10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

ECOLOGY LETTERS
Letter

Component and ensemble density feedbacks decoupled by density-

independent processes

Running title: Phenomena hiding signals of density feedback

Corey J. A. Bradshaw?? | Salvador Herrando-Pérez®

Global Ecology, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South
Australia 5001, Australia

2Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, EpicAustralia.org
3Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Spanish National
Research Council (CSIC), Madrid, Spain

E-mails: corey.bradshaw@flinders.edu.au; shp@mncn.csic.es, salherra@gmail.com

Correspondence
C.J.A. Bradshaw: corey.bradshaw@flinders.edu.au; Telephone +61 8 8201 2090

Funding information
Australian Research Council, Grant/Award Number: CE170100015; European Union,
Grant/Award Number: LIFE18 NAT/ES/000121 LIFE DIVAQUA

Number of words in Abstract = 178
Number of words in Main text = 4286
Number of figures and tables = 2 tables; 4 figures

Number of references = 64

KEYWORDS
Australia, compensation, density dependence, carrying capacity, logistic growth, stationarity



34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49

50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Abstract

Analysis of long-term trends in abundance provide insights into population dynamics.
Population growth rates are the emergent interplay of fertility, survival, and dispersal, but the
density feedbacks on some vital rates (component) can be decoupled from density feedback
on population growth rates (ensemble). However, the mechanisms responsible for this
decoupling are poorly understood. We simulated component density feedbacks on survival in
age-structured populations of long-living vertebrates and quantified how imposed
nonstationarity (density-independent mortality and variation in carrying-capacity) modified
the ensemble feedback signal estimated from logistic-growth models to the simulated
abundance time series. The statistical detection of ensemble density feedback was largely
unaffected by density-independent processes, but catastrophic and proportional mortality
eroded the effect of density-dependent survival on ensemble-feedback strength more strongly
than variation in carrying capacity. Thus, phenomenological models offer a robust approach
to capture density feedbacks from nonstationary census data when density-independent

mortality is low.

INTRODUCTION

Compensatory density feedback describes a population’s ability to return to the
environment’s carrying capacity in response to an increase in population size (sensu
Herrando-Pérez et al. 2012b). This phenomenon is driven by adjustments to individual fitness
imposed by variation in per-capita resource availability, and associated processes of
predation, competition, parasitism, and dispersal (Fowler 1981; Matthysen 2005; Eberhardt et
al. 2008; Herrando-Pérez et al. 2012a). As survival and fertility rates ebb and flow in
response to variation in population density, it is theoretically possible to detect the density-
feedback signal in time series of abundance monitored at regular intervals over a sufficient
period (Brook & Bradshaw 2006; Herrando-Pérez et al. 2012a). There is now considerable
evidence that survival and fertility track population trends in many vertebrate (Eberhardt
2002; Paradis et al. 2002; Owen-Smith & Mason 2005; Pardo et al. 2017; Saunders et al.
2018; Doyle et al. 2020; Margalida et al. 2020; Morrison et al. 2021; Stillman et al. 2021)
and invertebrate (Azerefegne et al. 2001; Bonsall & Benmayor 2005; McGeoch & Price
2005; Jepsen et al. 2009; Maud et al. 2015; Marini et al. 2016; Ma 2021) species. Therefore,
given the irreplaceable importance of long-term monitoring of population size in applied

ecology and conservation (Herrando-Pérez et al. 2012a), assessing the presence of
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compensatory signals in censuses of population abundance remains an essential tool in the
ecologist’s toolbox (Bellier et al. 2016).

The family of self-limiting population-growth models including logistic growth curves
(‘phenomenological models’ hereafter) are convenient for describing density-feedback
signals in abundance time series (Eberhardt et al. 2008). These models use census data to
quantify the net effect of population size N on the rate of instantaneous growth r (Berryman
& Turchin 2001). Expressed as a proportional change in N between two time (t) steps (e.g.,
years or generations), the assumption is that r = loge(Nt+1/Nt) summarises the combination or
‘ensemble’ (Herrando-Pérez et al. 2012a) of all feedback mechanisms operating on
individual ‘component’ demographic rates (MUnster-Swendsen & Berryman 2005). The
problem is that population growth rates can be insensitive to variation in particular
demographic rates (Kolb et al. 2010; Battaile & Trites 2013; Burgi et al. 2015). Thus, across
109 observed censuses of bird and mammal populations, the strength of ‘component density
feedback’ (on demographic rates) explained only < 10% of the strength of ‘ensemble density
feedback’ (on population grow rate) using phenomenological models and after controlling for
time-series length and body size (Herrando-Pérez et al. 2012a). The reasons for such
decoupling are not well understood.

Determining the partial effects of different underlying mechanisms responsible for the
decoupling of component and ensemble density feedbacks is most often impossible for real
abundance time series. This analytical limitation occurs because the multiple, density-
dependent and -independent mechanisms generating population fluctuations change
themselves through time — a condition known as ‘nonstationarity’ (sensu Turchin 2003). We
therefore constructed stochastic, age-structured populations with known, component density
feedback on survival and imposed nonstationarity to population size via multiple
demographic scenarios emulating density-independent mortality and variation in carrying
capacity through time. We then simulated multiannual time series of abundance from those
populations and estimated the strength of ensemble density feedbacks from these. Our
prediction was that ensemble density feedbacks should track component feedbacks if survival
has a demographic impact, mediated by population size, on the population growth rate of
long-lived vertebrates, while our demographic framework allowed the quantification of true

and false detection of ensemble density feedbacks.

