jones, A.S., H Aa R, T., 2009. Toward snowfall
retrieval over land by combining satellite and in situ measurements. J.
Geophys. Res. Atmos. 114.
Prakash, S., Mitra, A.K., Pai, D.S., AghaKouchak, A., 2016. From TRMM to
GPM: How well can heavy rainfall be detected from space? Adv. Water
Resour. https://doi.org/10.1016/j.advwatres.2015.11.008
Qin, Y., Chen, Z., Shen, Y., Zhang, S., Shi, R., 2014. Evaluation of
Satellite Rainfall Estimates overtheChineseMainland. Remote Sens. 6,
11649–11672.
Roth, V., Lemann, T., 2016. Comparing CFSR and conventional weather data
for discharge and soil loss modelling with SWAT in small catchments in
the Ethiopian Highlands. Hydrol. Earth Syst. Sci.
https://doi.org/10.5194/hess-20-921-2016
Ruan, H., Zou, S., Yang, D., Wang, Y., Yin, Z., Lu, Z., Li, F., Xu, B.,
2017. Runoff simulation by SWAT model using high-resolution gridded
precipitation in the upper Heihe River Basin, Northeastern Tibetan
Plateau. Water (Switzerland) 9, 1–23. https://doi.org/10.3390/w9110866
Saha, S., Moorthi, S., Pan, H.L., Wu, X., Wang, Jiande, Nadiga, S.,
Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D.,
Grumbine, R., Gayno, G., Wang, Jun, Hou, Y.T., Chuang, H.Y., Juang,
H.M.H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Van Delst, P.,
Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S.,
Van Den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y.,
Huang, B., Schemm, J.K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M.,
Zhou, S., Higgins, W., Zou, C.Z., Liu, Q., Chen, Y., Han, Y., Cucurull,
L., Reynolds, R.W., Rutledge, G., Goldberg, M., 2010. The NCEP climate
forecast system reanalysis. Bull. Am. Meteorol. Soc.
https://doi.org/10.1175/2010BAMS3001.1
Saha, S., Moorthi, S., Wu, X., Wang, J., Becker, E., 2014. The NCEP
climate forecast system version 2. J. Clim. 27, 2185–2208.
Serreze, M.C., Barrett, A.P., Lo, F., 2005. Northern High-Latitude
Precipitation as Depicted by Atmospheric Reanalyses and Satellite
Retrievals. Mon. Weather Rev. 133, 3407–3430.
Shakil, Ahmad, Romshoo, Reyaz, A., Dar, Irfan, Rashid, Asif, Marazi,
2015. Implications of Shrinking Cryosphere Under Changing Climate on the
Streamflows in the Lidder Catchment in the Upper Indus Basin, India.
Arct. Antarct. Alp. Res.
Sheng, H.U., Qiu, H., Yang, D., Cao, M., Song, J., Jiang, W.U., Huang,
C., 2017. Evaluation of the applicability of climate forecast system
reanalysis weather data for hydrologic simulation: A case study in the
Bahe River Basin of the Qinling Mountains, China. J. Geogr. Sci. 27,
546–564.
Shuai, Z., Yimin, W., Aijun, G., Kai, Z., Ziyan, L., 2019. Influence of
uncertainties in SWAT model parameters on runoff simulation in upper
reaches of the Yellow River. J. Northwest A&F Univ. (Nat. Sci. Ed) 47,
144–154. https://doi.org/10.13207/j.cnki.jnwafu.2019.08.018
Sorrel, M., 2010. The NCEP Climate Forecast System Reanalysis.
Bull.amer.meteor.soc 91, 1015–1057.
https://doi.org/10.1175/2010BAMS3001.1
Strauch, M., Bernhofer, C., Koide, S., Volk, M., Lorz, C., Makeschin,
F., 2012. Using precipitation data ensemble for uncertainty analysis in
SWAT streamflow simulation. J. Hydrol. 414, 413–424.
Tang, X., Zhang, J., Wang, G., Yang, Q., Yang, Y., Guan, T., Liu, C.,
Jin, J., Liu, Y., Bao, Z., 2019. Evaluating Suitability of Multiple
Precipitation Products for the Lancang River Basin. Chinese Geogr. Sci.
29, 37–57. https://doi.org/10.1007/s11769-019-1015-5
Tekeli, A.E., Fouli, H., 2016. Evaluation of TRMM satellite-based
precipitation indexes for flood forecasting over Riyadh City, Saudi
Arabia. J. Hydrol. 471–479.
Tian, Y., Peters-Lidard, C.D., 2010. A global map of uncertainties in
satellite‐based precipitation measurements. Geophys. Res. Lett. 37.
