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Abstract: In this paper, we introduce a new subclass of uniformly con-
vex functions with negative coefficients defined by Gegenbauer polynomi-
als. We obtain the coefficient bounds, growth distortion properties, extreme
points and radii of close-to-convexity, starlikeness and convexity for func-
tions belonging to the class T'S(v, g, A, t). Furthermore, we obtained modi-
fied Hadamard product, convolution and integral operators for this class.
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1 Introduction

Let A denote the class of all functions u(z) of the form

u(z) =z+ Z anz" (1.1)
n=2

in the open unit disc E = {z € C: |z| < 1}. Let S be the subclass of A con-
sisting of univalent functions and satisfy the following usual normalization
condition u(0) = u/(0) — 1 = 0. We denote by S the subclass of A consisting
of functions u(z) which are all univalent in F. A function u € A is a starlike



function of the order v,0 < v < 1, if it satisfy
2u/(2)
E). 1.2
p{ZE) > Gen) (12)

We denote this class with S*(v) .
A function u € A is a convex function of the order v,0 < v < 1, if it
satisfy

2u’(2)

u'(z)

We denote this class with K (v).
Note that S*(0) = S* and K (0) = K are the usual classes of starlike and

convex functions in F respectively.
Let T denote the class of functions analytic in E that are of the form

?R{l+ } > v, (z € E). (1.3)

u(z) =z — Zanz”, (ay >0z €E) (1.4)
n=2

and let T*(v) = T N S*(v), C(v) = T N K(v). The class T*(v) and allied
classes possess some interesting properties and have been extensively studied
by Silverman [16]. Recently, some subclasses of T" have investigated by [1, 3]
and others.

For u € A given by (1.1) and ¢(z) given by

o
g(z) =2+ Z by, 2"
n=2
their convolution (or Hadamard product), denoted by (u * g), is defined as

(uxg)(z) =2+ Zanbnz” =(gxu)(z), (z€E).
n=2

Note that ux g € A.
For following Goodman [5, 6] and Ronning [11, 12] introduced and stud-
ied the following subclasses:

(1). A function u € A is said to be in the class UCV (g, ), uniformly v—
convex function if is satisfies the condition

m{H Z;;,’;g) - g} >

where vy > 0,-1<p<1land p+v>0.

2u’(2)

u'(2)

, (1.5)




(2). A function u € A is said to be in the class SP(p,7), uniformly v—
starlike function if is satisfies the condition

?)‘E{Z;LES) —g} >y %—1', (1.6)
where vy >0, -1 <p<1land p+v>0.
Indeed it follows from (1.5) and (1.6) that
ue UCV(0,7) & zu' € SP(0,7). (1.7)

For v = 0, we get respectively, the classes K(0) = K and S*(0) = S*.
The function of the class UCV(0,1) = UCV is called uniformly convex
functions were introduced by Goodman with geometric interpretation in [5].
The class SP(0,1) = SP is defined by Ronning in [11]. For ¢ = 0, the class
Ucv(0,7) =~v—-UCV and SP(0,v) =~ — SP are defined respectively, by
Kanas and Wisniowska in [7, 8].

Further, Murugusundarmoorthy and Magesh [9], Santosh et al. [13],
and Thirupathi Reddy and Venkateswarlu [19] have studied and investigated
interesting properties for the classes UCV (p,7) and SP(g,7).

The class T(\), A > 0 were introduced and investigated by Szynal [18]
as the subclass of A consisting of functions of the form

1
u(z) = /k:(z,t)d,u(t), (1.8)
“1

where
z

(o t) = ——2
(%) (1 — 2tz + 22)N’

(zeU),te[-1,1] (1.9)
and u is a probability measure on the interval [—1, 1]. The collection of such
measures on [a,b] is denoted by Py, ).
The Taylor series expansion of the function in (1.9) gives
k(z,t) =z + ()22 + ey(t)2® + - (1.10)
and the coefficients for (1.10) were given below:
(t) =1; c}(t) = 20t e (1) = 20\ + )12 — ),

c3(t)

g)\()\+1)()\—|—2)753—2)\(>‘+1)t (1.11)

where c%(t) denotes the Gegenbauer polynomial of degree 7. Varying the
parameter A in (1.10), we obtain the class of typically real functions studied
by [4, 10, 15] and [17].



Let Gyt :A — A defined in terms of convolution by
g)\,tu(z) = ]{?(Z,t) * U(Z),

we have

Gaeulz) =2+ Y (A t,n)ayz" (1.12)
n=2
where ¢(\, t,n) = Cg‘_l(t).

Now, by making use of the linear operator G ;, we define a new subclass
of functions belonging to the class A.

