
A Certain Subclass Of Uniformly Convex Functions With

Negative Coefficients Defined By Gegenbauer Polynomials

B. Venkateswarlu1, P. Thirupathi Reddy2 , S. Sridevi3 and Sujatha4

1,3,4 Department of Mathematics, GSS, GITAM University,

Doddaballapur- 562 163, Bengaluru Rural, Karnataka, India.
1bvlmaths@gmail.com

3 siri−settipalli@yahoo.co.in 4sujathavaishnavy@gmail.com

2 Department of Mathematics, Kakatiya Univeristy,

Warangal- 506 009, Telangana, India.

reddypt2@gmail.com

Abstract: In this paper, we introduce a new subclass of uniformly con-
vex functions with negative coefficients defined by Gegenbauer polynomi-
als. We obtain the coefficient bounds, growth distortion properties, extreme
points and radii of close-to-convexity, starlikeness and convexity for func-
tions belonging to the class TS(υ, ̺, λ, t). Furthermore, we obtained modi-
fied Hadamard product, convolution and integral operators for this class.

Keywords and phrases: analytic, coefficient bounds, extreme points, con-
volution, polynomial.

AMS Subject Classification: 30C45.

1 Introduction

Let A denote the class of all functions u(z) of the form

u(z) = z +

∞
∑

η=2

aηz
η (1.1)

in the open unit disc E = {z ∈ C : |z| < 1}. Let S be the subclass of A con-
sisting of univalent functions and satisfy the following usual normalization
condition u(0) = u′(0)−1 = 0. We denote by S the subclass of A consisting
of functions u(z) which are all univalent in E. A function u ∈ A is a starlike
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function of the order υ, 0 ≤ υ < 1, if it satisfy

ℜ

{

zu′(z)

u(z)

}

> υ, (z ∈ E). (1.2)

We denote this class with S∗(υ) .
A function u ∈ A is a convex function of the order υ, 0 ≤ υ < 1, if it

satisfy

ℜ

{

1 +
zu′′(z)

u′(z)

}

> υ, (z ∈ E). (1.3)

We denote this class with K(υ).
Note that S∗(0) = S∗ and K(0) = K are the usual classes of starlike and

convex functions in E respectively.
Let T denote the class of functions analytic in E that are of the form

u(z) = z −

∞
∑

η=2

aηz
η, (aη ≥ 0 z ∈ E) (1.4)

and let T ∗(υ) = T ∩ S∗(υ), C(υ) = T ∩K(υ). The class T ∗(υ) and allied
classes possess some interesting properties and have been extensively studied
by Silverman [16]. Recently, some subclasses of T have investigated by [1, 3]
and others.

For u ∈ A given by (1.1) and g(z) given by

g(z) = z +

∞
∑

η=2

bηz
η

their convolution (or Hadamard product), denoted by (u ∗ g), is defined as

(u ∗ g)(z) = z +

∞
∑

η=2

aηbηz
η = (g ∗ u)(z), (z ∈ E).

Note that u ∗ g ∈ A.

For following Goodman [5, 6] and Ronning [11, 12] introduced and stud-
ied the following subclasses:

(1). A function u ∈ A is said to be in the class UCV (̺, γ), uniformly γ−
convex function if is satisfies the condition

ℜ

{

1 +
zu′′(z)

u′(z)
− ̺

}

> γ

∣

∣

∣

∣

zu′′(z)

u′(z)

∣

∣

∣

∣

, (1.5)

where γ ≥ 0,−1 < ̺ ≤ 1 and ̺+ γ ≥ 0.
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(2). A function u ∈ A is said to be in the class SP (̺, γ), uniformly γ−
starlike function if is satisfies the condition

ℜ

{

zu′(z)

u(z)
− ̺

}

> γ

∣

∣

∣

∣

zu′(z)

u(z)
− 1

∣

∣

∣

∣

, (1.6)

where γ ≥ 0,−1 < ̺ ≤ 1 and ̺+ γ ≥ 0.

Indeed it follows from (1.5) and (1.6) that

u ∈ UCV (̺, γ) ⇔ zu′ ∈ SP (̺, γ). (1.7)

For γ = 0, we get respectively, the classes K(0) = K and S∗(0) = S∗.

