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Abstract16

Flow recession analysis, relating discharge Q and its time rate of change −dQ/dt,17

has been widely used to understand catchment scale flow dynamics. However, data points18

in the plot of −dQ/dt versus Q typically form a wide point cloud due to noise and hys-19

teresis, and it is still unclear what information we can extract from the data points and20

how to understand the information. In this study, we utilize a machine learning tool to21

capture the point cloud using the past trajectory of discharge. Our results show that most22

of the data points can be captured using 5 days of past discharge. While analyzing the23

machine learning model structure and the trained parameters is a daunting task, we show24

that we can learn the catchment scale flow recession dynamics from what the machine25

learned. We analyze patterns learned by the machine and explain and hypothesize why26

the machine learned those characteristics. The hysteresis in the plot mainly occurs dur-27

ing the early time dynamics, and the flow recession dynamics eventually converge to an28

attractor in the plot, which represents the master recession curve. We also illustrate that29

a hysteretic storage-discharge relationship can be estimated based on the attractor.30

1 Introduction31

Flow recession analysis (Brutsaert & Nieber, 1977) has been extensively utilized32

to understand flow dynamics at the catchment scale (e.g., Vogel & Kroll, 1992; Clark et33

al., 2009; Jachens et al., 2020). Flow recession is a “data-based” catchment scale signa-34

ture that encapsulates information about catchment characteristics and dynamics (e.g.,35

Troch et al., 2013). Typically, a flow recession analysis plot is constructed by plotting36

the rate of change in discharge −dQ/dt versus discharge Q, and patterns in the plot have37

been analyzed and linked to catchment scale processes and properties (e.g., Brutsaert38

& Nieber, 1977; Troch et al., 2013).39

Brutsaert and Nieber (1977) showed that some patterns of data points in the flow40

recession analysis plot can be explained by a hydraulic groundwater model, viz. the Boussi-41

nesq model. The explanatory power of the model implies that catchment scale proper-42

ties, such as the saturated hydraulic conductivity and the drainable porosity, can be es-43

timated through the recession curve analysis (Brutsaert & Nieber, 1977; Troch et al., 2013).44

Other studies showed that the data points can also be explained by other mechanisms45

and models, such as a two parallel bucket model and a model using superposition of mul-46
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tiple linear reservoirs (e.g., Clark et al., 2009; Harman et al., 2009; Gao et al., 2017). Biswal47

and Marani (2010) showed that geomorphological characteristics also can explain some48

patterns. While the question of which model represents reality better will probably vary49

from site to site, it is clear that the recession analysis helps hydrologists develop hypothe-50

ses about catchment scale flow dynamics.51

However, there still remains a fundamental issue on what is the “right” informa-52

tion we can extract from the signature. The data points in the recession analysis plot53

(in log-log scale) usually form a wide point cloud due to the measurement noise in Q (e.g.,54

Rupp & Selker, 2006), the auto-correlation in observation errors, and time-varying catch-55

ment dynamics (e.g., Harman et al., 2009; Shaw & Riha, 2012; Jachens et al., 2020). Be-56

fore proposing hypotheses about catchment scale dynamics, we need to decide how to57

interpret the wide point cloud.58

Brutsaert and Nieber (1977) suggested using the lower envelope of a point cloud.59

They used the lower envelope to capture the ensemble characteristics of many recessions60

(Brutsaert, 2005) and suggested determining the slope of the lower envelope b among the61

values that can be explained by the Boussinesq model instead of estimating the slope62

directly using data. The Boussinesq model used in their original study predicts two slopes63

(b = 1.5 for the late time recession and b = 3.0 for the early time recession), and the64

predicted lower envelope has a lower slope in the lower discharge range. Alternatively,65

Vogel and Kroll (1992) performed an ordinary regression analysis to fit a line to the data66

as a measure of the central tendency (centrality). Similarly, Kirchner (2009) suggested67

binning the data and performed a weighted linear regression to account for the uncer-68

tainty associated with each bin.69

However, recent studies have questioned the use of the lower envelope and the mea-70

sure of central tendency and have emphasized the importance of analyzing the slope b71

of each recession event (e.g., Shaw & Riha, 2012; Tashie et al., 2020; Jachens et al., 2020).72

The slope fitted to the data points of each event is event-specific, and it seems that the73

lower envelope does not represent an ensemble of recession dynamics but is a collection74

of endpoints of each event (Tashie et al., 2020; Jachens et al., 2020). Such event-to-event75

differences are often attributed to catchment memory effects (e.g., Harman et al., 2009;76

Tashie et al., 2020; Jachens et al., 2020) or to seasonal dynamics (Shaw & Riha, 2012).77

Also, the slope of each event is in general much steeper than the slope estimated as a78
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central tendency or derived from the Boussinesq model (e.g., Tashie et al., 2020; Jachens79

et al., 2020). Tashie et al. (2020) further argued that many of the trajectories of each80

event in the recession analysis plot have a higher slope at the lower discharge range, ex-81

cept for some dry and flat catchments, casting doubt on the applicability of the Boussi-82

nesq model.83

There seem to be two contrasting approaches. One emphasizes the importance of84

analyzing the ensembles of many recessions (i.e., the lower envelope or a measure of cen-85

tral tendency), and the other highlights the importance of the event scale analysis and86

questions the meaning of the lower envelope and the measure of central tendency. In this87

study, we examine if those approaches can be combined. We utilize a machine learning88

tool to capture dynamics represented in the recession analysis plot using the past tra-89

jectory of flow. We hypothesize that the tool can learn both the time variability (i.e.,90

the event-by-event variability) and the ensemble of recession dynamics, if both exist. We91

report the machine learning model results and explain some patterns that the machine92

learning tool exposed. We finally show that the contrasting approaches can be combined93

into a single one.94

2 Theoretical background, methods, and study site95

2.1 Flow recession analysis96

Originally, flow recession curve analysis used a plot of −dQ(t)/dt versus Q(t). In97

this study, we use an alternative function:98

g(t) = −dQ(t)

dt
/Q(t) (1)