METHODS
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Our overarching aim was to simulate populations of long-living species and their time series
of abundance with various sources of nonstationarity. We describe below the set of test
species, the simulation of the base population model, component density feedbacks on
survival and time series of population abundance, the demographic scenarios considered, and

the phenomenological models used to quantify ensemble density feedbacks.

Test species

As the variability in population growth rates is driven primarily by survival rates for slower
life-history species of mammals (Heppell et al. 2000; Oli & Dobson 2003) and birds (Szther
& Bakke 2000), we parameterised the simulated populations to characterise the plausible
dynamics of 21 long-lived species of extant (n = 8) and extinct (n = 13) Australian
vertebrates from five taxonomic/functional groups (herbivore vombatiformes and
macropodiformes, large omnivore birds, carnivores, and invertivore monotremes), spanning
mean adult body masses of 1.7-2786 kg and generation lengths of 2.3-21 years (Bradshaw et
al. 2021; Table 1). These species differ in their resilience to environmental change, and
represent the slow end of the slow-fast continuum of life histories (Herrando-Pérez et al.
2012c) where high survival rates make it possible that reproductive efforts are dispersed over
the lifetime of individuals (Gaillard et al. 1989). A full justification of the selection of our

test species can be found in Bradshaw et al. (2021).

Base (age-structured) population model

The population model for each test species was a stochastic (parameters resampled within
their uncertainty bounds) Leslie transition matrix (M) following a pre-breeding design, with
o+l (i) x w+1 (j) elements (representing ages from 0 to w years) for females only, where @
represents maximum longevity. Fertility (mx) occupied the first row of the matrix, survival
probabilities (Sx) occupied the sub-diagonal, and the final diagonal transition probability
(M) was S, for all species — except Vombatus ursinus (VU; common wombat), Thylacinus
cynocephalus (TC; thylacine) and Sarcophilus harrisii (SH; devil) for which we set S, = 0 to
limit unrealistically high proportions of old individuals in the population given the evidence
for catastrophic mortality at  for the latter two species (Holz & Little 1995; Cockburn 1997,
Oakwood et al. 2001). Multiplying M by a population vector n estimates total population size
(Zn) at each forecasted time step (Caswell 2001). The base model was parameterised with no
= ADMw, where w is the right eigenvector of M (stable stage distribution), and A is the

surface area of the study zone (A = 250,000 km?) so that the species with the lowest no would

4
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have an initial population of at least several thousand individuals at the start of the
simulations. Based on theoretical equilibrium densities (D, km) calculated for each taxon

(Bradshaw et al. 2021), the species-specific carrying capacity K = DA.

Density feedback on survival
We simulated a compensatory density-feedback function by forcing a reduction modifier

(Sred) Of the Sx vector in each model according to Xn:

_*
(5
where the a, b, and ¢ constants for each species are adjusted to produce a stable population on
average over 40 generations (40| G1; see below) (Brook et al. 2006; Traill et al. 2010). This

Sred = [eq l]

formulation avoided exponentially increasing populations, optimised transition matrices to
produce parameter values as close as possible to the maximum potential rates of
instantaneous increase (rm) (Bradshaw et al. 2021), and so ensured that long-term population

dynamics were approximately stable at the species-specific K (see previous section). Here,

_ log((\;;M)l) [eq 2]

G
(vTM)1 is the dominant eigenvalue of the reproductive matrix R derived from M, and v is the
left eigenvector (Caswell 2001) of M. Thus, the total projection length in years (q) varied
across the 21 test species, from 92 (Dasyurus maculatus; DM; spot-tailed quoll) to 800
(Genyornis newtoni; GN; mihirung) years (median = 324 years with 95 % interquartiles of
[108, 762] years; Table 1), with one value of abundance being simulated per year. In each
iteration and annual time step, the Sx vector was S-resampled assuming a 5% standard
deviation of each Sx and a Gaussian-resampled mx vector. We deliberately avoided applying
density-feedback functions to fertility to isolate the component feedback to a single

demographic rate.

Nonstationarity
We added nonstationarity to our base population model through a catastrophic (density-
independent) mortality function to account for the probability of a catastrophic event (C)

scaling to generation length among vertebrates (Reed et al. 2003):

c="% [eq 3]

where pc = probability of catastrophe set at 0.14 given this is the mean probability per

generation observed across vertebrates (Reed et al. 2003). Once invoked at probability C, a -
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resampled proportion centred on 0.5 to the S-resampled Sx vector induced a ~ 50% mortality
event for that year (Bradshaw et al. 2013). A catastrophic event is defined as ... any 1-yr
peak-to-trough decline in estimated numbers of 50% or greater” (Reed et al. 2003). The
catastrophic function recreates the demographic effects of a density-independent process such
as extreme weather events, fires, disease outbreaks, or human harvest. However, we
considered the process here as a standard perturbation in all models, and then added specific

types of additional perturbations per scenario (see demographic scenarios below).

Abundance time series

From the base models (parameterised to incorporate age structure, density feedbacks on
survival, and catastrophic events in the Leslie matrices as described above), we generated
multiannual abundance time series up to 40| G| for each species. We standardised projection
length to 40| G because there is strong evidence that the length of a time series (q) dictates
the statistical power to detect an ensemble density-feedback signal in logistic growth curves
(Brook & Bradshaw 2006). Here, we summed the n vector over all age classes to produce a
total population size N, for each year t of each iteration i. We rejected the first |G]-
equivalent years of each projection as a burn-in to allow the initial (deterministic) age
distribution to calibrate to the stochastic expression of stability under compensatory density
feedback.