The function of the class UCV (0, 1) ≡ UCV is called uniformly convex
functions were introduced by Goodman with geometric interpretation in [5].
The class SP (0, 1) ≡ SP is defined by Ronning in [11]. For ̺ = 0, the class
UCV (0, γ) ≡ γ − UCV and SP (0, γ) ≡ γ − SP are defined respectively, by
Kanas and Wisniowska in [7, 8].

Further, Murugusundarmoorthy and Magesh [9], Santosh et al. [13],
and Thirupathi Reddy and Venkateswarlu [19] have studied and investigated
interesting properties for the classes UCV (̺, γ) and SP (̺, γ).

The class T (λ), λ ≥ 0 were introduced and investigated by Szynal [18]
as the subclass of A consisting of functions of the form

u(z) =

1
∫

−1

k(z, t)dµ(t), (1.8)

where
k(z, t) =

z

(1− 2tz + z2)λ
, (z ∈ U), t ∈ [−1, 1] (1.9)

and µ is a probability measure on the interval [−1, 1]. The collection of such
measures on [a, b] is denoted by P[a,b].

The Taylor series expansion of the function in (1.9) gives

k(z, t) = z + cλ1(t)z
2 + cλ2(t)z

3 + · · · (1.10)

and the coefficients for (1.10) were given below:

cλ0 (t) = 1; cλ1(t) = 2λt; cλ2 (t) = 2λ(λ+ 1)t2 − λ;

cλ3 (t) =
4

3
λ(λ+ 1)(λ + 2)t3 − 2λ(λ+ 1)t · · · (1.11)

where cλη (t) denotes the Gegenbauer polynomial of degree η. Varying the
parameter λ in (1.10), we obtain the class of typically real functions studied
by [4, 10, 15] and [17].
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Let Gλ,t :A → A defined in terms of convolution by

Gλ,tu(z) = k(z, t) ∗ u(z),

we have

Gλ,tu(z) = z +
∞
∑

η=2

φ(λ, t, η)aηz
η (1.12)

where φ(λ, t, η) = Cλ
η−1(t).

Now, by making use of the linear operator Gλ,t, we define a new subclass
of functions belonging to the class A.

Definition 1.1. For −1 ≤ υ < 1 and ̺ ≥ 0, we let TS(υ, ̺, λ, t) be the
subclass of A consisting of functions of the form (1.4) and satisfying the
analytic criterion

ℜ

{

z(Gλ,tu(z))
′

Gλ,tu(z)
− υ

}

≥ ̺

∣

∣

∣

∣

z(Gλ,tu(z))
′

Gλ,tu(z)
− 1

∣

∣

∣

∣

, (1.13)

for z ∈ E.

By suitably specializing the values of υ and ̺, the class TS(υ, ̺, λ, t) can
be reduces to the class studied earlier by Ronning [11, 12]. The main object
of the paper is to study some usual properties of the geometric function the-
ory such as coefficient bounds, distortion properties, extreme points, radii of
starlikeness and convexity, Hadamard product and convolution and integral
operators for the class.

2 Coefficient bounds

In this section, we obtain a necessary and sufficient condition for function
u(z) is in the class TS(υ, ̺, λ, t).

We employ the technique adopted by Aqlan et al. [2] to find the coeffi-
cient estimates for our class.

Theorem 2.1. The function u defined by (1.4) is in the class TS(υ, ̺, λ, t)
if and only if

∞
∑

η=2

[η(1 + ̺)− (υ + ̺)]φ(λ, t, η)|aη | ≤ 1− υ, (2.1)

where −1 ≤ υ < 1, ̺ ≥ 0. The result is sharp.
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Proof. We have f ∈ TS(υ, ̺, λ, t) if and only if the condition (1.13) satisfied.
Upon the fact that

ℜ(w) > ̺|w − 1|+ υ ⇔ ℜ{w(1 + ̺eiθ)− ̺eiθ} > υ, − π ≤ θ ≤ π.

Equation (1.13) may be written as

ℜ

{

z(Gλ,tu(z))
′

Gλ,tu(z)
(1 + ̺eiθ)− ̺eiθ

}

= ℜ

{

z(Gλ,tu(z))
′(1 + ̺eiθ)− ̺eiθGλ,tu(z)

Gλ,tu(z)

}

> υ.

(2.2)

Now, we let

E(z) = z(Gλ,tu(z))
′(1 + ̺eiθ)− ̺eiθGλ,tu(z)

F (z) = Gλ,tu(z).