The function g(t), instead of −dQ/dt, is plotted versus Q(t). The function g is iden-99

tical to the catchment sensitivity function of Kirchner (2009). (Note that the catchment100

sensitivity function expresses the sensitivity of discharge to changes in storage S; i.e.,101

g = dQ/dS = (dQ/dt)/(dS/dt) (Kirchner, 2009). The formulation in (1) is a simpli-102

fied form that has been utilized predominantly instead of fully considering dS/dt.) When103

a power function is used to characterize the recession plot (i.e., −dQ/dt = aQb), the104

power function still holds for g with the exponent decreased by 1: g(Q) = aQb−1 (Kirchner,105

2009). We will call this g vs. Q plot a recession analysis plot as well as the −dQ/dt vs.106
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Q plot. So the name of the plot is used interchangeably. The inverse of g, 1/g, is a time107

scale of the flow recession. When the flow recession over time is approximated using an108

exponential function as Q = Q0e
−t/tc , where tc is the e-folding time of the exponen-109

tial decay, 1/g is constant and is the e-folding time; i.e. tc = 1/g . Otherwise, the de-110

cay rate 1/g depends on time. The function g(Q) also can be utilized to estimate a (rel-111

ative) storage-discharge relationship (Kirchner, 2009). The estimated storage using the112

catchment sensitivity function (1) (i.e., S(Q) =
∫ Q

Q0
(1/g(Q))dQ) is the “active” stor-113

age (relative to a certain storage at Q0) which is the portion of the storage that drives114

discharge (e.g., Troch et al., 2013). (Note that the active storage is sometimes referred115

to as “direct” storage (Dralle et al., 2018) or “hydraulically-connected” storage (Carrer116

et al., 2019).)117

Several methods have been suggested to estimate dQ(t)/dt using the discrete time118

series of Q. One simple way is to estimate it at a constant time step (CTS): dQ(t+∆t/2)/dt =119

(Q(t + ∆t) − Q(t))/∆t, where ∆t is the time step and Q(t + ∆t/2) = (Q(t + ∆t) +120

Q(t))/2 (Brutsaert & Nieber, 1977). However, the method is sensitive to discharge mea-121

surement resolution and noise, especially at low flow (Rupp & Selker, 2006). Roques et122

al. (2017) suggested the exponential time step (ETS) method, where the time step in-123

creases exponentially in each recession event and an exponential function is fitted to dis-124

charge, which is then used to estimate its (smoothed) time derivative.125

Also, several criteria to determine recession periods have been suggested. In the126

event-by-event analysis, a sufficient number of samples is required for each event to fit127

a statistically meaningful (power) function. Dralle et al. (2017) suggested using events128

that have strictly decreasing Q for more than four days (when one uses daily time step129

data). The start and end times of each event can be determined using a rainfall time se-130

ries (Lamb & Beven, 1997; Dralle et al., 2017) or based on the transition from decreas-131

ing discharge to increasing discharge and vice versa (Dralle et al., 2017; Jachens et al.,132

2020). Another criterion used in some studies is the strict decrease in −dQ/dt in raw133

data (Dralle et al., 2017; Tashie et al., 2020) or in 3 day moving averages of −dQ/dt (Dralle134

et al., 2017). In addition, Lamb and Beven (1997) suggested filtering out periods with135

significant (potential) evapotranspiration. For the catchment sensitivity function, Kirchner136

(2009) proposed using the Q >> J and Q >> ET criteria, where ET is the evapo-137

transpiration rate, to rule out the effects of those climate forcings.138
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Figure 1. Illustration of the recession analysis plot and the corresponding storage-discharge

relationship. (A) Two event trajectories in the recession analysis plot illustrated by different col-

ors. The subset figure illustrates a part of the discharge time series of the two events. The empty

circles in the recession analysis plot and the subset figure mark the timing of the g estimation

for a few times. The empty purple circles are at a similar discharge for the two events but placed

at different values of g. We hypothesize that the difference in g can be characterized by the past

trajectory of discharge as shown in the subset figure. (Note that only the purple circle is illus-

trated for the red event because of the (not shown) rainfall event during 1.5 - 2.5 days.) (B) The

corresponding storage-discharge relationship. The filled circles represent the timings correspond-

ing to the filled circles in the subset figure in (A). The marker ‘X’ in both (A) and (B) indicates

g and the active storage at a low flow condition at which the storage is set to zero.

As mentioned earlier, the function g(Q) (or −dQ/dt) has been parameterized us-139

ing single discharge values Q. However, according to some studies that explain the event-140

to-event time variability as memory effects (e.g., Harman et al., 2009; Jachens et al., 2020;141

Tashie et al., 2020), it seems more natural to parameterize g using the past trajectory142

of measurable variables. In this study, we hypothesize that g can be better character-143

ized using the past trajectory of discharge, rather than using single discharge values. Fig-144

ure 1A illustrates an example of g for two recession events and the associated discharge145

time series. As illustrated in the figure, the trajectory of g may vary from event to event,146

and the past trajectory of discharge may be used to distinguish those trajectories at sim-147

ilar values of Q. When the catchment sensitivity function g is hysteretic, the correspond-148

ing active storage-discharge relationship is also hysteretic, as exemplified in Figure 1B.149