To ascertain the degree of nonstationary in the simulated abundance time series, we used
Turchin’s (2003) definition of nonstationarity as temporally variant mechanisms generating
population fluctuations. In that conceptual context, we calculated the mean and variance of
return time (Tr) — defined as the time required to return to equilibrium following a
disturbance (Berryman 1999) — for each abundance time series as:

M
M Zm:l TRm

Tp = 2=l tm [eq 4]
where Ty is the mean Tr across M steps of the time series. For each m™ time step,
TRm = SCm + SFm [eq 5]

where: S is the number of complete time steps taken before reaching Ty _, and Sg_ is the

fraction of time required to reach Ty in the M (final) step:

N,—N
SF = P

m " Np—Ng

[eq 6]

where N is the mean of the abundance time series (a proxy for K), Ny is the population size

prior to crossing N, and Na is the population size after crossing N.
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The variance of Tr is:

M 5 2
Var(Tg) = W [eq 7]

Thus, when Tg « Var(Ty) (i.e., Tr/Var(Tg) < 1), the time series is considered to be highly

nonstationary (Berryman 1999).

Demographic scenarios

We generated 10,000 abundance time series over 40| G| for each test species in each of nine
demographic scenarios that combined different types and magnitudes of nonstationarity in the
form of density-independent (catastrophic and proportional) mortality and variation in
carrying capacity (K) through time. Each times series represented the idiosyncratic
demography of a unique population occupying an area of 250,000 km? with zero dispersal
(see above).

We split the nine scenarios into two main groups: (1) eight testing the probability of a
false negative (reduced detection of ensemble density feedback when a component feedback
on survival existed), and (2) one testing the probability of a false positive (evidence of
ensemble density feedback when a component feedback on survival was absent) (see details
in Table 2). The false-negative scenarios included three subcategories: (1.1) i. fixed K with
no perturbations other than the stochasticity imposed by resampling demographic rates in the
Leslie matrices; (1.2) fixed K with generationally scaled catastrophes centred on 50%
mortality ii. leading to ¥ = 0, iii. as in ii, but with an additional, single ‘pulse’ perturbation of
90% mortality applied across the entire age structure at 20 generations, iv. a ‘harvest’-like
process where a consistent proportion of individuals is removed from the n vector at each
time step to produce 7 = -0.001 (i.e., weak, monotonic decline in average population size), or
v. as in iv, but where the resultant ¥ = -0.01 (i.e., strong, monotonic decline in average
population size); and (1.3) K fluctuations with vi. stochastically resampled K with a constant
K and a constant variance (via resampling the b parameter in equation [1]), vii. as in vi, but
where the resampling variance doubles over the projection interval (via a linear increase in
the standard error used to resample the b parameter in equation [1]), and viii. as in vi, but
where K declines at a rate of 0.001 over the projection interval (via decreasing the b
parameter in equation [1]). 2. The false-positive scenario 2ix. tested for false positives in the
ensemble signal by imposing a density-independent mortality via an increase in the

probability of catastrophe pc in equation [3] to produce # = 0 over 40| G]. In that scenario,
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we removed the component density-feedback on survival (i.e., setting Sred = 1) —

theoretically, populations lack a carrying capacity in the absence of density feedbacks.

Ensemble density feedbacks

After generating 10,000 time series for each of the 21 species following the nine
demographic scenarios (totalling 189,000 individual time series), we applied
phenomenological models to each time series to test the statistical evidence for an ensemble
compensatory density feedback, as well as quantify the strength of that feedback. Our
phenomenological models included four variants of the general logistic growth curve
(Verhulst 1838) following Brook and Bradshaw (2006):

r = log, (N;—J;l) =a+ BN, + ¢ [eq 8]

where Nt = population size at time t, a = intercept, S = strength of ensemble density feedback,
and &t = Gaussian random variable with a mean of zero and a variance o2 reflecting
uncorrelated stochastic variability in the instantaneous rate of population change r. Our first
two models are simple density-independent models (DI): (1) random walk, where a = 5 =0,
and (2) exponential growth, where £ = 0. The second two variants are density-dependent or
density-feedback models (DF): (3) Ricker-logistic (Ricker 1954), and (4) Gompertz-logistic
(Nelder 1961), where Nt on the right side of equation [8] is replaced with loge(N:). The latter
two models represent alternative situations where population growth rate varies in response
to unit (Ricker) or order-of-magnitude (Gompertz) changes in population size (Herrando-
Pérez et al. 2012b).

After fitting each of the four phenomenological models to each time series, we calculated
their relative likelihood by means of the Akaike’s information criterion (AIC) corrected for
finite number of samples (AIC:). We then expressed the evidence for an ensemble density-
feedback signal Pr(DF) as the sum of AICc weights (WAICc = model probability) (Burnham
& Anderson 2002) for the Ricker- and Gompertz-logistic models (i.e., YZwAICc-DF), and the
evidence for a lack of such signal as the sum of AICc weights for random walk and
exponential growth (i.e., ZwAICc-DI). This follows the logic that if 5 # 0 between r and Nt
(Ricker) or loge(Nt) (Gompertz) is more likely than g = 0 (random walk and exponential
growth), then there is stronger statistical support for an ensemble density feedback in the time
series than not (i.e., 2WAIC¢-DF > XwWAICc-DI implies Pr(DF) > 0.5).

We estimated the strength of the ensemble density-feedback signal as the negative value

of S estimated from the Gompertz-logistic model. We used the Gompertz-logistic £, instead
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of the Ricker-logistic 3, to estimate this strength because only the former characterises the
multiplicative nature of demographic rates (Doncaster 2008; Herrando-Pérez et al. 2012a).
To compare the component density feedback applied to survival in the stochastic age-
structured models to the ensemble density feedback estimated from the abundance time series
under the nine demographic scenarios, we plotted the negative value of Gompertz j relative
to 1 — Sred across all 21 species modelled.

