REFERENCES
1. Dahlin JS, Ekoff M, Grootens J, et al. KIT signaling is dispensable
for human mast cell progenitor development. Blood 2017; 130(16):
1785-94.
2. Olivera A, Beaven MA, Metcalfe DD. Mast cells signal their importance
in health and disease. J Allergy Clin Immunol 2018; 142(2):
381-93.
3. McNeil BD, Pundir P, Meeker S, et al. Identification of a
mast-cell-specific receptor crucial for pseudo-allergic drug reactions.Nature 2015; 519(7542): 237-41.
4. Elst J, Sabato V, Faber MA, et al. MRGPRX2 and Immediate Drug
Hypersensitivity: Insights from Cultured Human Mast Cells. Journal
of investigational allergology & clinical immunology 2020: 0.
5. Subramanian H, Gupta K, Ali H. Roles of Mas-related G protein-coupled
receptor X2 on mast cell-mediated host defense, pseudoallergic drug
reactions, and chronic inflammatory diseases. J Allergy Clin
Immunol 2016; 138(3): 700-10.
6. Kühn K, Kolkhir P, Babina M, et al. Mas-related G protein-coupled
receptor X2 and its activators in dermatological allergies. J
Allergy Clin Immunol 2020; Oct 15, Epub ahead of print.
7. Lunderius-Andersson C, Enoksson M, Nilsson G. Mast Cells Respond to
Cell Injury through the Recognition of IL-33. Front Immunol 2012;
3: 120-30.
8. Babina M, Wang Z, Franke K, Guhl S, Artuc M, Zuberbier T. Yin-Yang of
IL-33 in Human Skin Mast Cells: Reduced Degranulation, but Augmented
Histamine Synthesis through p38 Activation. J Invest Dermatol2019; 139(7): 1516-25 e3.
9. Ohno T, Morita H, Arae K, Matsumoto K, Nakae S. Interleukin-33 in
allergy. Allergy 2012; 67(10): 1203-14.
10. Ronnberg E, Ghaib A, Ceriol C, et al. Divergent Effects of Acute and
Prolonged Interleukin 33 Exposure on Mast Cell IgE-Mediated Functions.Front Immunol 2019; 10: 1361.
11. Marshall JS, Portales-Cervantes L, Leong E. Mast Cell Responses to
Viruses and Pathogen Products. Int J Mol Sci 2019; 20(17).
12. Wernersson S, Pejler G. Mast cell secretory granules: armed for
battle. Nat Rev Immunol 2014; 14(7): 478-94.
13. Boyce JA. Mast cells and eicosanoid mediators: a system of
reciprocal paracrine and autocrine regulation. Immunol Rev 2007;
217: 168-85.
14. Mukai K, Tsai M, Saito H, Galli SJ. Mast cells as sources of
cytokines, chemokines, and growth factors. Immunol Rev 2018;
282(1): 121-50.
15. Moon TC, Befus AD, Kulka M. Mast cell mediators: their differential
release and the secretory pathways involved. Front Immunol 2014;
5: 569.
16. Lecce M, Molfetta R, Milito ND, Santoni A, Paolini R. FcepsilonRI
Signaling in the Modulation of Allergic Response: Role of Mast
Cell-Derived Exosomes. Int J Mol Sci 2020; 21(15).
17. Skokos D, Le Panse S, Villa I, et al. Mast cell-dependent B and T
lymphocyte activation is mediated by the secretion of immunologically
active exosomes. J Immunol 2001; 166(2): 868-76.
18. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO.
Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of
genetic exchange between cells. Nat Cell Biol 2007; 9(6): 654-9.
19. Kim DK, Cho YE, Komarow HD, et al. Mastocytosis-derived
extracellular vesicles exhibit a mast cell signature, transfer KIT to
stellate cells, and promote their activation. Proc Natl Acad Sci U
S A 2018; 115(45): E10692-E701.
20. Siebenhaar F, Redegeld FA, Bischoff SC, Gibbs BF, Maurer M. Mast
Cells as Drivers of Disease and Therapeutic Targets. Trends
Immunol 2018; 39(2): 151-62.