The model to estimate g using the past trajectory of discharge can be written as:150
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g = H(
←−
Q) (2)

where H is a non-linear hysteretic function, and
←−
Q is the past trajectory of dis-151

charge. Specifically, we configure the model to estimate the half-step ahead g, g(t+∆t/2),152

using Q(t), Q(t−∆t), · · · , Q(t−m∆t), where m+ 1 is the length of the past trajec-153

tory of discharge. During the flow recession periods, the model can estimate the one-step154

ahead discharge Q(t+∆t) using g(t+∆t/2) as: Q(t+∆t) = 2−g(t+∆t)∆t
2+g(t+∆t)∆tQ(t), assum-155

ing that dQ/dt is constant between the two time steps.156

The functional form is similar to Beven’s Holy Grail problem (Beven, 2006), that157

is to find a scale dependent hysteretic function for estimating discharge using the past158

trajectory of precipitation J and other relevant inputs at the scale of interest. In this159

study, we use the past trajectory of Q rather than J . One reason is that, often, discharge160

data is more accurate than catchment scale estimation of J . Also, it is more consistent161

with the previous studies where Q is used to characterize the function g (or −dQ/dt).162

2.2 A machine learning tool: Long Short-Term Memory model163

We use a machine learning tool, the Long Short-Term Memory (LSTM) model (Hochreiter164

& Schmidhuber, 1997), to learn the function H using data. The LSTM model is a su-165

pervised learning algorithm and a type of recurrent neural network, that has been ap-166

plied successfully to reproduce catchment scale flow dynamics (e.g., Kratzert et al., 2018;167

Shen et al., 2018). A LSTM model can be configured with multiple layers such as the168

recurrent LSTM layer, the dropout layer, and the dense layer (see Figure 2).169

The recurrent LSTM layer consists of multiple LSTM cells, and a LSTM cell pro-170

cesses an internal state h and a cell state (or a cell memory) c using input data I and171

three gates: a forget gate f , an input gate i, and an output gate o. The states h and c172

are vectors of length n, where n ≥ 1 is referred to as the number of LSTM units. A set173

of forward operations in a LSTM cell can be written as:174
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Figure 2. (Left) An example of a LSTM model structure with the dropout layer and the

dense layer. The model has two layers of the recurrent LSTM layer with the dropout layer in

between. Input time series It is fed into the first LSTM layer. The output of the second LSTM

layer is fed into the dense layer, which estimates an output Ot of the model. (Right) A detailed

structure inside a LSTM cell. ht is the internal state and ct is the cell state at time t. f , i, and

o denote the forget gate, the input gate, and the output gate, respectively. c̃ is the cell input

(modified from Greff et al. (2017)).

ft = σ(WfIt + Ufht−1 + bf )

it = σ(WiIt + Uiht−1 + bi)

ot = σ(WoIt + Uoht−1 + bo)

c̃t = tanh(WcIt + Ucht−1 + bc)

ct = ft ◦ ct−1 + it ◦ c̃t

ht = ot ◦ tanh(ct)

(3)

where ft, it, ot, and c̃t are activation vectors (of length n) of the forget gate, the175

input gate, the output gate, and the cell input at time t, respectively, ct is the cell state176

vector of length n, ht is the internal state vector of length n, σ is the sigmoid function,177

the operator ◦ denotes the Hadamard product (element-wise product), It is the input178

feature vector of size m at time t, where m is the number of input features (or variables),179

W matrices (Wf , Wi, Wo, and Wc) are n×m weight matrices, U are n×n weight ma-180

trices, and b vectors are the bias vector of length n. The W and U matrices and the b181

vectors need to be learned using a dataset.182
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The dropout layer is to avoid overfitting by setting a fraction of some variables to183

zero (e.g., Hochreiter & Schmidhuber, 1997). The dropout can be applied to the input184

sequence, to the recurrent states, or to the output of any recurrent LSTM layers. The185

dense layer is a deeply connected neural network layer, and it estimates: Ot = k(WD◦186

xt+bd), where Ot is an output sequence of length q, xt is a length q input sequence to187

the layer, Wd is a p × q weight matrix, bd is a bias vector of length q, and k is an ac-188

tivation function such as the linear function k(x) = x.189

For example, the model shown in Figure 2 has two layers of the recurrent LSTM190

layer with the dropout layer in between. The dense layer receives the output of the sec-191

ond LSTM layer as an input sequence. If we use the model structure to estimate the func-192

tion H, the illustrated model uses five days (or time steps) of input data (discharge Q)193

to estimate an output g; i.e., It = Q(t) and m = 1 for the first layer, and Ot = g(t)194

with q = 1. The number of LSTM units n for the first and the second layers are hy-195

perparameters that need to be determined by the modeler, and p is equal to the num-196

ber of LSTM units of the second LSTM layer.197

The model needs to be trained using data to estimate the W and U weight ma-198

trices and the bias vectors b. Usually, a neural network model is trained over the whole199

data many times, where the number of iteration over the whole dataset is referred to as200

the number of epochs. One epoch includes the whole dataset, and an epoch consist of201

several batches that are a fraction of the dataset. For each batch, the forward pass (e.g.,202

(3) for the LSTM layers) and the backward pass are performed to train the model us-203

ing a loss function. The forward pass and the backward pass determine the gradient of204

the weights in those matrices and the vectors, and those weights are updated with a cer-205

tain rate, the learning rate.206

2.3 Study Site and Data207

We use discharge data measured at the Calawah River near Fork, WA, USA (lat-208

itude 47◦57’30”, longitude 124◦23’30”, USGS gauge 12043000). The drainage area is 334209

km2, and the average topographic slope of this catchment is 0.07 (Addor et al., 2017).210

The CAMELS dataset (Addor et al., 2017) provides daily precipitation and potential evap-211

otranspiration rates for this catchment, derived from the 1 km resolution Daymet data212