We tested the correlation between ensemble and component density-feedback strength,
and between ensemble strength and the degree of stationarity, across species by calculating a
bootstrapped estimate of Spearman’s correlation p (treating relative differences in the metrics
as ranks). We uniformly resampled 10,000 times from the 95% confidence interval of each
metric for each species and demographic scenario, calculating p in turn, and then calculating
the median and 95% confidence interval of p. The relationships between ensemble and
component density-feedback strength (as well as between ensemble strength and stationarity)
showed some non-linearity, so we also fit simple exponential plateau models of the formy =
Ymax - (Ymax - Yo)e™® to these relationships. Here, yo is the starting value of component strength,
ymax IS the maximum component strength (- Gompertz ), k = rate constant (in units of x%),

and x is the component strength (1 — Sred).

RESULTS

Statistical evidence for density feedback
For each test species, when the simulated populations were subjected to a compensatory
density feedback on survival (age-structured Leslie matrices), the median probability for a
statistical signal of ensemble compensatory density-feedback (Pr(DF) = ZwWAICc-DF; see
Materials and methods) across 10,000 times series of abundance was near unity (> 0.99) for
the stable (¥ = 0) trajectories and most demographic scenarios (Fig. S1-S2 and S3 for
probability density plots of Pr(DF) across scenarios and the bootstrapped mean Pr(DF) per
species and scenario, respectively). Only the declining stochastic K scenario (1.3viii) had a
slightly smaller median Pr(DF) at 0.95. For the false-positive scenario (2ix), the median
Pr(DF) was 0.322. Generally, the extant dasyurid S. harrissii (SH; devil) and the flightless
bird Dromaius novaehollandiae (DN; emu) had the weakest evidence for density feedback
across the different scenarios (Fig. S3).

In summary, if a component density feedback was present, the phenomenological models

mostly detected the ensuing ensemble feedback (true positive) — regardless of whether a
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simulated population was perturbed via density-independent removal of individuals, or
altered K dynamics — in > 9 of every 10 time series; while false positives (component

feedback absent, ensemble feedback detected) occurred in < 4 of every 10 times series.

Degree of simulated stationarity

The addition of the generationally scaled 50% catastrophic (density-independent) mortality
reduced stationarity from a median of T /Var(Tg) ~ 0.28 (scenario 1.1i) to ~ 0.08 (scenario
1.2ii) (Fig. 1A). The scenarios imposing a catastrophic 90% mortality as a pulse at 20
generations (1.2iii), or additional proportional mortality driving a moderately (1.2iv; 7 = -
0.01) or rapidly (1.2v; ¥ =-0.001) declining population over 40 generations, all reduced
stationarity by approximately the same amount relative to the scenario without catastrophic
mortality (1.1i) (Fig. 1C). For the scenarios emulating fluctuations in K (1.3vi-viii), adding
stochasticity to K slightly increased stationarity relative to a fixed-K scenario (Fig. 1E). Only
when the stochastic K was forced to decline (scenario 1.3viii), the abundance time series
became highly nonstationary (Fig. 1E). The false-positive scenario (2.ix) resulted in
negligible change to stationarity when comparing populations experiencing (Fig. 2A), or not

experiencing (Fig. 2B), a component density feedback on survival.

Strength of density feedback

While the magnitude of statistical evidence for density feedback was largely invariant across
all demographic scenarios including a component density feedback on survival (Fig. S1 and
S2; see above), the estimated strength of the ensemble density feedback (-Gompertz £, see
Materials and methods) was highly sensitive to the type of perturbation the population
experienced. The addition of the generationally scaled 50% catastrophic (density-
independent) mortality under a fixed K (scenarios 1.1i vs. 1.2ii) reduced the correlation
(median p = 0.893 and 0.881, respectively) and slope between ensemble feedback strength
and component feedback strength (1 — Sred) across the 21 test species (Fig. 1B). The
catastrophic pulse scenario (1.2iii) returned the closest correlation (median p = 0.929)
between ensemble and component feedback strengths, although it also depressed the slope of
the relationship relative to the Krixed Scenario (Fig. 1D). These correlations were weakest for
the ¥ = -0.001 and = -0.01 scenarios (1.2v—vi; median p = 0.009 and -0.051, respectively),
which also captured a signal of depensation (population growth rate increases with

population size) in some abundance time series (Fig. 1D). For the demographic scenarios

10
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emulating fluctuations in K (1.3), the correlation between unit change in ensemble and
component density feedback strength was generally higher than those where < 0 (Fig. 1F;
median p ranging from 0.803 to 0.881), with the strongest mismatch occurring when K
declined by a rate of 0.001 (scenario 1.3viii) (Fig. 1F; see also Fig. S4). For the false-positive
scenario (2ix), all estimated ensemble feedback strengths enveloped 0 (Fig. 2B), meaning that
the estimated slopes of the r ~ loge(Nt) relationships could not be differentiated from zero.

Overall, when an ensemble density feedback was detected from time series of abundance,
density-independent mortality eroded the extent by which true compensatory density
feedbacks on survival translated into an ensemble compensatory density feedback in
population trends more than fluctuations in K, with the most faulty outcome in fact inferring
depensatory population growth rates from some populations only experiencing density
compensation on survival.

On the other hand, the stationarity metric T /Var(TR) was a weak (median p =
0.547, -0.086, and -0.113 for the pulse, ¥ =-0.001, and i = -0.01 scenarios, respectively)
predictor of the estimated strength of ensemble feedback when density-independent mortality
was imposed (Fig. 3). However, stationarity was a reasonable (median p = 0.756, 0.786, and
0.844 for the Kstochastic, Kstochastic With increasing variance, and declining Kstochastic SCenarios,
respectively) predictor of the ensemble signal for the fluctuating K scenarios (Fig. 4; see also
Fig. S4).

