Cited references
Ågren, Anneli M.; Paul, Siddhartho Shekhar; Lidberg, William (2022),
“Mapped drainage ditches in forested landscapes”, Mendeley Data, V1,
doi: 10.17632/zxkg43jsx8.1
Buntgen, U. et al. (2021). Recent European drought extremes beyond
Common Era background variability. Nat Geosci, doi:
10.1038/s41561-021-00698-0.
Evans, C.D. et al. (2021). Overriding water table control on managed
peatland greenhouse gas emissions. Nature 593, 548–552, doi:
10.1038/s41586-021-03523-1.
Finér, L. et al. (2021). Drainage for forestry increases N, P and TOC
export to boreal surface waters. Sci. Tot. Environ, 762, 144098, doi:
10.1016/j.scitotenv.2020.144098.
IPCC, The Physical Science Basis,
https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/,
2021.
Kreyling, J. et al. (2021). Rewetting does not return drained fen
peatlands to their old selves. Nature Com., 12, 5693, doi:
10.1038/s41467-021-25619-y.
Lidberg, W., Westphal, F., & Ågren, A. (2022).
Mapping-drainage-ditches-in-forested-landscapes-using-deep-learning-and-aerial-laser-scanning
(Version 1.0.0) [Computer software].https://doi.org/10.5281/zenodo.1234
Lindenmayer, D.B., Hobbs, R.J., Likens, G.E., Krebs, C.J. & Banks, S.C.
(2011). Newly discovered landscape traps produce regime shifts in wet
forests. Proc. Natl. Acad. Sci., 108, 15887-15891, doi:
10.1073/pnas.1110245108.
Lindsay, J. B. (2014, April). The whitebox geospatial analysis tools
project and open-access GIS. In Proceedings of the GIS Research UK 22nd
Annual Conference, The University of Glasgow (pp. 16-18).
Löfmarck, E., Uggla, Y., & Lidskog, R. (2017). Freedom with what?
Interpretations of “responsibility” in Swedish forestry practice.
Forest Policy and Economics, 75, 34-40, doi:
10.1016/j.forpol.2016.12.004.
Malmström, C. Meddelanden från Statens skogsförsöksanstalt 26:1, 1931
(In Swedish).
Menberu, M. W., Tahvanainen, T., Marttila, H., Irannezhad, M., Ronkanen,
A. K., Penttinen, J., & Kløve, B. (2016). Water‐table‐dependent
hydrological changes following peatland forestry drainage and
restoration: Analysis of restoration success. Wat. Resour. Res., 52,
3742-3760, doi: 10.1002/2015WR018578.
Nieminen, M. Sarkkola, S., Sallantaus, T., Hasselquist, E.M. & Laudon,
H. (2021). Peatland drainage-a missing link behind increasing TOC
concentrations in waters from high latitude forest catchments? Sci. Tot.
Environ. 774, 145150, doi: 10.1016/j.scitotenv.2021.145150.
Peacock, M. et al. (2021). Small artificial waterbodies are widespread
and persistent emitters of methane and carbon dioxide. Glob. Chang.
Biol., 27, 5109-5123, doi: 10.1111/gcb.15762.
Pierson, P. (2000). Increasing returns, path dependence, and the study
of politics. American political science review, 94(2), 251-267, doi:
10.2307/2586011.
Sit, M., Demiray, B. Z., Xiang, Z., Ewing, G. J., Sermet, Y., & Demir,
I. (2020). A comprehensive review of deep learning applications in
hydrology and water resources. Water Sci. Technol., 82, 2635–2670, doi:
10.2166/wst.2020.369.
Spinoni, J., Vogt, J. V., Naumann, G., Barbosa, P., & Dosio, A. (2018).
Will drought events become more frequent and severe in Europe? Int. J.
Climatol., 38, 1718-1736, doi: 10.1002/joc.5291.
Strack, M. (2008). Peatlands and climate change, International Peat
Society.
Unruh, G.C. & Carrillo-Hermosilla, J. (2006). Globalizing carbon
lock-in. Energy Policy, 34, doi: 10.1016/j.enpol.2004.10.013.