(Thornton et al., 2016). The CAMELS data set also provides an estimated actual evap-213
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otranspiration rate using the Sacramento Soil Moisture Accounting (SAC-SMA) Model214

(Newman et al., 2015). For the period from March 1984 to December 2014, the average215

precipitation rate is 3,005 mm/year and the mean discharge rate is 2,819 mm/year. The216

actual evapotranspiration rate is 476 mm/year. The mass-balance does not close pos-217

sibly due to an overestimation of the actual evaporation rate, but note that the reces-218

sion plot analysis does not rely on the mass-balance and the quality of the actual evap-219

oration time series. This catchment is wet with the aridity index of 0.25. Figure 3A shows220

the precipitation, the discharge, and the actual evapotranspiration rates.221

We use daily data in this study, as daily datasets are more commonly available than222

higher temporal resolution datasets. However, when using a daily dataset, applying the223

criterion Q >> ET , that is used to estimate the catchment sensitivity function in Kirchner224

(2009), can exclude a lot of low flow data. Thus we do not use that criterion, so our anal-225

ysis is a flow recession analysis rather than an analysis of the catchment sensitivity func-226

tion. In terms of the catchment sensitivity function, our analysis can be seen as analyz-227

ing the function in which the effect of evapotranspiration is included implicitly.228

2.4 Applied methods and model setup229

We used the precipitation time series and the criterion of dQ/dt <= 0 to deter-230

mine the recession period. Periods with dQ/dt = 0 were included since actual decreases231

in discharge might not be recorded due to the measurement resolution. We have not ap-232

plied the recession event length-based criterion and used all available data as we do not233

perform statistical analysis for each recession event separately. We applied both CTS234

and ETS methods to estimate the function g. The reasons for applying both methods235

are as follows; First, we expected the ML model to be able to find patterns in the noisy236

CTS method-based estimation; Second, the ETS method is a state-of-the-art method,237

but it relies on data smoothing.238

The LSTM model was constructed with the same structure as described in Figure239

2. The model has two recurrent LSTM layers and the dropout layer in the middle. There240

is also the dense layer after the second recurrent LSTM layer. The mean absolute error241

was used as the loss function. The training period was from October 1980 to December242

2000, and the validation period was from January 2001 to December 2014. The num-243

ber of LSTM units in each cell nu was 15 for both layers. The number of trainable pa-244
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Figure 3. Time series and the flow recession analysis plots. (A) Time series of the precipita-

tion J , the discharge Q, and the actual evapotranspiration ET . (B) The recession analysis plots

that are estimated using (B-1) the CTS method and (B-2) the ETS method. Note that data

points with dQ/dt = 0 are not shown in these log-log scale plots. The dotted lines in (B-2) are

the lower envelope that was fitted to the point cloud by visual inspection.
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rameters np is determined by the model structure and nu as: np = 12n2
u +13nu +1 =245

2896. The Adam solver (Kingma & Ba, 2017) was used for training, and the learning246

rate was 0.001. The iteration was set to stop if the loss function of the validation set did247

not improve over 100 iterations. The dropout rate was 0.4. The use of early stopping248

criteria and the high dropout rate are to reduce overfitting. Also, the model performance249

during the validation period was checked to ensure that the model performs reasonably250

well outside of the training period. TensorFlow (Abadi et al., 2015) was used to imple-251

ment the model.252

3 Results253

This section reports the estimated function g and the function learned using the254

LSTM model. We also show the results of using the central tendency for comparison.255

Figure 3B illustrates the recession analysis plots. As expected, the data points are widely256

scattered. The CTS method-based estimates show a diagonal pattern with its slope of257

-1 in the low discharge range due to the measurement resolution. The estimation based258

on the ETS method does not display the pattern as the discharge data was smoothed259

out. The lower envelope of Brutsaert and Nieber (1977) appears to be suitable for the260

data cloud, with b = 3 for high flow and b = 1.5 for low flow.261

Figure 4A illustrates the fitted power functions as a measure of central tendency262

using the binned data. The binned data was estimated using the method suggested in263

Kirchner (2009) for both the CTS method-based estimation and the ETS method-based264

estimation. The slope of the fitted line is close to the slope of the lower envelope at low265

flow and is much lower than the trajectories of each event that are indicated by the gray266

lines connecting the data points of each event. The coefficient of determination r2 be-267

tween the data points and the modeled values using the fitted line is -0.00 for the CTS-268

based estimation and −0.05 for the ETS-based estimation, respectively. Figure 5A shows269

that there is a structure in the model error. In the modeled value versus the observed270

value plots, many dots are densely located right above the 1:1 line, and the other dots271

are very sparsely located under the line. This pattern in the plot, along with the low r2
272

values, means that the fitted lines do not represent the data well.273

The half-step ahead prediction results of the LSTM model are shown in Figure 4B.274

The model results are shown for different lengths of discharge trajectories (1 day, 3 days,275
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Figure 4. Estimated flow recession dynamics using (A) the central tendency and (B) the

LSTM model. The CTS method-based estimation is used as observation in (A-1) and (B-1), and

the ETS method-based estimation is used in (A-2) and (B-2). The yellow circles in (A) are the

binned data with the error bar indicating the standard deviation of each bin. The dotted line is

the power function fitted to the binned data. The grey dots are the observed data points, and

the grey lines connect the points of each recession event. In (B), the blue dots are the ML model

estimation and the blue lines connect the blue dots of each event. (Note that the LSTM results

are shown only for the recession periods determined using the criteria that is described in the

text.)
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Figure 5. Comparison of the modeled g and the observed g. (A) The central tendency model,

and (B) The LSTM model. The dotted black lines are 1:1 lines.

