References
Alvim R. G. F., Itabaiana Jr. I., Castilho L. R. (2019). Zika virus-like particles (VLPs): stable cell lines and continuous perfusion processes as a new potential vaccine manufacturing platform. Vaccine37:6970-7. doi :10.1016/j.vaccine.2019.05.064
Bielser, J. M., Wolf, M., Souquet, J., Broly, H., Morbidelli, M. (2018). Perfusion mammalian cell culture for recombinant protein manufacturing – A critical review. Biotechnology Advances , 36, 1628-1640.doi :doi.org/10.1016/j.biotechadv.2018.04.011
Carvalho, R. J. & Castilho, L. R. (2017). Tools Enabling Continuous and Integrated Upstream and Downstream Processes in the Manufacturing of Biologicals. In: Continuous Biomanufacturing: Innovative Technologies and Methods (pp 31-61). Wiley-VCH Verlag GmbH & Co. KGaA.
Castilho, L. R. (2015). Continuous animal cell perfusion processes: the first step toward integrated continuous biomanufacturing. In: Continuous Processing in Pharmaceutical Manufacturing (pp. 115–154). Wiley Blackwell.
Centers for Disease Control and Prevention – CDC (September 14, 2018). Global health newsroom – yellow fever. Retrieved from https://www.cdc.gov/globalhealth/newsroom/topics/yellowfever/index.html
Centers for Disease Control and Prevention – CDC (January 15, 2019). Yellow fever. https://www.cdc.gov/yellowfever/index.html
Clincke, M. F., Molleryd, C., Zhang, Y., Lindskog, E., Walsh, K., Chotteau, V. (2013) Very high density of CHO cells in perfusion by ATF or TFF in WAVE bioreactor. Part I. Effect of the cell density on the process. Biotechnol. Progress 29, pp. 754-767.doi :10.1002/btpr.1704
Coronel, J., Behrendta, I., Bürgin, T., Anderlei, T., Sandig, V., Reichlad, U., et al. (2019). Influenza A virus production in a single-use orbital shaken bioreactor with ATF or TFF perfusion systems.Vaccine 37, 7011–7018. doi :10.1016/j.vaccine.2019.06.005
Coronel, J., Heinrich, C., Klausing, S., Noll, T., Figueredo-Cardero, A., Castilho, L. R. (2020a). Perfusion process combining low temperature and valeric acid for enhanced recombinant factor VIII production.Biotechnology Progress , 36:e2915.doi :10.1002/btpr.2915
Coronel, J., Gränicher, G., Sandig, V., Noll, T., Genzel, Y., Reichl, U. (2020b). Application of an inclined settler for cell culture-based influenza a virus production in perfusion mode. Front. Bioeng. Biotechnol. 8:672. doi :10.3389/fbioe.2020.00672
Dowd J.E., Jubb, A., K. Kwok, E., Piret, J.M. (2003). Optimization and control of perfusion cultures using a viable cell probe and cell specific perfusion rates. Cytotechnology volume 42, pages 35–45.doi :10.1023/A:1026192228471
Fontana, D., Kratje, R., Etcheverrigaray, M., Prieto, C. (2015). Immunogenic virus-like particles continuously expressed in mammalian cells as a veterinary rabies vaccine candidate. Vaccine , 33:4238-4246. doi :10.1016/j.vaccine.2015.03.088
Frierson, J. G. (2010). The yellow fever vaccine: a history. Yale Journal of Biology and Medicine 83: 77-85. PMID: 20589188
Fuenmayor J., Gòdia F. and Cervera L. (2017) Production of virus-like particles for vaccines. New Biotechnology 39(Pt B):174-180.doi : 10.1016/j.nbt.2017.07.010
Garske, T., Van Kerkhove, M.D., Yactayo, S., Ronveaux, O., Lewis, R. F., Staples, J. E., Perea, W., Ferguson, N. M., Yellow Fever Expert Committee. (2014). Yellow Fever in Africa: estimating the burden of disease and impact of mass vaccination from outbreak and serological data. PLoS Med 6;11(5):e1001638. doi: 10.1371/journal.pmed.1001638
Krol, E., Brzuska, G., Szewczyk, B. (2019). Production and biomedical application of flavivirus-like particles. Trends in Biotechnology37, No. 11. doi:10.1016/j.tibtech.2019.03.013
Lavado-García J., Cervera L., Gòdia F. (2020). An alternative perfusion approach for the intensification of virus-like particle production in HEK293 cultures. Front Bioeng Biotechnol . 8:617. doi:10.3389/fbioe.2020.00617
Lee, J., Gan, H., Latiff, S., Chuah, C., Lee, W., Yang, Y., Loo, B., Ng, S., Gagnon, P. (2012). Principles and applications of steric exclusion chromatography. Journal of Chromatography A , 1270, pp.162-170. doi:10.1016/j.chroma.2012.10.062
Levanova, A. and Poranen, M. (2018). Application of steric exclusion chromatography on monoliths for separation and purification of RNA molecules. Journal of Chromatography A , 1574, pp.50-59. doi:10.1016/j.chroma.2018.08.063
Lima, T. M.; Souza, M. O., Castilho, L. R. (2018). Purification of flavivirus VLPs by a two-step chromatographic process. Vaccine37, Issue 47, 7061-7069. doi.org/10.1016/j.vaccine.2019.05.066
Lindenbach, B.D., Thiel, H.J., and Rice, C.M. (2007). Flaviviridae: the viruses and their replication. In Fields Virology, D.M. Knipe and P.M. Howley, eds. (Philadelphia: Lippincott-Williams & Wilkins), pp. 1101–1152.