Definition 1.1. For —1 < v < 1 and ¢ > 0, we let T'S(v, 0, A\,t) be the
subclass of A consisting of functions of the form (1.4) and satisfying the
analytic criterion

%{%—“}2@‘%—1', (1.13)

for z € E.

By suitably specializing the values of v and g, the class T'S(v, g, A, t) can
be reduces to the class studied earlier by Ronning [11, 12]. The main object
of the paper is to study some usual properties of the geometric function the-
ory such as coefficient bounds, distortion properties, extreme points, radii of
starlikeness and convexity, Hadamard product and convolution and integral
operators for the class.

2 Coefficient bounds

In this section, we obtain a necessary and sufficient condition for function
u(z) is in the class T'S(v, o, A, t).

We employ the technique adopted by Aqglan et al. [2] to find the coeffi-
cient estimates for our class.

Theorem 2.1. The function u defined by (1.4) is in the class T'S(v, o, A, t)
if and only if

(e}

(1 + 0) = (v+ 2l¢(A £, n)|ay| <1 —wv, (2.1)
n=2

where —1 < v < 1,0 > 0. The result is sharp.



Proof. We have f € T'S(v, g, A\, t) if and only if the condition (1.13) satisfied.
Upon the fact that

R(w) > olw — 1] +v & R{w(l + 0¢”) — 0e} > v, —7w < <.
Equation (1.13) may be written as

2(Gru(2)) i0 w0\ _ g f 2Greu(2)) (1+ 0e”) — oGy qu(2)
§R{ Grpu(?) (14 0e™) — pe } = ?R{ G i) } > .
(2.2)
Now, we let
E(2) = 2(Gxu(2))' (1 + 0¢”) — 0e”Gy yulz)
F(z) = Gy u(2).
Then (2.2) is equivalent to
|E(z) + (1 =v)F(2)| > |E(z) = (1 +v)F(z)], for 0 <wv < 1.
For E(z) and F(z) as above, we have
[B(2) + (1= 0)F(2)] 2 (2 = v)lz| = Y _[n+1 = v+ o(n = 1)]e( t,0)]ay||="]
n=2
and similarly
|B(2) = (L+0)F(2)] < vlz| = Y = 1=+ o(n = DI6(A t,)|ay|["].
n=2

Therefore
|E(2) + (1 = v)F(z)| = [E(2) = (1 +v)F(2)]

> 2(1 - U) - 22[77 % 9(77 - 1)]¢(A7t777)‘a77‘
n=2
or Y [n—v+ o= D¢\t n)ay| < (1-wv),
n=2

which yields (2.1).
On the other hand, we must have
e
G ru(2)
Upon choosing the values of z on the positive real axis where 0 < |z| =7 < 1,
the above inequality reduces to

(1 + 0e®) — Qew} > w.

(1—v)r — S — v+ 0e®(n — DI, t,m)ay| 1
R e > 0.
Z = Z ¢(A7t7n)’an‘ r1
n=2
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Since R(—e?) > —|e?| = —1, the above inequality reduces to

(1—v)r = 3 [1— v+ ol — DI\t m)lay|
R L > 0.
Z = Z ¢(A,t,n)|an| r7

n=2

Letting r — 17, we get the desired result. Finally the result is sharp with
the extremal function u given by
1—-v

RS S Sy PG W R 23)

O

3 Growth and Distortion Theorems

Theorem 3.1. Let the function u defined by (1.4) be in the class T'S(v, o, A, t).
Then for |z| =r

1—-wv 1—-w 9

. ——S < - 3.1
Ve L LG iy v (3:1)
Equality holds for the function
1—
u(z) =z — R (3.2)

N2 —v+o)

Proof. We only prove the right hand side inequality in (3.1), since the other
inequality can be justified using similar arguments. In view of Theorem 2.1,

we have
1—-w
—_— 3.3
Z|an|_2)\t(2—v+g) (3:3)
n=2
Since,
oo
z)=z— Z anz"
n=2
o o o
2)| = |z — Zanz" < T+Z\anlr” < 7"—1—7”22\@,7]
n=2 n=2 n=2
<r+ z SR
N2 —v+o)
which yields the right hand side inequality of (3.1). O



Next, by using the same technique as in proof of Theorem 3.1, we give
the distortion result.

Theorem 3.2. Let the function u defined by (1.4) be in the class T'S(v, o, A, t).
Then for |z| =r
(1-v) / (1-v)
- 7r < <l4+ ————r.
ME—vto) S EIS I G
Equality holds for the function given by (3.2).
Proof. Since f € TS(v, 0, A, t) by Theorem 2.1, we have that

20t 2(1+ o) = (v + 0)] Znan n(1+0) — (v+o)]¢\t,n)ay <1—wv
or

=y
277|an| = )\t v+g)

Thus from (3.3), we obtaln

oo
W/ (2)] < 147 nlay|

n=2

(1-v)
<l4—"
- +M@—v+mr

which is right hand inequality of Theorem 3.2.
On the other hand, similarly

(1-v)
,
A(2 — v+ p)
and thus proof is completed. O

W' (2)] 21 -

Theorem 3.3. If u € TS(v, 0, A\, t) then uw € T'S(y), where
(-1 ) |

[1—v+o(n—D]¢(\t,n) —(1-v)

Equality holds for the function given by (3.2).