Then (2.2) is equivalent to

|E(z) + (1− υ)F (z)| > |E(z) − (1 + υ)F (z)|, for 0 ≤ υ < 1.

For E(z) and F (z) as above, we have

|E(z) + (1− υ)F (z)| ≥ (2− υ)|z| −

∞
∑

η=2

[η + 1− υ + ̺(η − 1)]φ(λ, t, η)|aη ||z
η |

and similarly

|E(z) − (1 + υ)F (z)| ≤ υ|z| −

∞
∑

η=2

[η − 1− υ + ̺(η − 1)]φ(λ, t, η)|aη ||z
η|.

Therefore

|E(z) + (1− υ)F (z)| − |E(z) − (1 + υ)F (z)|

≥ 2(1− υ)− 2
∞
∑

η=2

[η − υ + ̺(η − 1)]φ(λ, t, η)|aη |

or

∞
∑

η=2

[η − υ + ̺(η − 1)]φ(λ, t, η)|aη | ≤ (1− υ),

which yields (2.1).
On the other hand, we must have

ℜ

{

z(Gλ,tu(z))
′

Gλ,tu(z)
(1 + ̺eiθ)− ̺eiθ

}

≥ υ.

Upon choosing the values of z on the positive real axis where 0 ≤ |z| = r < 1,
the above inequality reduces to

ℜ



















(1− υ)r −
∞
∑

η=2
[η − υ + ̺eiθ(η − 1)]φ(λ, t, η)|aη | r

η

z −
∞
∑

η=2
φ(λ, t, η)|aη | rη



















≥ 0.
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Since ℜ(−eiθ) ≥ −|eiθ| = −1, the above inequality reduces to

ℜ



















(1− υ)r −
∞
∑

η=2
[η − υ + ̺(η − 1)]φ(λ, t, η)|aη | r

η

z −
∞
∑

η=2
φ(λ, t, η)|aη | rη



















≥ 0.

Letting r → 1−, we get the desired result. Finally the result is sharp with
the extremal function u given by

u(z) = z −
1− υ

[η(1 + ̺)− (υ + ̺)]φ(λ, t, η)
zη. (2.3)

3 Growth and Distortion Theorems

Theorem 3.1. Let the function u defined by (1.4) be in the class TS(υ, ̺, λ, t).
Then for |z| = r

r −
1− υ

2λt(2− υ + ̺)
r2 ≤ |u(z)| ≤ r +

1− υ

2λt(2 − υ + ̺)
r2. (3.1)

Equality holds for the function

u(z) = z −
1− υ

2λt(2− υ + ̺)
z2. (3.2)

Proof. We only prove the right hand side inequality in (3.1), since the other
inequality can be justified using similar arguments. In view of Theorem 2.1,
we have

∞
∑

η=2

|aη| ≤
1− υ

2λt(2 − υ + ̺)
. (3.3)

Since,

u(z) = z −
∞
∑

η=2

aηz
η

|u(z)| =

∣

∣

∣

∣

∣

∣

z −

∞
∑

η=2

aηz
η

∣

∣

∣

∣

∣

∣

≤ r +

∞
∑

η=2

|aη|r
η ≤ r + r2

∞
∑

η=2

|aη|

≤ r +

∞
∑

η=2

1− υ

2λt(2− υ + ̺)
r2

which yields the right hand side inequality of (3.1).
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Next, by using the same technique as in proof of Theorem 3.1, we give
the distortion result.

Theorem 3.2. Let the function u defined by (1.4) be in the class TS(υ, ̺, λ, t).
Then for |z| = r

1−
(1− υ)

λt(2− υ + ̺)
r ≤ |u′(z)| ≤ 1 +

(1− υ)

λt(2− υ + ̺)
r.

Equality holds for the function given by (3.2).

Proof. Since f ∈ TS(υ, ̺, λ, t) by Theorem 2.1, we have that

2λt [2(1 + ̺)− (υ + ̺)]

∞
∑

η=2

ηaη ≤ [η(1 + ̺)− (υ + ̺)]φ(λ, t, η)|aη | ≤ 1− υ

or
∞
∑

η=2

η|aη | ≤
(1− υ)

λt(2− υ + ̺)
.

Thus from (3.3), we obtain

|u′(z)| ≤ 1 + r

∞
∑

η=2

η|aη |

≤ 1 +
(1− υ)

λt(2− υ + ̺)
r

which is right hand inequality of Theorem 3.2.
On the other hand, similarly

|u′(z)| ≥ 1−
(1− υ)

λt(2− υ + ̺)
r

and thus proof is completed.