DISCUSSION

Our simulations reveal several new insights into how ensemble (population growth rates) and
component (vital rates) density feedbacks can be decoupled. First, the statistical detection of
true ensemble feedback strength through phenomenological models is little affected by
nonstationarity per se. Second, the estimation of ensemble feedback strength through
phenomenological models (logistic growth curves; see Introduction) are particularly sensitive
to density-independent mortality leading to population decline, but they are less sensitive to
moderate fluctuations in carrying capacity. Third, the concern that density-independent
processes can invoke false evidence of ensemble signals of compensation are not borne out
by our simulations, at least with respect to density-independent mortality.

The mechanisms underlying those trends are nuanced by species’ life histories. For
instance, in long-living terrestrial vertebrates (our focus), density feedbacks might operate on

fertility to compensate for pathogen-induced adult mortality (McDonald et al. 2016), those

11
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feedbacks might be stronger on survival versus fertility when populations are near or far from
carrying capacity, respectively (Sather et al. 2016), and survival can be entirely driven by
climatic conditions and density-independent predation (Hebblewhite et al. 2018). In one of
the best-studied systems in this regard, Soay sheep from St. Kilda Archipelago (United
Kingdom) demonstrate that the demographic role of density and weather varies across sexes
and age classes in mild winters, but survival is reduced consistently in all individuals in years
of bad weather and high population abundance (Coulson et al. 2001). Much less-studied than
herbivores, inter-pack aggression in carnivores with strong social hierarchies like wolves
might shape survival at high densities, but be demographically irrelevant at low densities
resulting from prey shortages and/or hunting or culling (Cubaynes et al. 2014). Our study
lends credence to the application of phenomenological models to the former types of studies
addressing the long-term effect of vital rates on population abundance, provided there is
enough information available for describing population trends.

Our approach and results do not, of course, explain all possible scenarios leading to the
decoupling of ensemble and component feedback signals. For example, many other density-
independent factors that we did not consider can dampen the demographic role of social and
trophic interactions mediated by population size (Herrando-Pérez et al. 2012a). Along with
the confounding effects of sampling error (Staples et al. 2004; Knape & de Valpine 2012),
some of those factors include immigration (Lieury et al. 2015), spatial heterogeneity in
population growth rates (Thorson et al. 2015; Johnson et al. 2016), fluctuating age structure
(Hoy et al. 2020), and environmental state shifts (Lande et al. 2002; Turchin 2003; Wu et al.
2007). Furthermore, our choice to limit the component mechanisms to feedback on a single
demographic rate (albeit, applied to all age classes) for the sake of simpler interpretation
could limit the application of our conclusions. For example, additional density-feedback
mechanisms operating independently on other demographic rates, such as fertility and
dispersal, could potentially complicate the interpretation derived from phenomenological
models.

Simulating closed populations potentially inflated the phenomenological model’s capacity
to detect the component signal, because permanent dispersal could alleviate per capita
reductions in fitness as a population approaches carrying capacity. We also limited our
projections to a standardised 40 generations, but even expanding these to 120 generations
resulted in little change in the stationarity metric (Fig. S5). Complementary studies focussing
on the faster end of the life-history continuum could provide further insights, even though our

range of test species still precipitated a life-history signal in terms of component (Fig. S6)

12
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and ensemble density-feedback strengths and stationarity (Fig. S7, S8) declining with
increasing generation length. However, this relationship faded when the trajectories
simulated declines through proportional removal. Indeed, both evidence for (Holyoak &
Baillie 1996) and strength of (Herrando-Pérez et al. 2012c) ensemble density feedback
generally increase along the continuum of slow to fast life histories, because species with
slow life histories are assumed to be more demographically stable when density
compensation is operating (Sather et al. 2002).

While quantifying the true extent of all component density feedback mechanisms
operating in real populations will remain challenging in most circumstances,
phenomenological models can normally capture the evidence for and strength of the
component density feedback mechanism at play. Appreciating the degree of nonstationarity
and other types of perturbations affecting abundance time series can contextualise
interpretations of ensemble density-feedback signals, especially where substantial density-
independent mortality leads to long-term population declines. Importantly, failing to capture
density feedback in applied ecological models can lead to suboptimal conservation and
management recommendations and outcomes (Herrando-Pérez et al. 2012a; Horswill et al.
2017).
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TABLE 1 Taxonomy and life-history characteristics of the 21 test species (all native to Australia) used to
simulate age-structured populations and time series of population abundance. abb = abbreviation of scientific
name, M = body mass (kg), GL = generation length (years), q = projection length (years) (Bradshaw et al.
2021).

taxonomic/functional species abb M GL q status
group
herbivore Diprotodon optatum DP 2786 18.1 724  extinct
vombatiformes Palorchestes azael PA 1000 15.1 604 extinct
Zygomaturus trilobus T 500 13.2 528 extinct
Phascolonus gigas PH 200 10.7 428 extinct
Vombatus ursinus VU 25 10.0 400 extant
herbivore Procoptodon goliah PG 250 8.3 332 extinct
macropodiformes Sthenurus stirlingi SS 150 8.1 324 extinct
Protemnodon anak PT 130 7.8 312 extinct
Simosthenurus occidentalis SO 120 7.8 312 extinct
Metasthenurus newtonae MN 55 6.0 240 extinct
Osphranter rufus OR 25 55 220  extant
Notamacropus rufogriseus NR 14 6.3 252  extant
large omnivore birds ~ Genyornis newtoni GN 200 20.0 800 extinct
Dromaius novaehollandiae DN 55 59 236 extant
Alectura lathami AL 2.2 6.8 272  extant
carnivores Thylacoleo carnifex TC 110 9.1 364 extinct
Thylacinus cynocephalus TH 20 52 208 extinct
Sarcophilus harrisii SH 6.1 3.1 124 extant*
Dasyurus maculatus DM 2 23 92  extant
invertivore Megalibgwilia ramsayi MR 11 164 656 extant
monotremes Tachyglossus aculeatus TA 4 141 564  extant