21. Wilcock A, Bahri R, Bulfone-Paus S, Arkwright PD. Mast cell
disorders: From infancy to maturity. Allergy 2019; 74(1): 53-63.
22. Galli SJ, Gaudenzio N, Tsai M. Mast Cells in Inflammation and
Disease: Recent Progress and Ongoing Concerns. Annu Rev Immunol2020; 38: 49-77.
23. Varricchi G, Marone G, Kovanen PT. Cardiac Mast Cells:
Underappreciated Immune Cells in Cardiovascular Homeostasis and Disease.Trends Immunol 2020; 41(8): 734-46.
24. Varricchi G, de Paulis A, Marone G, Galli SJ. Future Needs in Mast
Cell Biology. Int J Mol Sci 2019; 20(18).
25. Virk H, Arthur G, Bradding P. Mast cells and their activation in
lung disease. Transl Res 2016; 174: 60-76.
26. Rathore AP, St John AL. Protective and pathogenic roles for mast
cells during viral infections. Curr Opin Immunol 2020; 66: 74-81.
27. Piliponsky AM, Acharya M, Shubin NJ. Mast Cells in Viral, Bacterial,
and Fungal Infection Immunity. Int J Mol Sci 2019; 20(12).
28. Jiao Q, Luo Y, Scheffel J, Zhao Z, Maurer M. The complex role of
mast cells in fungal infections. Exp Dermatol 2019; 28(7):
749-55.
29. Nathan C. Points of control in inflammation. Nature 2002;
420: 846-52.
30. Dudeck A, Koberle M, Goldmann O, et al. Mast cells as protectors of
health. J Allergy Clin Immunol 2019; 144(4S): S4-S18.
31. Gentek R, Ghigo C, Hoeffel G, et al. Hemogenic Endothelial Fate
Mapping Reveals Dual Developmental Origin of Mast Cells. Immunity2018; 48(6): 1160-71 e5.
32. Li Z, Liu S, Xu J, et al. Adult Connective Tissue-Resident Mast
Cells Originate from Late Erythro-Myeloid Progenitors. Immunity2018; 49(4): 640-53 e5.
33. Nilsson G, Dahlin JS. New insights into the origin of mast cells.Allergy 2019; 74(4): 844-5.
34. Sonoda T, Hayashi C, Kitamura Y. Presence of mast cell precursors in
the yolk sac of mice. Dev Biol 1983; 97(1): 89-94.
35. Kitamura Y, Shimada M, Hatanaka K, Miyano Y. Development of mast
cells from grafted bone marrow cells in irradiated mice. Nature1977; 268(5619): 442-3.
36. Weitzmann A, Naumann R, Dudeck A, Zerjatke T, Gerbaulet A, Roers A.
Mast Cells Occupy Stable Clonal Territories in Adult Steady-State Skin.J Invest Dermatol 2020.
37. Ahmed N, Kunz L, Hoppe PS, et al. A Novel GATA2 Protein Reporter
Mouse Reveals Hematopoietic Progenitor Cell Types. Stem Cell
Reports 2020; 15(2): 326-39.
38. Arinobu Y, Iwasaki H, Gurish MF, et al. Developmental checkpoints of
the basophil/mast cell lineages in adult murine hematopoiesis.Proc Natl Acad Sci U S A 2005; 102(50): 18105-10.
39. Inclan-Rico JM, Hernandez CM, Henry EK, et al. Trichinella
spiralis-induced mastocytosis and erythropoiesis are simultaneously
supported by a bipotent mast cell/erythrocyte precursor cell. PLoS
pathogens 2020; 16(5): e1008579.
40. Tusi BK, Wolock SL, Weinreb C, et al. Population snapshots predict
early haematopoietic and erythroid hierarchies. Nature 2018;
555(7694): 54-60.
41. Franco CB, Chen CC, Drukker M, Weissman IL, Galli SJ. Distinguishing
mast cell and granulocyte differentiation at the single-cell level.Cell Stem Cell 2010; 6(4): 361-8.