and 5 days) that were used in the function H. The LSTM model performance was sim-276

ilar for both training and validation periods (e.g., with the mean absolute error of 0.01277

day−1 for both periods when 5 days of discharge was used), and the illustrated LSTM278

results are for both periods. The model results are similar to the pattern of the binned279

data when only a single discharge value is used, but the model improves significantly as280

longer past trajectories of discharge are used. When the CTS method-based estimation281

is used as observation, the coefficient of determination r2 is 0.64 and 0.81 for the model282

using 3 days and 5 days of discharge, respectively. (Note that there was no significant283

improvement when we increased the number of days to more than 5 days.) The LSTM284

model shows similar results when the ETS method-based estimation was used as obser-285

vation. The coefficient of determination r2 is 0.75 and 0.93 for the model using 3 days286

and 5 days of discharge, respectively. Figure 5B shows that the model results are sig-287

nificantly improved compared to the central tendency model. In the modeled value ver-288

sus the observed value plots, the dots are distributed close to the 1:1 lines.289

The LSTM model also performs decently when it is used as a forward model (up-290

dating the model input with the modeled Q as it becomes available). Figure 6 shows the291

simulated recession dynamics for 16 events. In this analysis, we chose events longer than292

30 days so that we can see enough recession dynamics for each event. We select events293

if the condition of dQ/dt < 0.025 mm/day2 holds for more than 30 days, assuming that294

the discharge increase of 0.025 mm/day over one day is insignificant. Also, the precipitation-295

based criterion was not applied. As the model was trained for the prediction of the half-296
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step ahead g (which can be used to estimate the one-step ahead Q), the forward model297

performance degrades when the first few estimations are biased. Nevertheless, the model298

well tracks the event trajectories in the recession analysis plot which varies event-to-event.299

(Also, see Figure S1 that illustrates the event-to-event variation more clearly.)300

4 Discussion: Learning from the machine301

The results indicate that the machine has learned the nonlinear hysteretic func-302

tion H during the flow recession periods. But converting the machine-learned function303

into a human-readable format is currently a daunting task (e.g., Nearing et al., 2020).304

It is not easy to interpret the U and W matrices and the b vectors in a physically mean-305

ingful way. Nonetheless, our results indicate that the hysteretic recession dynamics can306

be determined by the last few days of discharge (about 5 days to get r2 ≈ 0.8). We can307

also investigate some machine-learned characteristics and deduce why the machine learned308

those features. In this study, we investigate the origin of hysteresis that appears in the309

plot and the origin of some areas of dense LSTM model estimation points. The result310

of the LSTM model using 5 days of discharge and the CTS method-based estimation is311

used for the following analysis. We focus on analyzing the half-step ahead estimation of312

g instead of the forward model result because the half-step ahead estimation is closer to313

data (see Figure 6B). Nevertheless, most of the analysis presented in this section are still314

valid with the forward modeling result.315

We first investigate the origin of hysteresis that appears in the recession analysis316

plot. For example, when Q ≈ 1.0 mm/day, the g values range from 0.03 day−1 to 0.4317

day−1. The LSTM model results indicate that the hysteresis can be explained by the past318

5 days trajectory of discharge. Figures 7C and 7D show the 5 days of discharge for the319

points covered by each of the two areas that are indicated in the recession analysis plot.320

The discharge range for both areas is from 0.8 mm/day to 2.0 mm/day. The upper area321

is where g is greater than 0.13 day−1, and the lower area is where g is less than 0.033322

day−1. The past trajectories of discharge are very different for the two areas. For the323

upper area with high g, the trajectories indicate that those recessions are from recent324

events. In the lower area, the trajectories of past discharge is consistently low and does325

not increase noticeably during the last 5 days.326
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Figure 6. Forward modeling result of the LSTM model for the 16 events. (A) The simulated

discharge time series, and (B) the simulated trajectory in the recession analysis plot. The forward

model was run after the largest rain event (see the vertical dotted lines in (A)). The red dots

represent the one-step ahead or the half-step ahead predictions, and the orange lines illustrate

the forward model predictions.
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Figure 7. Learning from what machine learned. (A) LSTM model results using 5 days of dis-

charge and the CTS method-based estimation. (B) 5 days of discharge for the events contained in

the upper box in (A), that is indicated by the black dotted line, and (C) 5 days of discharge for

the events contained in the lower box in (A). (D) Kernel density estimation at each data point.

Density is displayed in colors from yellow (dense) to blue (sparse). The red line is the trajectory

of the events from September 1, 1991 to October 14, 1991. The line is a solid line during the pe-

riods that are determined as a recession period. Otherwise, it is a dashed line. The black arrows

indicate the direction of the flow recession dynamics in the plot, and the black dashed lines are

the power functions that are fitted the dense area (f̂h > 0.2). (E) Time series of the precipita-

tion, the discharge, and the actual evapotranspiration during the event. If we use the recession

period determination criteria discussed in the text, this event is divided into three events, and

the vertical dotted lines show the timing of the division. The yellow area represents the period

during which the event moves within the yellow area (f̂h > 0.5) shown in (D). (F) Data points of

the event that are estimated using several methods. (G) LSTM model-learned trajectories of all

events longer than 30 days.
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The contrasting trajectories indicate that g is high for “early” recession dynam-327

ics and is low for “late” recession dynamics. During the early recession, the discharge328

decreases at a faster rate. This may be due to the continuous deactivation of some fast329

flow pathways, such as overland flow and macropore flow, and rapid contraction of vari-330

able source area. For the late time dynamics, we hypothesize that most of the fast flow331

paths were already deactivated, the contraction of the variable source area is slow, and332

the flow dynamics are largely dominated by subsurface flow and perennial stream flow,333

resulting in low g values.334

Another characteristic is that there is an area where the LSTM estimated points335

are densely located. Figure 7D shows the Gaussian kernel density estimation f̂h(Q, g)336