* extant in Tasmania, currently extinct in mainland Australia



TABLE 2 Demographic scenarios to quantify the detection of ensemble density-feedback signals in time series
of abundance using phenomenological models (logistic growth curves) if a component density feedback on
survival is present (1. Ho: false negatives), or absent (2. Ho: false positives). All scenarios were simulated over
40 generations across 21 vertebrate species. Time series obtained from simulated age-structured populations
(Leslie matrices) occupying 250,000 km? with no dispersal. G = generation, N = population abundance, K =
carrying capacity; © = long-term mean instantaneous rate of population change, SD = standard deviation. See

test species in Table 1.

scenario catastrophe type description
1. Ho: false negatives
(component feedback)
1.1 no catastrophic mortality or
fluctuation in K
i. Kiixed, 7 =0 none stochastically resampled survival

1.2 catastrophic mortality (50%)
and stable K
ii.  Kiixea; 7 = 0; sustained
catastrophic mortality
iii.  Krixea; 7 = 0; pulsed
catastrophic mortality

iIV. Kiixeq; 7 = -0.001;
sustained proportional
mortality

V.  Kiixed; 7 = -0.01; sustained
proportional mortality

1.3 catastrophic mortality (50%)
and fluctuation in K
Vi.  Ksochastic; 7 = 0

Vii.  Ksiochastic With increasing
variance; 7 = 0

viii. Ksiochastic declining, forcing
<0
2. Ho: false positives (no

component feedback)
ix. noK;7=0

generationally scaled

generationally scaled

generationally scaled

generationally scaled

generationally scaled

generationally scaled

generationally scaled

temporally scaled

rates in age-structured population

as in i, but with catastrophes

as in ii, but with a single 90%
mortality pulse implemented at
20G

as in ii, but with proportional
removal of individuals from the n
vector such that 7 = -0.001
(slowly declining population)

as in iv, but where 7 = -0.01
(rapidly declining population)

as in ii, but normally distributed K
varying randomly at each time
step (SD = 5%)

as in vi, but variance in K
increased linearly from 5% to
10%

as in vi, but K also decreases on
average at a rate of -0.001

probability of catastrophe
increased over time such that 7 =
0 (~ average stability)
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FIGURE 1 (A, C, E) Truncated violin plots showing the distribution of the stationarity index Ty /Var(Ty)
across 10,000 times series of population abundance per species and all 21 test species (see list in Table 1)
obtained from age-structured populations subjected to a compensatory component density feedback on survival
over 40 generations, according to nine demographic scenarios (detailed in Table 2). (B, D, F) Relationship
between strength of ensemble (slope coefficient S of the Gompertz-logistic model x [-1]) and component (1 —
the modifier Sreq On survival) density feedback. (A-B) Scenarios without (blue: scenario 1.1i) and with (grey:
scenario 1.2ii) generationally scaled 50% catastrophic (density-independent) mortality. (C-D) Stable projections
with carrying capacity (K) fixed (darker grey; scenario 1.2ii), a pulse disturbance of 90% mortality at the first 20
generations (20G; lighter grey; scenario 1.2iii), weakly declining (r = -0.001; red; scenario 1.2iv), and strongly
declining (r = 0.01; blue; scenario 1.2v). (E-F) Stable projections with K fixed (darker grey; scenario 1.2ii),
varying stochastically (Ksiwcn) around a constant mean with a constant variance (lighter grey; scenario 1.3vi),
varying stochastically with a constant mean and an increasing variance (Ksocn1Var; red; scenario 1.3vii), and
varying stochastically with a declining mean and a constant variance (| Kswoch; blue; scenario 1.3viii). The fitted
curves across species are exponential plateau models of the form y = Ymax - (Ymax - Yo)e™*. Shaded regions
represent the 95% prediction intervals for each type. Also shown are the mean probabilities of median density
feedback (Pr(DF): sum of the Akaike’s information criterion weights for the Ricker- and Gompertz-logistic
models across time series (XwAIC.-DF). Compensation implies that survival and population growth wane as
population abundance rises, and Tg >> Var(Tg) implies high stationarity.
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FIGURE 2 (A) Truncated violin plots showing the distribution of the stationarity index Tr/Var(TR) across 10,000 times series of population abundance per species and all
21 species (see species list in Table 1) obtained from age-structured populations subjected to a compensatory component density feedback on survival over 40 generations,
according to two demographic scenarios (detailed in Table 2). Demographic scenarios include carrying capacity (K) fixed with (darker grey, scenario 1.2ii) and without
(lighter grey, scenario 2ix) component compensatory density-feedback on survival, the latter including an increase in the probability of 50% catastrophic (density-
independent) mortality to produce stable population growth rates around 0 (see scenarios in Table 2). (B) Relationship between strength of ensemble (slope coefficient g x [-
1] of the Gompertz-logistic model) and generation length (years) across the 21 species. Probabilities of density feedback (Pr(DF) = sum of the Akaike’s information criterion