Proof. Tt is sufficient to show that (2.1) implies

v=1-

> (n=lag| < 1=,
n=2
that is
=7 . m—v+on =g\t n)
l—y "~ (1-v)
then
vl (n =D —v)

[ —v+en—1le(\t,n) — (1-v)
The above inequality holds true for n € Ng,p > 2,0>0and 0 <v < 1. O



4 Extreme points

Theorem 4.1. Let ui(z) = z and

1—w
) = T (ot et 1)

form =2,3,---. Then u(z) € T'S(v, 0, t) if and only if u(z) can be ex-
pressed in the form u(z) = > Gyuy(2), where ¢, >0 and ) ¢, = 1.
n=1 n=1

Proof. Suppose u(z) can be expressed as in (4.1). Then

u(z) = Z Grun(z) = Gua(z) + Z Gy (2
n=
1—-wv
= Clul ‘|‘ Z Cn {

ne+1) — (v+o)lp(\t,n) Zn}

1—-w
_C12+ZCWZ_ZCT7{ Q+1 (U+Q)]¢()\,t,77)zn}
1—-v

—z—ZCU{ Q+1

z”} .
(v+0)]o(At,n)

Thus
3 1-v (o +1) = (v+ 0))é(\ t,m)
nZZQC"<[n(9+1)—(v+@)]¢(A,t,n)>< 1—v )
=N G=Y¢-a=1-a<1
n=2 n=1

So, by Theorem 2.1, u € T'S(v, 9, A\, t).
Conversely, we suppose u € T'S(v, g, A\, t). Since

1—v

R Py s, g W R

We may set

Cn — [77(@ + 1) _fv__zg)]gs()‘at’n) ‘an’7 n > )

and (1 =1— )" (;- Then
n=2



1—wv
=2 — Zanz" = z—ZCn (0+1) (U+Q)]¢(>\,t,n)zn
=z ch[z N T T YIS
_ n=2 n=2
= Qui(z) + ZCnun chun(z)
n=1

Corollary 4.2. The extreme points of T'S(v, o, A, t) are the functions uy(z) =
z and

1—wv
et D) (ot oot 172

up(z) =z —

5 Radii of Close-to-convexity, Starlikeness and Con-
vexity
A function u € T'S(v, 0, A\, t) is said to be close-to-convex of order ¢ if it

satisfies
R{u'(2)} >0, (0<5<1; z€E).

Also A function u € T'S(v, o, A, t) is said to be starlike of order ¢ if it satisfies

%{Z;‘;z)} >5, (0<8<1; z€E).

Further a function u € T'S(v, g, A, t) is said to be convex of order ¢ if and
only if zu/(2) is starlike of order § that is if

2u'(2)
u(z)

Theorem 5.1. Let u € T'S(v, 0,\,t). Then u is close-to-convex of order &
in |z| < Ry, where

§R{1+ }>5, (0<d<1; z€E).

1

(1=0)n—v+oln— 1)]¢(A,t,n)] o1
n(l —v)

The result is sharp with the extremal function u is given by (2.3).

R; = inf [
k>2

Proof. Tt is sufficient to show that |u/(2) — 1| <1 -4, for |z| < R;. We have

[u'(z) — 1] = Zna 211 <Zv7a 2|7t



Thus |u/(z) — 1] <1 -4 if

n _
> ——lay||2]” <. (5.1)

n=2

But Theorem 2.1 confirms that

io: [?7(@ + 1) - 1(U_‘t)9)]¢()" t 77) ‘aU’ <1. (5_2)
n=2

Hence (5.1) will be true if

2" _ In(e+ 1) — (v+0)lé(\ tm)
1-6 — 1—wv '

We obtain

(1—8)[n—v+oln— 1)]¢(A,tﬂ7)} =

as required. O

Theorem 5.2. Let u € T'S(v, 0, \,t). Then u is starlike of order § in |z| <
Rs, where

1

[(1 —0)[n—v+oln— 1)]¢(>\,tﬂ7)] =1
(n—9)1—-v)

The result is sharp with the extremal function u is given by (2.3).

Ry = inf
k>2

Proof. We must show that

%—1‘@—5&@ 2| < Ra.

