References
Alvim R. G. F., Itabaiana Jr. I., Castilho L. R. (2019). Zika virus-like
particles (VLPs): stable cell lines and continuous perfusion processes
as a new potential vaccine manufacturing platform. Vaccine37:6970-7. doi :10.1016/j.vaccine.2019.05.064
Bielser, J. M., Wolf, M., Souquet, J., Broly, H., Morbidelli, M. (2018).
Perfusion mammalian cell culture for recombinant protein manufacturing
– A critical review. Biotechnology Advances , 36, 1628-1640.doi :doi.org/10.1016/j.biotechadv.2018.04.011
Carvalho, R. J. & Castilho, L. R. (2017). Tools Enabling Continuous and
Integrated Upstream and Downstream Processes in the Manufacturing of
Biologicals. In: Continuous Biomanufacturing: Innovative Technologies
and Methods (pp 31-61). Wiley-VCH Verlag GmbH & Co. KGaA.
Castilho, L. R. (2015). Continuous animal cell perfusion processes: the
first step toward integrated continuous biomanufacturing. In: Continuous
Processing in Pharmaceutical Manufacturing (pp. 115–154). Wiley
Blackwell.
Centers for Disease Control and Prevention – CDC (September 14, 2018).
Global health newsroom – yellow fever. Retrieved from
https://www.cdc.gov/globalhealth/newsroom/topics/yellowfever/index.html
Centers for Disease Control and Prevention – CDC (January 15, 2019).
Yellow fever. https://www.cdc.gov/yellowfever/index.html
Clincke, M. F., Molleryd, C., Zhang, Y., Lindskog, E., Walsh, K.,
Chotteau, V. (2013) Very high density of CHO cells in perfusion by ATF
or TFF in WAVE bioreactor. Part I. Effect of the cell density on the
process. Biotechnol. Progress 29, pp. 754-767.doi :10.1002/btpr.1704
Coronel, J., Behrendta, I., Bürgin, T., Anderlei, T., Sandig, V.,
Reichlad, U., et al. (2019). Influenza A virus production in a
single-use orbital shaken bioreactor with ATF or TFF perfusion systems.Vaccine 37, 7011–7018. doi :10.1016/j.vaccine.2019.06.005
Coronel, J., Heinrich, C., Klausing, S., Noll, T., Figueredo-Cardero,
A., Castilho, L. R. (2020a). Perfusion process combining low temperature
and valeric acid for enhanced recombinant factor VIII production.Biotechnology Progress , 36:e2915.doi :10.1002/btpr.2915
Coronel, J., Gränicher, G., Sandig, V., Noll, T., Genzel, Y., Reichl, U.
(2020b). Application of an inclined settler for cell culture-based
influenza a virus production in perfusion mode. Front. Bioeng.
Biotechnol. 8:672. doi :10.3389/fbioe.2020.00672
Dowd J.E., Jubb, A., K. Kwok, E., Piret, J.M. (2003). Optimization and
control of perfusion cultures using a viable cell probe and cell
specific perfusion rates. Cytotechnology volume 42, pages 35–45.doi :10.1023/A:1026192228471
Fontana, D., Kratje, R., Etcheverrigaray, M., Prieto, C. (2015).
Immunogenic virus-like particles continuously expressed in mammalian
cells as a veterinary rabies vaccine candidate. Vaccine ,
33:4238-4246. doi :10.1016/j.vaccine.2015.03.088
Frierson, J. G. (2010). The yellow fever vaccine: a history. Yale
Journal of Biology and Medicine 83: 77-85. PMID: 20589188
Fuenmayor J., Gòdia F. and Cervera L. (2017) Production of virus-like
particles for vaccines. New Biotechnology 39(Pt B):174-180.doi : 10.1016/j.nbt.2017.07.010
Garske, T., Van Kerkhove, M.D., Yactayo, S., Ronveaux, O., Lewis, R. F.,
Staples, J. E., Perea, W., Ferguson, N. M., Yellow Fever Expert
Committee. (2014). Yellow Fever in Africa: estimating the burden of
disease and impact of mass vaccination from outbreak and serological
data. PLoS Med 6;11(5):e1001638. doi:
10.1371/journal.pmed.1001638
Krol, E., Brzuska, G., Szewczyk, B. (2019). Production and biomedical
application of flavivirus-like particles. Trends in Biotechnology37, No. 11. doi:10.1016/j.tibtech.2019.03.013
Lavado-García J., Cervera L., Gòdia F. (2020). An alternative perfusion
approach for the intensification of virus-like particle production in
HEK293 cultures. Front Bioeng Biotechnol . 8:617.
doi:10.3389/fbioe.2020.00617
Lee, J., Gan, H., Latiff, S., Chuah, C., Lee, W., Yang, Y., Loo, B., Ng,
S., Gagnon, P. (2012). Principles and applications of steric exclusion
chromatography. Journal of Chromatography A , 1270, pp.162-170.
doi:10.1016/j.chroma.2012.10.062
Levanova, A. and Poranen, M. (2018). Application of steric exclusion
chromatography on monoliths for separation and purification of RNA
molecules. Journal of Chromatography A , 1574, pp.50-59.
doi:10.1016/j.chroma.2018.08.063
Lima, T. M.; Souza, M. O., Castilho, L. R. (2018). Purification of
flavivirus VLPs by a two-step chromatographic process. Vaccine37, Issue 47, 7061-7069. doi.org/10.1016/j.vaccine.2019.05.066
Lindenbach, B.D., Thiel, H.J., and Rice, C.M. (2007). Flaviviridae: the
viruses and their replication. In Fields Virology, D.M. Knipe and P.M.