42. Kirshenbaum AS, Goff JP, Semere T, Foster B, Scott LM, Metcalfe DD.
Demonstration that human mast cells arise from a progenitor cell
population that is CD34(+), c-kit(+), and expresses aminopeptidase N
(CD13). Blood 1999; 94(7): 2333-42.
43. Motakis E, Guhl S, Ishizu Y, et al. Redefinition of the human mast
cell transcriptome by deep-CAGE sequencing. Blood 2014; 123(17):
e58-67.
44. Chen CC, Grimbaldeston MA, Tsai M, Weissman IL, Galli SJ.
Identification of mast cell progenitors in adult mice. Proc Natl
Acad Sci U S A 2005; 102(32): 11408-13.
45. Grootens J, Ungerstedt JS, Nilsson G, Dahlin JS. Deciphering the
differentiation trajectory from hematopoietic stem cells to mast cells.Blood Adv 2018; 2(17): 2273-81.
46. Laurenti E, Gottgens B. From haematopoietic stem cells to complex
differentiation landscapes. Nature 2018; 553(7689): 418-26.
47. Dahlin JS, Hamey FK, Pijuan-Sala B, et al. A single-cell
hematopoietic landscape resolves 8 lineage trajectories and defects in
Kit mutant mice. Blood 2018; 131(21): e1-e11.
48. Hamey FK, Lau WWY, Kucinski I, et al. Single-cell molecular
profiling provides a high-resolution map of basophil and mast cell
development. Allergy 2020; Oct 30, Epub ahead of print.
49. Qi X, Hong J, Chaves L, et al. Antagonistic regulation by the
transcription factors C/EBPalpha and MITF specifies basophil and mast
cell fates. Immunity 2013; 39(1): 97-110.
50. Weinreb C, Rodriguez-Fraticelli A, Camargo FD, Klein AM. Lineage
tracing on transcriptional landscapes links state to fate during
differentiation. Science 2020; 367(6479).
51. Grootens J, Ungerstedt JS, Wu C, Hamberg Levedahl K, Nilsson G,
Dahlin JS. CD203c distinguishes the erythroid and mast cell-basophil
differentiation trajectories among human FcepsilonRI(+) bone marrow
progenitors. Allergy 2020; 75(1): 211-4.
52. Drissen R, Thongjuea S, Theilgaard-Monch K, Nerlov C. Identification
of two distinct pathways of human myelopoiesis. Sci Immunol 2019;
4(35).
53. Bian Z, Gong Y, Huang T, et al. Deciphering human macrophage
development at single-cell resolution. Nature 2020; 582(7813):
571-6.
54. Popescu DM, Botting RA, Stephenson E, et al. Decoding human fetal
liver haematopoiesis. Nature 2019; 574(7778): 365-71.
55. Enerbäck L. Mast cells in rat gastrointestinal mucosa. I. Effects of
fixation. Acta Pathol Microbiol Scand 1966; 66: 289-302.
56. Enerbäck L. Mast cells in rat gastrointestinal mucosa. II.
Dye-binding and metachromatic properties. Acta Pathol Microbiol
Scand 1966; 66: 302-12.
57. Irani AA, Schechter NM, Craig SS, DeBlois G, Schwartz LB. Two types
of human mast cells that have distinct neutral protease compositions.Proc Natl Acad Sci USA 1986; 83(4464): 4464-8.
58. Weidner N, Austen KF. Ultrastructural and immunohistochemical
characterization of normal mast cells at multiple body sites. J
Invest Dermatol 1991; 96(3 Suppl): 26S-30S; discussion S-1S, 60S-5S.
59. Lowman MA, Rees PH, Benyon RC, Church MK. Human mast cell
heterogeneity: Histamine release from mast cells dispersed from skin,
lung adenoids, tonsils, and colon in response to IgE-dependent and
nonimmunologic stimuli. J Allergy Clin Immunol 1988; 81(590):
590-7.
60. Derakhshan T, Samuchiwal SK, Hallen N, et al. Lineage-specific
regulation of inducible and constitutive mast cells in allergic airway
inflammation. J Exp Med 2021; 218(1).