(e.g., Silverman, 1986) illustrated by the color of each point. Scott’s method (Scott, 1992)337

was used to calculate the bandwidth of the kernel. The yellow and green area is where338

the points are densely located. (Note that this dense area is also visible in the ETS method339

estimation; see Figure 3B-2.) The dense area is a region where the catchment has spent340

a significant amount of time, meaning that the flow dynamics of the dense area are slow341

or that the flow dynamics associated with that area are repeated frequently. The dense342

area can be divided into two parts according to its slope in the plot: the lower dense area343

with low slope (mainly the yellow area) and the upper dense area with high slope (mainly344

the green area).345

An event trajectory shows that the flow dynamics in the yellow area (f̂h > 0.5)346

is slow. The red line in Figure 7D is the LSTM model learned trajectory of an event from347

Sep. 1, 1991 to Oct. 14, 1991, which ended up in the yellow area. The event spent about348

half of its time in the yellow area (see the discharge time series in Figure 7E), while the349

line length of trajectory in the recession analysis plot is much shorter inside the yellow350

area than the line length of trajectory of the earlier period. Note that the event trajec-351

tory in the yellow area also can be estimated using the ETS method, but is not easy to352

estimate using the CTS method-based estimation due to some noise (see Figure 7F).353

Also, note that several parts of the trajectory (the red line) are indicated by dashed354

lines when the associated period is not determined as a recession period. According to355

the criteria for determining recession periods that we applied, this event was divided into356

three recession events due to a very small precipitation event (0.83 mm/day) and two357

small increases in discharge (about 0.02 mm/day increase over one day; see Figure 7E).358
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However, looking at the discharge time series, it makes sense to treat the entire event359

as a single recession event. The precipitation event appears to be too small to affect the360

flow dynamics. The increases at two times are very small, and since the cause of the small361

increases is not clear, it seems better not to use the two small increases to determine the362

recession period.363

The yellow area is not only the area where the flow dynamics are slow but also the364

area that is often explored. Figure 7G shows that all 16 recession events over 30 days,365

which were selective previously, converge to the yellow area and then move along that366

area towards the lower-left corner. The same pattern is also observable in the forward367

model result (see Figure S1). Figure 7G shows that the yellow area behaves like an “at-368

tractor”, where all dynamics converge to that area and then move within that area, un-369

less those dynamics are pushed away from it by external forcings. (See Beven and Davies370

(2015) for more discussion on the attractor in catchment hydrology.) The early reces-371

sion dynamics (that mostly appears above the yellow area) varies from event to event,372

depending on the spatial structure of the initial conditions (e.g. soil moisture content)373

for each event and the temporal and spatial patterns of external forcings (e.g. precip-374

itation). Sometime later the dynamics of each event converge to the attractor, as the ef-375

fects of those conditions and forcings vanish. This attractor will be called the “catch-376

ment flow attractor” because the attractor is a signature of catchment scale flow dynam-377

ics. The catchment flow attractor indeed is a better representation of the master reces-378

sion dynamics (following the definition used in Lamb and Beven (1997)). The dynam-379

ics in the catchment flow attractor will be equilibrated at a fixed point of zero flow as380

a point of “maximum entropy” (Beven & Davies, 2015). This state was not explored in381

this catchment because external forcing (e.g. precipitation) constantly pushes the sys-382

tem away from the point of maximum entropy.383

The presence of the catchment flow attractor and its low slope (compared to the384

slope of early time dynamics) mean that the trajectory of each recession event in the re-385

cession analysis plot is, in general, concave (which means that the trajectory has a lower386

slope in the lower discharge range), unless the event trajectory is forced away prior to387

its convergence to the catchment flow attractor by external forcings. (We noticed that388

the slope of the catchment flow attractor is steep at the very low flow range, but the steep389

part still has a lower slope than most of the trajectories of the early time dynamics.) This390

concavity contradicts Tashie et al. (2020)’s recent study, which argues that the trajec-391
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tory of each event is mostly convex (i.e., the opposite of concave) in more than 1,000 catch-392

ments in USA, with the exception of some dry and flat catchments. Nevertheless, some393

convex trajectories are observed in this catchment for early time recession (see the red394

line in Figure 7D and the blue lines in Figure 7A).395

According to what we discussed so far, the analysis of the curvature of event tra-396

jectory is sensitive to two factors. First, it is sensitive to the −dQ/dt estimation method397

and the recession event determination criteria. Tashie et al. (2020) used the CTS method398

to estimate −dQ/dt and used the criteria of decreasing both Q and −dQ/dt for more than399

5–7 consecutive days to determine recession periods. Thus, it is possible that the early400

time dynamics is treated as one event, and the late time dynamics is treated as another401

event (which is mostly linear in the plot) or not considered as a recession event due to402

the noisy CTS method-based estimation (e.g., see the previous discussion about the Septem-403

ber 1991 - October 1991 event). Second, it is sensitive to precipitation events. As we de-404

scribed earlier, precipitation events can push the dynamics away from the catchment flow405

attractor before a trajectory converges to the catchment flow attractor. When this hap-406

pens frequently (e.g., in wet catchments), usual event-based analysis can place more weight407

on the early time dynamics than the late time dynamics.408

The upper dense area (the upper green area where Q & 3.0 mm/day) indicates that409

many events shared similar early time recession dynamics, and the high density means410

that the area is a better representation of the ensemble of many early recessions than411

the lower envelope with the slope b = 3. The slope of the upper dense area is lower than412

the early time trajectories at low flow conditions, which is in line with the study of Jachens413

et al. (2020). Jachens et al. (2020) reported that recession events with lower initial dis-414

charges tend to have higher b values, while the characteristic early time dynamics of a415

catchment is more clearly shown at high discharge events (that constitute the upper dense416

area).417

Overall, it seems that the dense area is where the most characteristic information418

about catchment scale recession dynamics exist. The area is a better representation of419

the ensemble of many recessions than the measure of central tendency and the lower en-420

velope of Brutsaert and Nieber (1977). While the binned data captures the pattern of421

the dense area (see Figure 4A), the binned data places above the dense area because it422

fully considers the early time dynamics over the whole range of discharge. The full con-423
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sideration results in the structure of the errors in the modeled g versus observed g plot424