weights for the Ricker and Gompertz models) calculated across simulations gave median Pr(DF) = 0.994 and 0.322 for the two stable scenarios without and with component
feedback on survival, respectively.
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FIGURE 3 Relationships between the stationarity index Tr/Var(Ty) and the strength of ensemble density
feedback (slope coefficient  x [-1] of the Gompertz-logistic model) for four scenarios with 50% catastrophic
(density-indepent) mortality across 21 test species (see Table 1) over 40 generations, including (A) carrying
capacity (K) fixed (scenario 1.2ii), (B) a pulse disturbance of 90% mortality at 20 generations (20G; scenario
1.2iii), (C) weakly declining (r = -0.001, scenario 1.2iv), and (D) strongly declining (r = 0.01, scenario 1.2v)
populations (scenarios detailed in Table 2). The fitted curves across species exponential plateau models of the
form y = Ymax - (Ymax - Yo)e™*. Shaded regions represent the 95% prediction intervals for each type. pmeq are the
median Spearman’s p correlation coefficients for the relationship between the ensemble strength and stationar
index across species (resampled 10,000 times; see Fig. S4 for full uncertainty range of p in each scenario).
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FIGURE 4 Relationships between the stationarity index T /Var(Tg) and the strength of ensemble density
feedback (slope coefficient g x [-1] of the Gompertz-logistic model) across 21 test species (see list in Table 1)
over 40 generations for four scenarios (scenarios detailed in Table 2) with 50% catastrophic (density-
independent) mortality, including (A) carrying capacity (K) fixed (scenario 1.2ii), (B) K varying stochastically
(Kstoch) around a constant mean with a constant variance (scenario 1.3vi), (C) K varying stochastically with a
constant mean and increasing variance (Kswcn 17Var, scenario 1.3vii), and (D) K varying stochastically with a
declining mean and a constant variance (| Kstoch, SCENario 1.3viii). The fitted curves across species exponential
plateau models of the form y = Ymax - (Ymax - Yo)&™*. Shaded regions represent the 95% prediction intervals for
each type. pmed are the median Spearman’s p correlation coefficients for the relationship between the ensemble
strength and stationarity index across species (resampled 10,000 times; see Fig. S4 for full uncertainty range
under each scenario).
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SUPPORTING INFORMATION

FIGURE S1 Probability of an ensemble compensatory density-feedback signal (Pr(DF) = SwAIC.-DF = sum
of Akaike’s information criterion weights across the Ricker- and Gompertz-logistic models — see Materials and
methods) in abundance time series for simulated populations of 21 long-lived species of Australian mammals
and birds (see list in Table 1) subjected to compensatory density feedback on survival and experiencing 50 %
catastrophic (density-independent) mortality over 40 generations. Each probability surface represents one of the
21 test species (see list in Table 1), so plots show the overlapping median probability density over 10,000 times
series of abundance per species and for each of four demographic scenarios (detailed in Table 2), including (A)
a carrying capacity is fixed (Krixea) With 50 % catastrophic (density-independent) mortality (scenario 1.2ii), (B) a
pulse disturbance of 90% mortality at 20 generations (20G; scenario 1.2iii), and (C) weakly declining (© = -
0.001; scenario 1.2iv) and (D) strongly declining (* = 0.01; scenario 1.2v) populations. See Fig. S3 for
bootstrapped mean Spearman correlation coefficients for each scenario.
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FIGURE S2 Probability of an ensemble compensatory density-feedback signal (Pr(DF) = SwAIC.-DF = sum
of Akaike’s information criterion weights across the Ricker- and Gompertz-logistic models — see Materials and
methods) in abundance time series for simulated populations of 21 long-lived species of Australian mammals
and birds (see list in Table 1) subjected to compensatory density feedback on survival and experiencing
fluctuations in carrying capacity (K) along with 50 % catastrophic (density-independent) mortality over 40
generations. Each probability surface represents one of the 21 test species (see list in Table 1), so plots show the
overlapping median probability density over 10,000 times series of abundance per species and for each of four
demographic scenarios (detailed in Table 2), including (A) a stable demographic projection where K is fixed
(Krixea) (scenario 1.2ii), (B) K varies stochastically (Kswcn) around a constant mean with a constant variance
(scenario 1.3vi), (C) K varying stochastically with a constant mean and increasing variance (Kstch1Var;
scenario 1.3vii), and (C) K varying stochastically with a declining mean and a constant variance (| Kstoch;
scenario 1.3viii). See Fig. S3 for bootstrapped mean Spearman correlation coefficients for each scenario.
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FIGURE S3 Bootstrapped mean (with 80 % confidence intervals; 100,000 resamples) probability of an
ensemble compensatory density-feedback signal (Pr(DF) = ZwAIC.-DF = sum of Akaike’s information criterion
weights across the Ricker- and Gompertz-logistic models — see Materials and methods) in abundance time
series for simulated populations of 21 long-lived species of Australian mammals and birds for populations (see
list in Table 1) subjected to compensatory density feedback on survival and experiencing fluctuations in
carrying capacity (K) and/or 50 % catastrophic (density-independent) mortality (scenarios detailed in Table 2).
Demographic scenarios (see details in Table 2) include (A) K fixed (Krixeq) With no catastrophic mortality (no
cat; scenario 1.1i), and with catastrophic mortality in combination with (B) Krixed (cat; scenario 1.2ii), (C) a
pulse disturbance of 90% mortality at 20 generations (20G; scenario 1.2iii), (D) weakly declining (¥ = -0.001;
scenario 1.2iv) and (E) strongly declining (¥ = 0.01; scenario 1.2v) populations, (F) K varying
stochastically(Kstch) around a constant mean with a constant variance (scenario 1.3vi), (G) K varying
stochastically with a constant mean and increasing variance (Kswcn? Var; scenario 1.3vii), and (H) K varying
stochastically with a declining mean and a constant variance (| Ksiocn; SCenario 1.3viii). The vertical dashed line
at Pr(DF) = 0.5 in each panel is the point below which the evidence for a density-independent model [Pr(DI) =
SWAIC:-DI = sum of Akaike’s information criterion weights across the random walk and exponential models] is