Theorem 3.3. If u ∈ TS(υ, ̺, λ, t) then u ∈ TS(γ), where

γ = 1−
(η − 1)(1 − υ)

[η − υ + ̺(η − 1)]φ(λ, t, η) − (1− υ)
.

Equality holds for the function given by (3.2).

Proof. It is sufficient to show that (2.1) implies
∞
∑

η=2

(η − γ)|aη | ≤ 1− γ,

that is
η − γ

1− γ
≤

[η − υ + ̺(η − 1)]φ(λ, t, η)

(1− υ)

then

γ ≤ 1−
(η − 1)(1 − υ)

[η − υ + ̺(η − 1)]φ(λ, t, η) − (1− υ)
.

The above inequality holds true for η ∈ N0, η ≥ 2, ̺ ≥ 0 and 0 ≤ υ < 1.

7



4 Extreme points

Theorem 4.1. Let u1(z) = z and

uη(z) = z −
1− υ

[η(̺+ 1)− (υ + ̺)]φ(λ, t, η)
zη, (4.1)

for η = 2, 3, · · · . Then u(z) ∈ TS(υ, ̺, λ, t) if and only if u(z) can be ex-

pressed in the form u(z) =
∞
∑

η=1
ζηuη(z), where ζη ≥ 0 and

∞
∑

η=1
ζη = 1.

Proof. Suppose u(z) can be expressed as in (4.1). Then

u(z) =

∞
∑

η=1

ζηuη(z) = ζ1u1(z) +

∞
∑

η=2

ζηuη(z)

= ζ1u1(z) +
∞
∑

η=2

ζη

{

z −
1− υ

[η(̺+ 1)− (υ + ̺)]φ(λ, t, η)
zη
}

= ζ1z +

∞
∑

η=2

ζηz −

∞
∑

η=2

ζη

{

1− υ

[η(̺+ 1)− (υ + ̺)]φ(λ, t, η)
zη
}

= z −
∞
∑

η=2

ζη

{

1− υ

[η(̺+ 1)− (υ + ̺)]φ(λ, t, η)
zη
}

.

Thus
∞
∑

η=2

ζη

(

1− υ

[η(̺+ 1)− (υ + ̺)]φ(λ, t, η)

)(

[η(̺+ 1)− (υ + ̺)]φ(λ, t, η)

1− υ

)

=
∞
∑

η=2

ζη =
∞
∑

η=1

ζη − ζ1 = 1− ζ1 ≤ 1.

So, by Theorem 2.1, u ∈ TS(υ, ̺, λ, t).
Conversely, we suppose u ∈ TS(υ, ̺, λ, t). Since

|aη| ≤
1− υ

[η(̺+ 1)− (υ + ̺)]φ(λ, t, η)
, η ≥ 2.

We may set

ζη =
[η(̺+ 1)− (υ + ̺)]φ(λ, t, η)

1− υ
|aη|, η ≥ 2

and ζ1 = 1−
∞
∑

η=2
ζη. Then
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u(z) = z −

∞
∑

η=2

aηz
η = z −

∞
∑

η=2

ζη
1− υ

[η(̺+ 1)− (υ + ̺)]φ(λ, t, η)
zη

= z −
∞
∑

η=2

ζη[z − uη(z)] = z −
∞
∑

η=2

ζηz +
∞
∑

η=2

ζηuη(z)

= ζ1u1(z) +

∞
∑

η=2

ζηuη(z) =

∞
∑

η=1

ζηuη(z).

Corollary 4.2. The extreme points of TS(υ, ̺, λ, t) are the functions u1(z) =
z and

uη(z) = z −
1− υ

[η(̺+ 1)− (υ + ̺)]φ(λ, t, η)
zη, η ≥ 2.

5 Radii of Close-to-convexity, Starlikeness and Con-

vexity

A function u ∈ TS(υ, ̺, λ, t) is said to be close-to-convex of order δ if it
satisfies

ℜ{u′(z)} > δ, (0 ≤ δ < 1; z ∈ E).

Also A function u ∈ TS(υ, ̺, λ, t) is said to be starlike of order δ if it satisfies

ℜ

{

zu′(z)

u(z)

}

> δ, (0 ≤ δ < 1; z ∈ E).