(Figure 5), and the error in the forward simulation using the central tendency model (Fig-425

ure 6). While the performance of the central tendency model can be improved when some426

data points are filtered out before fitting the line (e.g., filtering out the first few days of427

data after each rain event and thus focusing more on the late time dynamics and the at-428

tractor), but it certainly reduces the information content in data and neglect the hys-429

teretic dynamics. The method of Brutsaert and Nieber (1977) seems to fit the data to430

some extent (see Figure 3). However, we lack a method to fit the lower envelop objec-431

tively (e.g., Jachens et al., 2020). Furthermore, the upper part of the lower envelop with432

b = 3 is much steeper than the slope of the upper dense area.433

The dense area can be parameterized to describe the flow recession dynamics within434

the area. A function consisting of two linear lines (in log-log space) can be fitted to the435

data points located in the dense area (f̂h > 0.2). The function can be written as: ln g =436

max(a1 + (b1− 1) lnQ, a2 + (b2− 1) lnQ). The crossover between the two lines occurs437

at Q∗ = (a2− a1)/(b2− b1). The lower line fits the catchment flow attractor with b =438

1.57 ± 0.00 up to Q = 2.99 mm/day (see the black dotted line in Figure 7D). The439

value is similar to that of the late time dynamics of the Boussinesq model (b = 1.5).440

The slope of the upper line b = 2.08 ± 0.01. This value is much smaller than the value441

of early time recession of the Boussinesq model (b = 3). The slope b = 2.08 is similar442

to the median value of 2.0 which is derived from the event-based analysis for 39 catch-443

ments in USA that are not affected by anthropogenic activities (Biswal & Marani, 2010).444

The slopes are similar to the ML model trained using the ETS method-based estima-445

tion where b = 1.51 ± 0.01 for the catchment flow attractor and b = 2.10 ± 0.03 for446

the upper dense area, indicating that the LSTM model is not very sensitive to the mea-447

surement noise and resolution. (Note that more objective or sophisticated parameter-448

ization schemes to fit the dense area, such as using the modal linear regression (Yao &449

Li, 2014), applying a variable threshold for f̂h over Q, or using a higher-order polyno-450

mial in the log-log space, might be applicable but are not employed in this study.)451

The existence of the catchment flow attractor implies that, at some point in reces-452

sion, multiple time scale dynamics reduce to simple slow dynamics. The simple dynam-453

ics in the catchment flow attractor can be described using the fitted line. The function454

g decreases with decreasing Q approximately following the power function g = aQb−1,455

where b = 1.57 in this case. When g is the power function of Q (i.e., g = aQb−1 and456
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Figure 8. The attractor as the master recession curve. The thin lines illustrate the discharge

time series of the all recession events longer than 8 days. The thin lines are shifted over time so

that late time recessions approximately collapse to a single curved-line. The single curved-line

is the master recession curve. The thick dashed line illustrates the parameterized attractor as a

parameterized master recession curve. The parameterized master recession curve was determined

using Equation 4 with the parameters that are estimated based on the CTS method estimation

and the LSTM model using the past 5 days of discharge. The subset figure shows the parame-

terized master recession curve (the dotted line) and the time-shifted discharge time series of the

previously selected 16 events (the solid line).

−dQ/dt = aQb), the flow recession in the catchment flow attractor can be written as457

(e.g., Rupp & Woods, 2008):458

Q(t) = (Q1−b
0 + a(b− 1)t)1/(1−b) (4)

where Q0 can be chosen as discharge at a time when the system dynamics converge459

to the catchment flow attractor, and t is the time lapse since the system converges to460

the catchment flow attractor. When b → 1, Q(t) = Q0e
−a/t, and the catchment be-461

haves like a linear reservoir. When b > 1, the tail of the discharge time series is heav-462

ier than the exponential decay. Figure 8 illustrates that Equation (4) with the estimated463

parameters captures the late time flow recession dynamics.464
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Additionally, the catchment flow attractor can be utilized to estimate the hysteretic465

active storage-discharge relationship. In previous studies, the catchment sensitivity func-466

tion that is estimated as a central tendency has been used to estimate the storage-discharge467

relationship (e.g., Kirchner, 2009; Dralle et al., 2018), neglecting the hysteresis in the storage-468

discharge relationship. The existence of the attractor implies that the hysteresis in the469

storage-discharge relationship is not detectable from the discharge data after each re-470

cession event converges to the attractor, while the hysteresis is detectable before the sys-471

tem dynamics converge to the attractor. It means that a non-hysteretic storage-discharge472

relationship would sufficiently capture the catchment dynamics inside the attractor. Us-473

ing the non-hysteretic part of the relationship, the hysteretic storage-discharge relation-474

ship can be estimated if we calculate the storage using the mass-balance backward in time475

starting from the attractor.476

Indeed, the relationship shown in Figure 1 is the (relative) active storage-discharge477

relationship for the two events (the 1998 July - September event and the 2013 June - Au-478

