The coherent interaction between localized surface plasmon resonance modes and excitons of a single or a collection of quantum emitters have fueled the development of novel applications in quantum optics and material science. In this work, using first-principles simulations, we analyse the modifications in absorption spectra and electric near-field enhancements in a structure consisting of an aluminum nanotriangle interacting with a varying number of pyridine molecules (placed at the nanotriangle tips) in close proximity. What’s more, we find very interesting spatial variation in induced electron density and electric near-field enhancements with a remarkable dependence on the number of interacting pyridine molecules and the direction of light illumination. Our results may help to improve our understanding of the light-matter interaction at the sub-nanometer scale.