Further a function u ∈ TS(υ, ̺, λ, t) is said to be convex of order δ if and
only if zu′(z) is starlike of order δ that is if

ℜ

{

1 +
zu′(z)

u(z)

}

> δ, (0 ≤ δ < 1; z ∈ E).

Theorem 5.1. Let u ∈ TS(υ, ̺, λ, t). Then u is close-to-convex of order δ

in |z| < R1, where

R1 = inf
k≥2

[

(1− δ)[η − υ + ̺(η − 1)]φ(λ, t, η)

η(1− υ)

]
1

η−1

.

The result is sharp with the extremal function u is given by (2.3).

Proof. It is sufficient to show that |u′(z)− 1| ≤ 1− δ, for |z| < R1. We have

|u′(z)− 1| =

∣

∣

∣

∣

∣

∣

−

∞
∑

η=2

ηaηz
η−1

∣

∣

∣

∣

∣

∣

≤

∞
∑

η=2

ηaη|z|
η−1.
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Thus |u′(z)− 1| ≤ 1− δ if

∞
∑

η=2

η

1− δ
|aη||z|

η−1 ≤ 1. (5.1)

But Theorem 2.1 confirms that

∞
∑

η=2

[η(̺+ 1)− (υ + ̺)]φ(λ, t, η)

1− υ
|aη| ≤ 1. (5.2)

Hence (5.1) will be true if

η|z|η−1

1− δ
≤

[η(̺+ 1)− (υ + ̺)]φ(λ, t, η)

1− υ
.

We obtain

|z| ≤

[

(1− δ)[η − υ + ̺(η − 1)]φ(λ, t, η)

η(1− υ)

] 1

η−1

, η ≥ 2

as required.

Theorem 5.2. Let u ∈ TS(υ, ̺, λ, t). Then u is starlike of order δ in |z| <
R2, where

R2 = inf
k≥2

[

(1− δ)[η − υ + ̺(η − 1)]φ(λ, t, η)

(η − δ)(1 − υ)

]
1

η−1

.

The result is sharp with the extremal function u is given by (2.3).

Proof. We must show that
∣

∣

∣

zu′(z)
u(z) − 1

∣

∣

∣ ≤ 1− δ, for |z| < R2.

We have

∣

∣

∣

∣

zu′(z)

u(z)
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

−
∞
∑

η=2
(η − 1)aηz

η−1

1−
∞
∑

η=2
aηzη−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤

∞
∑

η=2
(η − 1)|aη ||z|

η−1

1−
∞
∑

η=2
|aη||z|η−1

≤ 1− δ. (5.3)

Hence (5.3) holds true if

∞
∑

η=2

(η − 1)|aη ||z|
η−1 ≤ (1− δ)



1−

∞
∑

η=2

|aη||z|
η−1




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or equivalently,
∞
∑

η=2

η − δ

1− δ
|aη||z|

η−1 ≤ 1. (5.4)

Hence, by using (5.2) and (5.4) will be true if

η − δ

1− δ
|z|η−1 ≤

[η(̺+ 1)− (υ + ̺)]φ(λ, t, η)

1− υ

⇒ |z| ≤

[

(1− δ)[η − υ + ̺(η − 1)]φ(λ, t, η)

(η − δ)(1 − υ)

] 1

η−1

, η ≥ 2

which completes the proof.

By using the same technique in the proof of Theorem 5.2, we can show

that
∣

∣

∣

zu′′(z)
u′(z) − 1

∣

∣

∣ ≤ 1− δ, for |z| < R3, with the aid of Theorem 2.1.

Thus we have the assertion of the following Theorem 5.3.

Theorem 5.3. Let u ∈ TS(υ, ̺, λ, t). Then u is convex of order δ in |z| <
R3, where

R3 = inf
k≥2

[

(1− δ)[η − υ + ̺(η − 1)]φ(λ, t, η)

η(η − δ)(1 − υ)

] 1

η−1

.

The result is sharp with the extremal function u is given by (2.3).

6 Inclusion theorem involving modified Hadamard

products

For functions

uj(z) = z −

∞
∑

η=2

|aη,j |z
η, j = 1, 2 (6.1)

in the class A, we define the modified Hadamard product u1 ∗u2(z) of u1(z)
and u2(z) given by

u1 ∗ u2(z) = z −
∞
∑

η=2

|aη,1||aη,2|z
η .