Howley, eds. (Philadelphia: Lippincott-Williams & Wilkins), pp.
1101–1152.
Marichal-Gallardo, P., Pieler, M., Wolff, M. and Reichl, U. (2017).
Steric exclusion chromatography for purification of cell culture-derived
influenza A virus using regenerated cellulose membranes and polyethylene
glycol. Journal of Chromatography A , 1483, pp.110-119.
doi:10.1016/j.chroma.2016.12.076
Mohsen, M. O., Zha, L., Cabral-Miranda, G., Bachmann, M. F. (2017).
Major findings and recent advances in virus-like particle (VLP)-based
vaccines. Vaccine 34: 123-132. doi:10.1016/j.smim.2017.08.014
Monath, T. P. & Vasconcelos, P.F.C. (2015) Yellow fever. Journal
of Clinical Virology 64: 160–173. doi:10.1016/j.jcv.2014.08.030
Ndeffo-Mbah, M.L. & Pandey, A. (2020). Global risk and elimination of
yellow fever epidemics. The Journal of Infectious Diseases221:12, 2026–2034, doi:10.1093/infdis/jiz375
Nikolay, A., Castilho, L.R., Reichl, U., Genzel, Y. (2018). Propagation
of Brazilian Zika virus strains in static and suspension cultures using
Vero and BHK cells. Vaccine 36, Issue 22, Pages 3140-3145.
doi:10.1016/j.vaccine.2017.03.018
Nikolay, A., Bissinger, T., Gränicher, G., Wu, Y., Genzel, Y., Reichl,
U. (2020a) Perfusion control for high cell density cultivation and viral
vaccine production. In Animal Cell Biotechnology: Methods and Protocols,
Methods in Molecular Biology, vol. 2095. Springer Science+Business
Media, LLC, part of Springer Nature. doi:10.1007/978-1-0716-0191-4_9
Nikolay, A., de Grooth, J., Genzel, Y., Wood, J. A., Reichl, U. (2020b).
Virus harvesting in perfusion culture: Choosing the right type of hollow
fiber membrane. Biotechnology and Bioengineering 2020;1–13.
doi:10.1002/bit.27470
Pato, T. P., Souza, M. C. O., Mattos, D. A., Caride, E., Ferreira, D.
F., Gaspar, L. P., Freire, M. S., Castilho, L. R. (2019). Purification
of yellow fever virus produced in Vero cells for inactivated vaccine
manufacture. Vaccine 27;37(24):3214-3220. doi:
10.1016/j.vaccine.2019.04.077
Paules, C.I., Fauci, A.S. (2017). Yellow fever — once again on the
radar screen in the Aamericas. N Engl J Med 376:1397-1399. doi:
10.1056/NEJMp1702172
Pierson, T. C., Fremont, D. H., Kuhn, R. J., Diamond, M. S. (2008).
Structural insights into the mechanisms of antibody-mediated
neutralization of flavivirus infection: implications for vaccine
development. Cell Host and Microbe 4: 229–238.
doi:10.1016/j.chom.2008.08.004.
Porudominsky, R., Gotuzzo, E.H. (2018). Yellow fever vaccine and risk of
developing serious adverse events: a systematic review. Rev Panam
Salud Publica 5;42:e75. doi: 10.26633/RPSP.2018.75.
Seligman, S. (2014). Risk groups for yellow fever vaccine-associated
viscerotropic disease (YEL-AVD). Vaccine 32:5769-75. doi:
10.2147/DDDT.S99600
Shearer, F. M., Longbottom, J., Browne, A. J., Pigott, D. M., Brady, O.
J., Kraemer, M. U. G., Marinho, F., Yactayo, S., Araújo, V. E. M.,
Nóbrega, A. A., Fullman,N. Ray, S. E. Mosser, J. F., Stanaway, J. D.
Lim, S. S., Reiner Jr., R. C., Moyes, C. L., Hay, S. I., Golding, N.
(2018). Existing and potential infection risk zones of yellow fever
worldwide: a modelling analysis. Lancet Glob Health 6: e270–78.
doi:10.1016/S2214-109X(18)30024-X
Sutermaster, B. A. & Darling, E. M. (2019). Considerations for
high-yield, high-throughput cell enrichment: fluorescence versus
magnetic sorting. Scientific Reports volume 9, Article number:
227. doi:10.1038/s41598-018-36698-1
Venereo-Sanchez, A., Simoneau, M., Lanthier, S., Chahal, P., Bourget,
L., Ansorge, S., Gilbert, R., Henry, O., Kamen, A. (2017). Process
intensification for high yield production of influenza H1N1 Gag
virus-like particles using an inducible HEK-293 stable cell line.Vaccine , 35(33), 4220–4228. doi: 10.1016/j.vaccine.2017.06.024
Wang, J. W. & Roden, R. B. (2013) Virus-like particles for the
prevention of human papillomavirus-associated malignancies. Expert
Rev Vaccines 12, 129–141. doi:10.1586/erv.12.151
Wasserman, S., Tambyah, P.A., Lim, P.L. (2016). Yellow fever cases in
Asia: primed for an epidemic. Int J Infect Dis 48:98-103. doi:
10.1016/j.ijid.2016.04.025.
Wong, S.H., Jassey A., Wang, J. Y., Liu, CH., Lin, LT. (2019).
Virus-like particle systems for vaccine development against viruses in
the Flaviviridae family. Vaccines 7, 123.
doi:10.3390/vaccines7040123
World Health Organization - WHO (June 16, 2016). Yellow fever global
vaccine stockpile in emergencies. Retrieved from
https://www.who.int/news-room/feature-stories/detail/yellow-fever-global-vaccine-stockpile-in-emergencies