Marichal-Gallardo, P., Pieler, M., Wolff, M. and Reichl, U. (2017). Steric exclusion chromatography for purification of cell culture-derived influenza A virus using regenerated cellulose membranes and polyethylene glycol. Journal of Chromatography A , 1483, pp.110-119. doi:10.1016/j.chroma.2016.12.076
Mohsen, M. O., Zha, L., Cabral-Miranda, G., Bachmann, M. F. (2017). Major findings and recent advances in virus-like particle (VLP)-based vaccines. Vaccine 34: 123-132. doi:10.1016/j.smim.2017.08.014
Monath, T. P. & Vasconcelos, P.F.C. (2015) Yellow fever. Journal of Clinical Virology 64: 160–173. doi:10.1016/j.jcv.2014.08.030
Ndeffo-Mbah, M.L. & Pandey, A. (2020). Global risk and elimination of yellow fever epidemics. The Journal of Infectious Diseases221:12, 2026–2034, doi:10.1093/infdis/jiz375
Nikolay, A., Castilho, L.R., Reichl, U., Genzel, Y. (2018). Propagation of Brazilian Zika virus strains in static and suspension cultures using Vero and BHK cells. Vaccine 36, Issue 22, Pages 3140-3145. doi:10.1016/j.vaccine.2017.03.018
Nikolay, A., Bissinger, T., Gränicher, G., Wu, Y., Genzel, Y., Reichl, U. (2020a) Perfusion control for high cell density cultivation and viral vaccine production. In Animal Cell Biotechnology: Methods and Protocols, Methods in Molecular Biology, vol. 2095. Springer Science+Business Media, LLC, part of Springer Nature. doi:10.1007/978-1-0716-0191-4_9
Nikolay, A., de Grooth, J., Genzel, Y., Wood, J. A., Reichl, U. (2020b). Virus harvesting in perfusion culture: Choosing the right type of hollow fiber membrane. Biotechnology and Bioengineering 2020;1–13. doi:10.1002/bit.27470
Pato, T. P., Souza, M. C. O., Mattos, D. A., Caride, E., Ferreira, D. F., Gaspar, L. P., Freire, M. S., Castilho, L. R. (2019). Purification of yellow fever virus produced in Vero cells for inactivated vaccine manufacture. Vaccine 27;37(24):3214-3220. doi: 10.1016/j.vaccine.2019.04.077
Paules, C.I., Fauci, A.S. (2017). Yellow fever — once again on the radar screen in the Aamericas. N Engl J Med 376:1397-1399. doi: 10.1056/NEJMp1702172
Pierson, T. C., Fremont, D. H., Kuhn, R. J., Diamond, M. S. (2008). Structural insights into the mechanisms of antibody-mediated neutralization of flavivirus infection: implications for vaccine development. Cell Host and Microbe 4: 229–238. doi:10.1016/j.chom.2008.08.004.
Porudominsky, R., Gotuzzo, E.H. (2018). Yellow fever vaccine and risk of developing serious adverse events: a systematic review. Rev Panam Salud Publica 5;42:e75. doi: 10.26633/RPSP.2018.75.
Seligman, S. (2014). Risk groups for yellow fever vaccine-associated viscerotropic disease (YEL-AVD). Vaccine 32:5769-75. doi: 10.2147/DDDT.S99600
Shearer, F. M., Longbottom, J., Browne, A. J., Pigott, D. M., Brady, O. J., Kraemer, M. U. G., Marinho, F., Yactayo, S., Araújo, V. E. M., Nóbrega, A. A., Fullman,N. Ray, S. E. Mosser, J. F., Stanaway, J. D. Lim, S. S., Reiner Jr., R. C., Moyes, C. L., Hay, S. I., Golding, N. (2018). Existing and potential infection risk zones of yellow fever worldwide: a modelling analysis. Lancet Glob Health 6: e270–78. doi:10.1016/S2214-109X(18)30024-X
Sutermaster, B. A. & Darling, E. M. (2019). Considerations for high-yield, high-throughput cell enrichment: fluorescence versus magnetic sorting. Scientific Reports volume 9, Article number: 227. doi:10.1038/s41598-018-36698-1
Venereo-Sanchez, A., Simoneau, M., Lanthier, S., Chahal, P., Bourget, L., Ansorge, S., Gilbert, R., Henry, O., Kamen, A. (2017). Process intensification for high yield production of influenza H1N1 Gag virus-like particles using an inducible HEK-293 stable cell line.Vaccine , 35(33), 4220–4228. doi: 10.1016/j.vaccine.2017.06.024
Wang, J. W. & Roden, R. B. (2013) Virus-like particles for the prevention of human papillomavirus-associated malignancies. Expert Rev Vaccines 12, 129–141. doi:10.1586/erv.12.151
Wasserman, S., Tambyah, P.A., Lim, P.L. (2016). Yellow fever cases in Asia: primed for an epidemic. Int J Infect Dis 48:98-103. doi: 10.1016/j.ijid.2016.04.025.
Wong, S.H., Jassey A., Wang, J. Y., Liu, CH., Lin, LT. (2019). Virus-like particle systems for vaccine development against viruses in the Flaviviridae family. Vaccines 7, 123. doi:10.3390/vaccines7040123
World Health Organization - WHO (June 16, 2016). Yellow fever global vaccine stockpile in emergencies. Retrieved from https://www.who.int/news-room/feature-stories/detail/yellow-fever-global-vaccine-stockpile-in-emergencies