greater than Pr(DF). See Table 2 for species abbreviations.
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FIGURE S4 Bootstrapped (10,000 iterations) Spearman’s correlation p between (A) ensemble density
feedback strength (- Gompertz slope g, the reduction of survival as population density increases) and component
feedback strength on survival (1 — Sreq, the reduction in survival as population density increases), and (B)
ensemble feedback strength and the stationarity metric Tr/Var(Tg) for 10,000 simulated populations across
each of 21 long-lived species of Australian mammals and birds for populations (see list in Table 1) subjected to
compensatory density feedback on survival and experiencing fluctuations in carrying capacity (K) and/or 50 %
catastrophic (density-independent) mortality (scenarios detailed in Table 2) . Demographic scenarios include K
fixed (Krixeq) With no catastrophic mortality (no cat; scenario 1.1i), and catastrophic mortality in combination
with Krixed (cat; scenario 1.2ii), a pulse disturbance of 90% mortality at 20 generations (20G; scenario 1.2iii),
weakly declining (¥ = -0.001; scenario 1.2iv) and (E) strongly declining (¥ = 0.01; scenario 1.2v) populations,
K varying stochastically(Kswcn) around a constant mean with a constant variance (scenario 1.3vi), K varying
stochastically with a constant mean and increasing variance (KswcnT Var; scenario 1.3vii), and K varying
stochastically with a declining mean and a constant variance (| Kstwoch; SCenario 1.3viii).
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FIGURE S5 Truncated violin plots showing the distribution of the stationarity index Tg/Var(Tg) across
10,000 time series of population abundance per species and all 21 species (see species list in Table 1) obtained
from age-structured populations for scenarios showing carrying capacity fixed with component compensatory
density-feedback on survival and 50% catastrophic (density-independent) mortality to produce stable population
growth rates around 0 over 40 (scenario 1.2ii; detailed in Table 2) and 120 generations (G).
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Fig. S6. Relationship between strength of component density feedback and generation length (years) across
10,000 time series of population abundance for each of 21 test species (see list in Table 1) obtained from age-
structured populations subjected to a compensatory component density feedback on survival over 40 generations
for a demographic scenario with constant carrying capacity and no catastrophic (density-independent) mortality
(scenario 1.1i; detailed in Table 2). The dashed grey line indicates a least-squares-fitted (adjusted coefficient of
regression R? = 0.58) exponential plateau model of the form: y = Ymax - (Ymax - Yo)e ™€, where yo = starting value
of component strength, ymax = maximum component strength, k = rate constant (years™?) and G = generation time
(years). Species notation: DP = Diprotodon optatum, PA = Palorchestes azael, ZT = Zygomaturus trilobus, PH
= Phascolonus gigas, VU Vombatus ursinus (herbivore vombatiform); PG = Procoptodon goliah, SS =
Sthenurus stirlingi, PT = Protemnodon anak, SO = Simosthenurus occidentalis, MN = Metasthenurus newtonae,
OR = Osphranter rufus (herbivore macropodiformes); GN = Genyornis newtoni, DN = Dromaius
novaehollandiae (large omnivore birds) , AL = Alectura lathami; TC = Thylacoleo carnifex, TH = Thylacinus
cynocephalus, SH = Sarcophilus harrisii (carnivores) , DM = Dasyurus maculatus; MR = Megalibgwilia
ramsayi; TA = Tachyglossus aculeatus (invertivore monotremes).
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FIGURE S7 Relationships between the stationarity index Tr/Var(Ty) and generation length across 10,000
times series of population abundance per species and all 21 test species (see list in Table 1) obtained from age-
structured populations subjected to a compensatory component density feedback on survival over 40
generations, according to seven demographic scenarios (detailed in Table 2). Demographic scenarios include
(A) carrying capacity K fixed (Krixed; SCENario 1.2ii), (B) a pulse disturbance of 90% mortality at 20 generations
(20G; scenario 1.2iii), (C) weakly declining (¥ = -0.001; scenario 1.2iv) and (D) strongly declining (¥ = 0.01;
scenario 1.2v) populations, (E) K varying stochastically (Ksocn) around a constant mean with a constant variance
(scenario 1.3vi), (F) K varying stochastically with a constant mean and increasing variance (Ksocn1Var; scenario
1.3vii), and (G) K varying stochastically with a declining mean and a constant variance (| Kstwocn; SCENario
1.3viii).
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FIGURE S8 Relationships between the strength of ensemble (- Gompertz slope S, the reduction of survival as
population density increases) and generation length across 10,000 times series of population abundance per
species and all 21 test species (see list in Table 1) obtained from age-structured populations subjected to a
compensatory component density feedback on survival over 40 generations, according to seven demographic
scenarios (detailed in Table 2). Demographic scenarios include (A) carrying capacity K fixed (Ksixed; SCENario
1.2ii), (B) a pulse disturbance of 90% mortality at 20 generations (20G; scenario 1.2iii), (C) weakly declining (7
= -0.001; scenario 1.2iv) and (D) strongly declining (¥ = 0.01; scenario 1.2v) populations, (E) K varying
stochastically (Kswch) around a constant mean with a constant variance (scenario 1.3vi), (F) K varying
stochastically with a constant mean and increasing variance (KswchT Var; scenario 1.3vii), and (G) K varying
stochastically with a declining mean and a constant variance (| Kswocn; SCenario 1.3viii).
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