Tuo, Y., Duan, Z., Disse, M., Chiogna, G., 2016. Evaluation of
precipitation input for SWAT modeling in Alpine catchment: A case study
in the Adige river basin (Italy). Sci. Total Environ. 573, 66–82.
https://doi.org/10.1016/j.scitotenv.2016.08.034
Villarán, L.G.O.I.C.C.F. de, 2014. Rainfall estimation in SWAT: An
alternative method to simulate orographic precipitation. J. Hydrol. 509,
257–265.
Villarini, G., Krajewski, W.F., Smith, J.A., 2009. New paradigm for
statistical validation of satellite precipitation estimates: Application
to a large sample of the TMPA 0.25° 3-hourly estimates over Oklahoma. J.
Geophys. Res. Atmos. 114.
Viviroli, D., Weingartner, R., 2004. The hydrological significance of
mountains: from regional to global scale. Hydrol. Earth Syst. Sci. 8.
Wang, N., Liu, Wenbin, Sun, F., Yao, Z., Wang, H., Liu, Wanqing, 2020.
Evaluating satellite-based and reanalysis precipitation datasets with
gauge-observed data and hydrological modeling in the Xihe River Basin,
China. Atmos. Res. 234. https://doi.org/10.1016/j.atmosres.2019.104746
Wu, Z., Du, H., Zhao, D., Li, M., Meng, X., Zong, S., 2012. Estimating
daily global solar radiation during the growing season in Northeast
China using the ngstrm–Prescott model. Theor. Appl. Climatol. 108,
495–503.
Xu, Z., He, W., 2006. Spatial and Temporal Characteristics and Change
Trend of Climatic Elements in the Headwater Region of the Yellow River
in Recent 40 Years. Plateau Meteoro Logy 25, 906–913.
https://doi.org/10.1016/S1003-6326(06)60040-X (In Chinese)
Yan, L., Di, L., Liangliang, B., Caijin, Z., Zhongying, H., Xingdong,
L., Wen, W., Shaohong, S., Yuntao, Y., 2020. A review on water resources
stereoscopic monitoring systems based on multisource data. J. Remote
Sensing(Chinese) 24, 787–803. https://doi.org/10.11834/jrs.20200123
Yang, M., Liu, G., Chen, T., Chen, Y., Xia, C., 2020. Evaluation of GPM
IMERG precipitation products with the point rain gauge records over
Sichuan, China. Atmos. Res. 246, 105101.
https://doi.org/10.1016/j.atmosres.2020.105101
Yong, B., Chen, B., Gourley, J.J., Ren, L., Hong, Y., Chen, X., Wang,
W., Chen, S., Gong, L., 2014. Intercomparison of the Version-6 and
Version-7 TMPA precipitation products over high and low latitudes basins
with independent gauge networks: Is the newer version better in both
real-time and post-real-time analysis for water resources and hydrologic
extr. J. Hydrol. 508, 77–87.
Yuan, F., Berndtsson, R., Zhang, L., Uvo, C.B., Hao, Z., Wang, X.,
Yasuda, H., 2015. Hydro climatic trend and periodicity for the source
region of the Yellow river. J. Hydrol. Eng.
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001182
Yuan, F., Wang, B., Shi, C., Cui, W., Zhao, C., Liu, Y., Ren, L., Zhang,
L., Zhu, Y., Chen, T., Jiang, S., Yang, X., 2018. Evaluation of
hydrological utility of IMERG Final run V05 and TMPA 3B42V7 satellite
precipitation products in the Yellow River source region, China. J.
Hydrol. https://doi.org/10.1016/j.jhydrol.2018.06.045
Yw, A., Lga, B., Hz, C., Bing, Z.A., Mld, A., 2019. Hydroclimate
assessment of gridded precipitation products for the Tibetan Plateau.
Sci. Total Environ. 660, 1555–1564.
Zhang, L., Meng, X., Wang, H., Yang, M., Cai, S., 2020. Investigate the
applicability of CMADS and CFSR reanalysis in Northeast China. Water
(Switzerland). https://doi.org/10.3390/W12040996
Zhenchun, H., Yueguan,Zhang, Chuanguo,Yang, Jiawei,Li, Thondup, D.,
2013. Effects of topography and snowmelt on hydrologic simulation in the
Yellow River’s source region. Adv. Water Sci. Methodol. 24, 311–318.
https://doi.org/10.14042/j.cnki.32.1309.2013.03.018
Zhu, Q., Xuan, W., Liu, L., Xu, Y.P., 2016. Evaluation and hydrological
application of precipitation estimates derived from PERSIANN-CDR, TRMM
3B42V7, and NCEP-CFSR over humid regions in China. Hydrol. Process. 30,
3061–3083. https://doi.org/10.1002/hyp.10846
Zhu, X., Zhang, M., Wang, S., Qiang, F., Zeng, T., Ren, Z., Dong, L.,
2015. Comparison of monthly precipitation derived from high-resolution
gridded datasets in arid Xinjiang, central Asia. Quat. Int. 358,
160–170.