61. Bankova LG, Dwyer DF, Liu AY, Austen KF, Gurish MF. Maturation of
mast cell progenitors to mucosal mast cells during allergic pulmonary
inflammation in mice. Mucosal Immunol 2015; 8(3): 596-606.
62. Andersson CK, Mori M, Bjermer L, Lofdahl CG, Erjefalt JS. Novel
Site-Specific Mast Cell Subpopulations in the Human Lung. Thorax2009; 64: 297-305.
63. Andersson CK, Mori M, Bjermer L, Lofdahl CG, Erjefalt JS.
Alterations in lung mast cell populations in patients with chronic
obstructive pulmonary disease. Am J Respir Crit Care Med 2010;
181(3): 206-17.
64. Maaninka K, Lappalainen J, Kovanen PT. Human mast cells arise from a
common circulating progenitor. J Allergy Clin Immunol 2013;
132(2): 463-9 e3.
65. Hallgren J, Hellman L, Maurer M, et al. Novel aspects of mast cell
and basophil function: Highlights from the 9th meeting of the European
Mast Cell and Basophil Research Network (EMBRN)-A Marcus Wallenberg
Symposium. Allergy 2020; 75(3): 707-8.
66. Dwyer DF, Barrett NA, Austen KF, Immunological Genome Project C.
Expression profiling of constitutive mast cells reveals a unique
identity within the immune system. Nat Immunol 2016; 17(7):
878-87.
67. Plum T, Wang X, Rettel M, Krijgsveld J, Feyerabend TB, Rodewald HR.
Human Mast Cell Proteome Reveals Unique Lineage, Putative Functions, and
Structural Basis for Cell Ablation. Immunity 2020; 52(2): 404-16
e5.
68. Dahlin JS, Malinovschi A, Ohrvik H, et al. Lin- CD34hi CD117int/hi
FcepsilonRI+ cells in human blood constitute a rare population of mast
cell progenitors. Blood 2016; 127(4): 383-91.
69. Gurish MF, Tao H, Abonia JP, et al. Intestinal mast cell progenitors
require CD49dbeta7 (alpha4beta7 integrin) for tissue-specific homing.J Exp Med 2001; 194(9): 1243-52.
70. Hallgren J, Gurish MF. Mast cell progenitor trafficking and
maturation. Advances in experimental medicine and biology 2011;
716: 14-28.
71. Salomonsson M, Dahlin JS, Ungerstedt J, Hallgren J.
Localization-Specific Expression of CCR1 and CCR5 by Mast Cell
Progenitors. Front Immunol 2020; 11: 321.
72. Halova I, Draberova L, Draber P. Mast cell chemotaxis -
chemoattractants and signaling pathways. Front Immunol 2012; 3:
119.
73. Juremalm M, Nilsson G. Chemokine receptor expression by mast cells.Chem Immunol Allergy 2005; 87: 130-44.
74. Nilsson G, Mikovits J, Metcalfe DD, Taub DD. Mast cell migratory
response to IL-8 is mediated through interaction with chemokine receptor
CXC-2/IL-8RB. Blood 1999; 93: 2791-7.
75. Juremalm M, Hjertson M, Olsson N, Harvima I, Nilsson K, Nilsson G.
The chemokine receptor CXCR4 is expressed within the mast cell lineage
and its ligand SDF-1a acts as a mast cell chemotaxin. Eur J
Immunol 2000; 30: 3614-22.
76. Juremalm M, Olsson N, Nilsson G. Selective CCL5/RANTES-induced mast
cell migration through interactions with chemokine receptors CCR1 and
CCR4. Biochem Biophys Res Commun 2002; 297(3): 480-5.
77. Taub D, Dastych J, Inamura N, et al. Bone marrow-derived murine mast
cells migrate, but do not degranulate, in response to chemokines.J Immunol 1995; 154: 2393-402.
78. Toda M, Dawson M, Nakamura T, et al. Impact of engagement of FceRI
and CC chemokine receptor 1 on mast cell activation and motility.The Journal of biological chemistry 2004; 279(46): 48443-8.