We can prove the following.

Theorem 6.1. Let the function uj, j = 1, 2, given by (6.1) be in the class

TS(υ, ̺, λ, t) respectively. Then u1 ∗ u2(z) ∈ TS(υ, ̺, λ, t, ξ), where

ξ = 1−
(1− υ)2

(η + 1)(2− υ)(2 − υ + ̺)(1 + λ)− (1− υ)2
.
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Proof. Employing the technique used earlier by Schild and Silverman [14],
we need to find the largest ξ such that

∞
∑

η=2

[η − ξ + ̺(η − 1)]φ(λ, t, η)

1− ξ
|aη,1||aη,2| ≤ 1.

Since uj ∈ TS(υ, ̺, λ, t), j = 1, 2, then we have

∞
∑

η=2

[η − υ + ̺(η − 1)]φ(λ, t, η)

1− υ
|aη,1| ≤ 1

and
∞
∑

η=2

[η − υ + ̺(η − 1)]φ(λ, t, η)

1− υ
|aη,2| ≤ 1,

by the Cauchy-Schwartz inequality, we have

∞
∑

η=2

[η − υ + ̺(η − 1)]φ(λ, t, η)

1− υ

√

|aη,1||aη,2| ≤ 1.

Thus it is sufficient to show that

[η − ξ + ̺(η − 1)]φ(λ, t, η)

1− ξ
|aη,1||aη,2|

≤
[η − υ + ̺(η − 1)]φ(λ, t, η)

1− υ

√

|aη,1||aη,2|, η ≥ 2,

that is
√

|aη,1||aη,2| ≤
(1− ξ)[η − υ + ̺(η − 1)]

1− υ)[η − ξ + ̺(η − 1)]
.

Note that
√

|aη,1||aη,2| ≤
(1− υ)

[η − υ + ̺(η − 1)]φ(λ, t, η)
.

Consequently, we need only to prove that

(1− υ)

[η − υ + ̺(η − 1)]φ(λ, t, η)
≤

(1− ξ)[η − υ + ̺(η − 1)]

1− υ)[η − ξ + ̺(η − 1)]
, η ≥ 2,

or equivalently

ξ ≤ 1−
(η − 1)(1 + ̺)(1− υ)2

[η − υ + ̺(η − 1)]2φ(λ, t, η) − (1− υ)2
, η ≥ 2.

Since

A(k) = 1−
(η − 1)(1 + ̺)(1− υ)2

[η − υ + ̺(η − 1)]2φ(λ, t, η) − (1− υ)2
, η ≥ 2

12



is an increasing function of η, η ≥ 2, letting η = 2 in last equation, we obtain

ξ ≤ A(2) = 1−
(1 + ̺)(1− υ)2

[2− υ + ̺]2φ(λ, t, η) − (1− υ)2
.

Finally, by taking the function given by (3.2), we can see that the result is
sharp.

7 Convolution and Integral Operators

Let u(z) be defined by (1.4) and suppose that g(z) = z −
∞
∑

η=2
|bη|z

η . Then

the Hadamard product (or convolution) of u(z) and g(z) defined here by

u(z) ∗ g(z) = u ∗ g(z) = z −
∞
∑

η=2

|aη||bη|z
η .

Theorem 7.1. Let u ∈ TS(υ, ̺, λ, t) and g(z) = z−
∞
∑

η=2
|bη|z

η, 0 ≤ |bη | ≤ 1.

Then u ∗ g ∈ TS(υ, ̺, λ, t).

Proof. In view of Theorem 2.1, we have

∞
∑

η=2

[η − υ + ̺(η − 1)]φ(λ, t, η)|aη ||bη |

≤

∞
∑

η=2

[η − υ + ̺(η − 1)]φ(λ, t, η)|aη |

≤(1− υ).

Theorem 7.2. Let u ∈ TS(υ, ̺, λ, t) and α be real number such that α >

−1. Then the function M(z) = α+1
zα

z
∫

0

tα−1u(t)dt also belongs to the class

TS(υ, ̺, λ, t).

Proof. From the representation of M(z), it follows that

M(z) = z −

∞
∑

η=2

|Aη |z
η, where Aη =

(

α+ 1

α+ η

)

|aη|.

Since α > −1, than 0 ≤ Aη ≤ |aη|. Which in view of Theorem 2.1, M ∈
TS(υ, ̺, λ, t).

13
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