We have
[e.e]
, - > (n—1)ayz""1
zu'(2) 1‘ | 0=
- 00
u(2) 1— 3% apznt
n=2
- 1
> (= 1)lag||z["~
n=2
- o0
1= 3 |ag|[z7!
n=2
<1-4. (5.3)
Hence (5.3) holds true if
o
D = Dlayllz"" < (1-9) 1—Z!a [l
n=2

10



or equivalently,

0o n— S ~
> 5 lanll2l” <. (5.4)
n=2

Hence, by using (5.2) and (5.4) will be true if

n- 5‘2’7771 < [77(9 + 1) — (U + Q)]Qb()\,ta??)

1-6 1—wv
1
(1—0)[n—v+o(n— g\ t,n)] 7T
< > 2
> 1o < | (91— v) =
which completes the proof. O

By using the same technique in the proof of Theorem 5.2, we can show
that |22 &) 1‘ <1-4, for |z| < Rs, with the aid of Theorem 2.1.

W)

Thus we have the assertion of the following Theorem 5.3.

Theorem 5.3. Let u € T'S(v, 0, A\, t). Then u is convex of order 6 in |z| <
R3, where

1

= in (1=98)n—v+oln—Dlp(\t,n) ]
R3_k2f2[ n(n —0)(1 — v) .

The result is sharp with the extremal function u is given by (2.3).

6 Inclusion theorem involving modified Hadamard
products

For functions

o
uj(z) =2z — Z lan,j12", j=1,2 (6.1)
n=2

in the class A, we define the modified Hadamard product u; * ug(2) of uj(2)
and wug(z) given by

o
up kug(z) =z — Z lan,1||an2|2".
n=2

We can prove the following.

Theorem 6.1. Let the function uj, j = 1,2, given by (6.1) be in the class
TS(v, 0, A\, t) respectively. Then uy * ug(z) € T'S(v, 0, t,&), where

(1-v)

S U T NS | PSS GRS | TR

11



Proof. Employing the technique used earlier by Schild and Silverman [14],
we need to find the largest £ such that

|a7771||a’7]72| S 1'

= [n— — D]o(\, ¢,
E:M §+@?_§H( n)

n=2

Since uj € T'S(v, 0, A, t), j = 1,2, then we have

fim—v+@m—1»mxmm

1—o laga| <1
n=2
oo
—v+o(n—1)]o(\t,
and Z [77 (177_1))] ( 77)|an72| < 1,
n=2

by the Cauchy-Schwartz inequality, we have

5 et OO e lona < .

n=2

Thus it is sufficient to show that

[n =&+ o(n— 1]\ t,n)
1-¢

- -1 )‘7 ’
< [n U—i—@(;?_v)](b( t,n) /’an,lHa%Q” n>2,
that is
(1=8m—v+oln—1)
Vianallanal < T = o — 1

Note that

(1-w)
|lan,1]]an,2] < n—v+o(n— Do\ t,n)

Consequently, we need only to prove that
(1-v) <=9 —-v+on-1)

lan1l|an,2|

vt o —Dentn) = I—o)n—€+oin—1)] =%
or equivalently
B (n— 1)1+ 0)(1 — v)?
£<1 =0+ on — DN 6,7m) — (1= 0)2’ n>2.
Since
Ak)=1— (n—1)(1+0)(1 —v)? Jo o

[ —v+ e —DPeAt,n) - (1-v)*

12



is an increasing function of n,n > 2, letting n = 2 in last equation, we obtain

(1+0)(1—v)?
[2 —v+ Q]2¢()"t’n) - (1 - U)2 .

E<AQ) =1—

Finally, by taking the function given by (3.2), we can see that the result is
sharp. ]

7 Convolution and Integral Operators

Let u(z) be defined by (1.4) and suppose that g(z) = z — > |b,|2". Then
n=2
the Hadamard product (or convolution) of u(z) and g(z) defined here by

w(2) % g(z) = uxg(z) = 2= 3 Jayllbyl2".
n=2

o0

Theorem 7.1. Let u € T'S(v,0,\,t) and g(z) = z— > |by|2",0 < |by| < 1.
n=2

Then ux g € TS(v, 0, A\, t).

Proof. In view of Theorem 2.1, we have

> In—v+ o(n = DIg(At,n)|ay|[by|

T
[\o}

WE

<> [n—=v+oen—1]o(\t,n)|ay|

[\

TI:
1—w).

N

O

Theorem 7.2. Let u € T'S(v, 0, \,t) and « be real number such that o >
—1. Then the function M(z) = O‘Z—ngfzta_lu(t)dt also belongs to the class
TS(v,0,At). "

Proof. From the representation of M (z), it follows that

> a+1
M(z) =z— Ap|Z", where A, = ap).
(== 3l where g = (50

Since a > —1, than 0 < A, < |ay|. Which in view of Theorem 2.1, M €
TS(v,0,\t). O

13
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