79. Nguyen M, Solle M, Audoly LP, et al. Receptors and signaling
mechanisms required for prostaglandin E2-mediated regulation of mast
cell degranulation and IL-6 production. J Immunol 2002; 169(8):
4586-93.
80. Klein O, Krier-Burris RA, Lazki-Hagenbach P, et al. Mammalian
diaphanous-related formin 1 (mDia1) coordinates mast cell migration and
secretion through its actin-nucleating activity. J Allergy Clin
Immunol 2019; 144(4): 1074-90.
81. Pickett JA, Edwardson JM. Compound exocytosis: mechanisms and
functional significance. Traffic 2006; 7(2): 109-16.
82. Gaudenzio N, Sibilano R, Marichal T, et al. Different activation
signals induce distinct mast cell degranulation strategies. J Clin
Invest 2016; 126(10): 3981-98.
83. Hepp R, Puri N, Hohenstein AC, Crawford GL, Whiteheart SW, Roche PA.
Phosphorylation of SNAP-23 regulates exocytosis from mast cells.The Journal of biological chemistry 2005; 280(8): 6610-20.
84. Azouz NP, Zur N, Efergan A, et al. Rab5 is a novel regulator of mast
cell secretory granules: impact on size, cargo, and exocytosis. J
Immunol 2014; 192(9): 4043-53.
85. Klein O, Roded A, Zur N, et al. Rab5 is critical for SNAP23
regulated granule-granule fusion during compound exocytosis. Sci
Rep 2017; 7(1): 15315.
86. Akin C, Valent P, Metcalfe DD. Mast cell activation syndrome:
Proposed diagnostic criteria. J Allergy Clin Immunol 2010;
126(6): 1099-104 e4.
87. Valent P, Akin C, Hartmann K, et al. Advances in the Classification
and Treatment of Mastocytosis: Current Status and Outlook toward the
Future. Cancer Res 2017; 77(6): 1261-70.
88. Metcalfe DD, Gotlib J. Systemic mastocytosis. In: Greer JP, Arber
DA, Applebaum FR, et al., eds. Wintrobe’s Clinical Hematology,
Fourteenth edition Philadelphia: Wolters Kluwer 2019: 1793-808.
89. Boyden SE, Desai A, Cruse G, et al. Vibratory Urticaria Associated
with a Missense Variant in ADGRE2. N Engl J Med 2016; 374(7):
656-63.
90. Lyons JJ, Yu X, Hughes JD, et al. Elevated basal serum tryptase
identifies a multisystem disorder associated with increased TPSAB1 copy
number. Nat Genet 2016; 48(12): 1564-9.
91. Robey RC, Wilcock A, Bonin H, et al. Hereditary Alpha-Tryptasemia:
UK Prevalence and Variability in Disease Expression. J Allergy
Clin Immunol Pract 2020.
92. Lyons JJ, Chovanec J, O’Connell MP, et al. Heritable risk for severe
anaphylaxis associated with increased alpha-tryptase-encoding germline
copy number at TPSAB1. J Allergy Clin Immunol 2020; online ahead
of print.
93. Greiner G, Sprinzl B, Gorska A, et al. Hereditary alpha tryptasemia
is a valid genetic biomarker for severe mediator-related symptoms in
mastocytosis. Blood 2020.
94. Le QT, Lyons JJ, Naranjo AN, et al. Impact of naturally forming
human alpha/beta-tryptase heterotetramers in the pathogenesis of
hereditary alpha-tryptasemia. J Exp Med 2019; 216(10): 2348-61.
95. Valent P, Akin C, Bonadonna P, et al. Proposed Diagnostic Algorithm
for Patients with Suspected Mast Cell Activation Syndrome. J
Allergy Clin Immunol Pract 2019; 7(4): 1125-33 e1.
96. Harvima IT, Levi-Schaffer F, Draber P, et al. Molecular targets on
mast cells and basophils for novel therapies. J Allergy Clin
Immunol 2014; 134(3): 530-44.