gust event that are shown in Figure 6) estimated considering the rainfall and the dis-479

charge time series; i.e., dS/dt = J−Q. The relative active storage was estimated from480

the point marked by ‘X’ with the initial condition of zero relative storage. The storage-481

discharge relationship in Figure 1b shows that the event trajectories overlap at a low flow482

condition, when the system flow dynamics moves inside the attractor. The overlapped483

trajectory can be captured by the storage-discharge relationship that is estimated us-484

ing the parameterized g(Q) for the attractor (see Figure S2). While we estimated the485

storage from the certain point in the example, it is straightforward to generalize it by486

estimating the storage-discharge relationship associated with the attractor first and then487

calculate the storage backward in time from the attractor. The storage-discharge rela-488

tionship associated with the upper dense area can also be used to estimate the hysteretic489

storage-discharge relationship at high flow conditions.490

It is also possible to estimate the relative “total” storage considering ET from an491

initial condition; see Figure S2. The figure implies that another attractor may be found492

using g = (dQ/dt)/(−Q−ET ) (instead of using g = (dQ/dt)/(−Q)) and that the at-493

tractor may be utilized to estimate the hysteretic (relative) total storage-discharge re-494

lationship. Note again that the denominator of g is dS/dt in its full formulation, and the495

form used in (1) neglects the effect of ET in the storage variation. While this method496

is, in part, based on the mass-balance, it is different from the traditional mass-balance497
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approach that estimates the relative total storage starting from a fixed initial time. The498

traditional method can result in the drift of storage over time when the mass-balance499

is not closed, and the uncertainty in the estimated storage accumulates over time. In the500

method using the attractor, the initial time of storage calculation is the most recent time501

when the system dynamics is in the attractor, reducing the uncertainty. We leave a fur-502

ther discussion about the effect of ET on the catchment sensitivity function and the to-503

tal storage-discharge relationship for future study.504

5 Conclusions505

The flow recession analysis has been served as a tool to understand catchment scale506

flow dynamics and catchment properties (e.g., Troch et al., 2013). However, there are507

seemingly contrasting methods of extracting information from the flow recession anal-508

ysis plot (Q versus −dQ/dt or (−dQ/dt)/Q). Traditional methods use the lower enve-509

lope to capture the ensemble characteristics of many recessions (Brutsaert & Nieber, 1977),510

or use a fitted function to entire data points as a measure of centrality (Vogel & Kroll,511

1992; Kirchner, 2009). In contrast, recent studies highlight the importance of the event512

scale analysis and have questioned the use of the lower envelope and the measure of cen-513

trality (Jachens et al., 2020; Tashie et al., 2020).514

Based on the machine learning model results, we emphasize the importance of an-515

alyzing both the ensemble characteristics and the event scale dynamics. The machine516

learning model, the Long Short-Term Memory (LSTM) model using 5 days of past dis-517

charge, captures both the ensemble characteristics and the event scale dynamics of the518

Calawah catchment. The LSTM model results indicate that the early time dynamics,519

which are sensitive to initial conditions, lead to the hysteretic trajectories of system dy-520

namics that appears in the recession analysis plot. Analyzing such hysteretic trajecto-521

ries (event scale trajectories) is the focus of previous event scale analysis studies (Jachens522

et al., 2020; Tashie et al., 2020). The model results further show that the trajectories523

of system dynamics converge to an attractor, the catchment flow attractor, unless pushed524

away from the attractor due to external forcings. The catchment flow attractor is the525

ensemble of many recessions during the late time flow recession dynamics. The early time526

recession dynamics of large events also share similar trajectories (i.e., the upper dense527

area determined in the Gaussian kernel density analysis), perhaps because those dynam-528

ics for larger events are less sensitive to initial conditions. The catchment flow attrac-529
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tor and the upper dense area represent ensemble characteristics of many recessions. We530

also briefly illustrated that the catchment flow attractor can be utilized to estimate the531

hysteretic storage-discharge relationship.532

While we focused on analyzing one catchment, we believe that the ML model de-533

signed to capture the flow recession dynamics and the developed analysis tool can be gen-534

eralized in several ways to improve our understanding of catchment scale flow dynam-535

ics. This analysis can easily be extended to the continental scale or to the global scale536

by analyzing many catchments. Analyzing more catchments will allow us to examine if537

catchment attributes (e.g., area, aridity index, topographical, geological, and ecological538

properties) can explain some patterns, such as the existence of the dense area (includ-539

ing the attractor) and its slope, concavity, and extent.540

Machine learning tools are powerful in that the model structure is easily customiz-541

able. Rather than using only discharge Q, other variables can be used in the function542

H to examine if there is a better surrogate variable for the function or depending on a543

purpose of analysis. For example, the past trajectory of precipitation J can be used in544

the H function when the prediction of an ungauged basin is of interest. Also, both J and545

Q (and also ET ) can be used to better capture the flow recession dynamics and the ris-546

ing limbs. For a better forecasting, the model can also be trained while continuously up-547

dating the modeled Q as the input. Furthermore, the model can also easily be modified548

to estimate Q instead of g. In this case, the model is an autoregressive (AR) model but549

with the past trajectory-dependent parameters. It is also generalizable to the autoregres-550

sive exogenous (ARX) model (or similar to the transfer function model) by including J551

as input (also ET when necessary). While analyzing the machine learning model struc-552

ture and the trained parameters is a difficult task at the moment of writing, we showed553

that the machine learning model result provide a convenient way to extract information554

out of the noisy catchment scale signature, the recession analysis plot. Following the dis-555

cussion in Beven (2020), we hope the approach we applied in this study, making infer-556

ences from what the machine learned and what it needed to learn, will be useful for un-557

derstanding more catchment scale dynamics.558
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