97. Church MK, Maurer M. Antihistamines. Chem Immunol Allergy2014; 100: 302-10.
98. Maun HR, Jackman JK, Choy DF, et al. An Allosteric Anti-tryptase
Antibody for the Treatment of Mast Cell-Mediated Severe Asthma.Cell 2019; 179(2): 417-31 e19.
99. Pejler G. The emerging role of mast cell proteases in asthma.Eur Respir J 2019; 54(4).
100. Maurer M, Eyerich K, Eyerich S, et al. Urticaria: Collegium
Internationale Allergologicum (CIA) Update 2020. Int Arch Allergy
Immunol 2020; 181(5): 321-33.
101. Altrichter S, Zampeli V, Ellrich A, Zhang K, Church MK, Maurer M.
IgM and IgA in addition to IgG autoantibodies against
FcvarepsilonRIalpha are frequent and associated with disease markers of
chronic spontaneous urticaria. Allergy 2020; (online ahead of
print).
102. Maurer M, Rosen K, Hsieh HJ, et al. Omalizumab for the treatment of
chronic idiopathic or spontaneous urticaria. N Engl J Med 2013;
368(10): 924-35.
103. Maurer M, Gimenez-Arnau AM, Sussman G, et al. Ligelizumab for
Chronic Spontaneous Urticaria. N Engl J Med 2019; 381(14):
1321-32.
104. Kolkhir P, Altrichter S, Munoz M, Hawro T, Maurer M. New treatments
for chronic urticaria. Ann Allergy Asthma Immunol 2020; 124(1):
2-12.
105. Caproni M, Bianchi B, D’Elios MM, De Carli M, Amedei A, Fabbri P.
In vivo relevance of CD30 in atopic dermatitis. Allergy 1997; 52:
1063-70.
106. Valent P, Akin C, Hartmann K, et al. Mast cells, a unique
hematologic lineage and cell system: From Paul Ehrlich to precision
medicine. Theranostics 2020; 10(23): 10743-68.
107. Rodewald HR, Feyerabend TB. Widespread immunological functions of
mast cells: fact or fiction? Immunity 2012; 37(1): 13-24.
108. Reber LL, Marichal T, Galli SJ. New models for analyzing mast cell
functions in vivo. Trends Immunol 2012; 33(12): 613-25.
109. Dudeck A, Dudeck J, Scholten J, et al. Mast cells are key promoters
of contact allergy that mediate the adjuvant effects of haptens.Immunity 2011; 34(6): 973-84.
110. Feyerabend TB, Weiser A, Tietz A, et al. Cre-mediated cell ablation
contests mast cell contribution in models of antibody- and T
cell-mediated autoimmunity. Immunity 2011; 35(5): 832-44.
111. Lilla JN, Chen CC, Mukai K, et al. Reduced mast cell and basophil
numbers and function in Cpa3-Cre; Mcl-1fl/fl mice. Blood 2011;
118(26): 6930-8.
112. Otsuka A, Kubo M, Honda T, et al. Requirement of interaction
between mast cells and skin dendritic cells to establish contact
hypersensitivity. PloS one 2011; 6(9): e25538.
113. Dahdah A, Gautier G, Attout T, et al. Mast cells aggravate sepsis
by inhibiting peritoneal macrophage phagocytosis. J Clin Invest2014; 124(10): 4577-89.
114. Luo Y, Meyer N, Jiao Q, et al. Chymase-Cre; Mcl-1(fl/fl) Mice
Exhibit Reduced Numbers of Mucosal Mast Cells. Front Immunol2019; 10: 2399.
115. Hoppe A, Katsoulis-Dimitriou K, Edler HJ, Dudeck J, Drube S, Dudeck
A. Mast cells initiate the vascular response to contact allergens by
sensing cell stress. J Allergy Clin Immunol 2020; 145(5): 1476-9
e3.
116. Ohrvik H, Grujic M, Waern I, et al. Mast cells promote melanoma
colonization of lungs. Oncotarget 2016; 7(42): 68990-9001.
117. Rabenhorst A, Schlaak M, Heukamp LC, et al. Mast cells play a
protumorigenic role in primary cutaneous lymphoma. Blood 2012;
120(10): 2042-54.
118. Schubert N, Dudeck J, Liu P, et al. Mast cell promotion of T
cell-driven antigen-induced arthritis despite being dispensable for
antibody-induced arthritis in which T cells are bypassed.Arthritis Rheumatol 2015; 67(4): 903-13.
119. Kroner J, Kovtun A, Kemmler J, et al. Mast Cells Are Critical
Regulators of Bone Fracture-Induced Inflammation and Osteoclast
Formation and Activity. J Bone Miner Res 2017; 32(12): 2431-44.
120. Ramirez-GarciaLuna JL, Chan D, Samberg R, et al. Defective bone
repair in mast cell-deficient Cpa3Cre/+ mice. PloS one 2017;
12(3): e0174396.
121. Wang Q, Lepus CM, Raghu H, et al. IgE-mediated mast cell activation
promotes inflammation and cartilage destruction in osteoarthritis.Elife 2019; 8.
122. Yu M, Mukai K, Tsai M, Galli SJ. Thirdhand smoke component can
exacerbate a mouse asthma model through mast cells. J Allergy Clin
Immunol 2018; 142(5): 1618-27 e9.
123. Zimmermann C, Troeltzsch D, Gimenez-Rivera VA, et al. Mast cells
are critical for controlling the bacterial burden and the healing of
infected wounds. Proc Natl Acad Sci U S A 2019; 116(41): 20500-4.
124. Jiao Q, Luo Y, Scheffel J, et al. Skin Mast Cells Contribute to
Sporothrix schenckii Infection. Front Immunol 2020; 11: 469.
125. Gutierrez DA, Muralidhar S, Feyerabend TB, Herzig S, Rodewald HR.
Hematopoietic Kit Deficiency, rather than Lack of Mast Cells, Protects
Mice from Obesity and Insulin Resistance. Cell Metab 2015; 21(5):
678-91.
126. Mencarelli A, Gunawan M, Yong KSM, et al. A humanized mouse model
to study mast cells mediated cutaneous adverse drug reactions. J
Leukoc Biol 2020; 107(5): 797-807.
127. Bryce PJ, Falahati R, Kenney LL, et al. Humanized mouse model of
mast cell-mediated passive cutaneous anaphylaxis and passive systemic
anaphylaxis. J Allergy Clin Immunol 2016; 138(3): 769-79.
128. Burton OT, Stranks AJ, Tamayo JM, Koleoglou KJ, Schwartz LB,
Oettgen HC. A humanized mouse model of anaphylactic peanut allergy.J Allergy Clin Immunol 2017; 139(1): 314-22 e9.
129. Dispenza MC, Krier-Burris RA, Chhiba KD, Undem BJ, Robida PA,
Bochner BS. Bruton’s tyrosine kinase inhibition effectively protects
against human IgE-mediated anaphylaxis. J Clin Invest 2020;
130(9): 4759-70.
130. Ehrlich P. Beiträge zur Theorie und Praxis der Histologischen
Färbung. Leipzig: Leipzig University; 1878.
131. Jorpes JE, Holmgren H, Wilander O. Ueber das vorkommen van heparin
in den gefasswanden und in den augen. Ztschr mikr -anat Forsch1937; 42: 279-301.
132. Holmgren H, Wilander O. Beitrag zur kenntnis der chemie und
funktion der ehr - lichschen mastzellen Ztschr mikr -anat Forsch1937; 42: 242-78.
133. Ellis JM. Urticaria pigmentosa; a report of a case with autopsy.Arch Pathol (Chic) 1949; 48(5): 426-35.
134. Riley JF, West GB. The presence of histamine in tissue mast cells.J Physiol (London) 1953; 120: 528-37.
135. Mota I, Vugman I. Effects of anaphylactic shock and compound 48/80
on the mast cells of the guinea pig lung. Nature 1956; 177(4505):
427-9.
136. Ishizaka T, Ishizaka K, Orange RP, Austen KF. The capacity of human
immunoglobulin E to mediate the release of histamine and slow reacting
substance of anaphylaxis (SRS-A) from monkey lung. J Immunol1970; 104(2): 335-43.
137. Ishizaka T, Ishizaka K, Tomioka H. Release of histamine and slow
reacting substance of anaphylaxis (SRS-A) by IgE-anti-IgE reactions on
monkey mast cells. J Immunol 1972; 108(2): 513-20.
138. Schwartz LB, Lewis RA, Austen KF. Tryptase from human pulmonary
mast cells: Purification and characterization. J Biol Chem 1981;
256(11939): 11939-43.
139. Schwartz LB, Lewis RA, Seldin D, Austen KF. Acid hydrolases and
tryptase from secretory granules of dispersed human lung mast cells.J Immunol 1981; 126: 1290-4.
140. Lewis RA, Soter NA, Diamond PT, Austen KF, Oates JA, Roberts LJ,
2nd. Prostaglandin D2 generation after activation of rat and human mast
cells with anti-IgE. J Immunol 1982; 129(4): 1627-31.
141. Brown MA, Pierce JH, Watson CJ, Falco J, Ihle JN, Paul WE. B cell
stimulatory factor-1/interleukin-4 mRNA is expressed by normal and
transformed mast cells. Cell 1987; 50: 809-18.
142. Young J-E, Liu C-C, Butler G, Cohn ZA, Galli SJ. Identification,
purification, and characterization of a mast cell-associated cytolytic
factor related to tumor necrosis factor. Proc Natl Acad Sci USA1987; 84: 9175-9.
143. Blank U, Ra C, Miller L, White K, Metzger H, Kinet JP. Complete
structure and expression in transfected cells of high affinity IgE
receptor. Nature 1989; 337(6203): 187-9.
144. Miller L, Blank U, Metzger H, Kinet JP. Expression of high-affinity
binding of human immunoglobulin E by transfected cells. Science1989; 244(4902): 334-7.
145. MacQueen G, Marshall J, Perdue M, Siegel S, Bienenstock J.
Pavlovian conditioning of rat mucosal mast cells to secrete rat mast
cell protease II. Science 1989; 243(4887): 83-5.
146. Witte ON. Steel locus defines new multipotent growth factor.Cell 1990; 63(1): 5-6.
147. Irani AA, Nilsson G, Miettinen U, et al. Recombinant human stem
cell factor stimulates differentiation of mast cells from dispersed
human fetal liver cells. Blood 1992; 80(3009): 3009-21.
148. Kirshenbaum AS, Goff JP, Kessler SW, Mican JM, Zsebo KM, Metcalfe
DD. Effect of IL-3 and stem cell factor on the apperance of human
basophils and mast cells from CD34+ pluripotent progenitor cells.J Immunol 1992; 148: 772-7.
149. Valent P, Spanblöchl E, Sperr WR, et al. Induction of
differentiation of human mast cells from bone marrow and peripheral
blood mononuclear cells by recombinant human stem cell factor/kit-ligand
in long-term culture. Blood 1992; 80(2237): 2237-45.
150. Mitsui H, Furitsu T, Dvorak AM, et al. Development of human mast
cells from umbilical cord blood cells by recombinant human and murine
c-kit ligand. Proc Natl Acad Sci USA 1993; 90(735): 735-9.
151. Nagata H, Worobec AS, Oh CK, et al. Identification of a point
mutation in the catalytic domain of the protooncogene c-kit in
peripheral blood mononuclear cells of patients who have mastocytosis
with an associated hematologic disorder. Proc Natl Acad Sci USA1995; 92: 10560-4.
152. Maurer M, Wedemeyer J, Metz M, et al. Mast cells promote
homeostasis by limiting endothelin-1-induced toxicity. Nature2004; 432(7016): 512-6.
153. Metz M, Piliponsky AM, Chen CC, et al. Mast cells can enhance
resistance to snake and honeybee venoms. Science 2006; 313(5786):
526-30.