© 0o N o o b~

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

A pipeline for analysis of allele specific expression from RNA-seq data

reveals salinity-dependent response in Nile tilapia
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Abstract

Species living in a changing environment are capable of adapting to alterations of various factors.
Physiological acclimatization may be significantly influenced by the heterozygosity, especially with
regards to allele variance and its specific expression (ASE) under different conditions. Data from
RNA-seq experiments can be used to identify and quantify the alleles expressed, in order to detect
and characterize ASE and regulation of gene expression. However, the allele matching the reference
genome creates a mapping bias that prevents a reliable estimation of the allele depth unless the
haplotype of the experimental individuals is provided. We developed a pipeline that allows the
identification of the alleles corresponding to an RNA-seq dataset and their unbiased quantification.
This pipeline does not require the sequencing of the DNA nor the previous knowledge of the
haplotype. The identified SNPs are further substituted in the reference genome, thus creating two
pseudogenomes with the alternative alleles on two independent samples of the experiment. The SNPs
are further called against each pseudogenome thus providing with two SNP datasets that are averaged
for calculation of the allele depth. The final SNP calling file contains the coordinates of the SNPs and
also the ID of genes containing the SNPs, the expressed genotypes, the unbiased allele depth and the
statistical tests for identifying ASE according to the experimental design and correlated with
differentially expressed genes. Therefore, the pipeline presented here can calculate ASE in non-model
organisms and can be applied to previous RNA-seq datasets for expanding studies in gene expression
regulation.

Introduction

High-throughput RNA-seq is a common technique in many researches, providing differential gene
expression (DEGSs) data for particular conditions or experimental factors (Marioni et al., 2008). The
quantification of gene expression for each factor is based on the counts of the reads that correspond
to a particular gene. The sequence of those reads include the variants expressed under the different
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experimental factors, and therefore it is possible to quantify them (Garber et al., 2011; Ozsolak and
Milos, 2011; Trapnell et al., 2011). This allele expression related to a particular factor is known as
Allele Specific Expression (ASE). ASE in a particular condition is one of the ways in which the
organism can respond to the changing environment. This ability is attributed to the individual’s
heterozygosity and emphasize the importance of genetic variation as a mechanism of adaptation
(Lande and Shannon, 1996; Hermisson and Pennings, 2005; Barrett and Schluter, 2008; Bernatchez,
2016).

There are few studies on the effect of ASE-SNPs under different environmental conditions. These
were mostly related to specific regions of regulation affected by SNPs, also known as expression
quantitative trait loci or eQTLs (Wang, 2017; Zhang et al., 2020). Interestingly, Knowles et al. (2017)
developed a generalized linear model tool for analysing genome x environment interactions for ASE,
known as EAGLE. However, this approach is designed for quantitative factors in human or model
organisms, where many genomic tools and genotype datasets are widely available.

Another determinant factor for ASE is the tissue, as shown in cattle (Chamberlain et al., 2015). Also
in cattle, Guillocheau et al. @%% found that 13% of the total expressed genes in muscle had SNPs in
ASE associated with phenotypic traits and potentially causative of cis-regulation. In teleosts, SNP
studies discovered the sex determination patterns of ASE in turbot (Scophthalmus maximus)
(Martinez et al., 2019), SNP markers in Atlantic salmon (Salmo salar) with higher performance for
DHA (Horn et al., 2020), eQTL affecting resistance to lice in Atlantic salmon (Robledo et al., 2019)
and detection of broad scale suppression of gene expression in triploid medaka (Oryzias latipes)
(Garcia et al., 2014). Therefore, ASE is a good estimator of tissues modifications under
environmental factors.

A reference genome is used to identify the chromosome and position of the RNA-seq reads after the
alignment of reads and genome sequences. This procedure is known as mapping. The most common
challenge of this approach appears when mapping two different alleles, from which, one is identical
to the same reference sequence. The alignment mismatch between the non-identical allele mapped
against the genome will discard some of the alternative alleles. Therefore, there is a bias towards the
identical or reference allele since some of the reads including the alternative allele are discarded
(Degner et al., 2009). Due to this mapping bias, it is difficult to find the regulatory effects of ASE-
SNPs in gene expression experiments (Monsu and Comin, 2021; Zhan, Griswold and Lukens, 2021).
Solving the mapping bias issue requires the knowledge of the sample haplotype, either from DNA-
sequencing or by using available genotype data and reference haplotypes, such as HapMap
(Consortium, 2003) and other SNP panels (Rozowsky et al., 2011; Vijaya Satya, Zavaljevski and
Reifman, 2012). Some new approaches indicate the utilization of many reference genomes in order

to provide with a broader view of the SNPs in the population (Chen et al., 2021). Unfortunately, these
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approaches can’t apply to RNA-seq experiments designed without considering sampling and
sequencing genomic DNA for haplotype discovery.

We developed a pipeline for SNPs calling and analysis of ASE, using RNA-seq datasets retrieved in
experiments aiming to characterize DEGs under different environmental conditions. This pipeline
enables quantification of ASE in sampled organisms for which there is no prior genotypic knowledge.
We solved the mapping bias without accessing the haplotype of the sampled animals and provide the
distribution of alleles in ASE. Our approach creates two pseudogenomes based on allele variants of
two samples from different experimental groups. The retrieved SNP dataset can be then submitted to
statistical tests for association of allelic expression and environmental or physiological factor. Finally,
it is possible to correlate the coordinates of the ASE SNPs with other data on the gene expression
such as DEGs and metilome sites to complement the results.

In the present article we apply our pipeline to study the effect of high salinity challenge on a
freshwater fish, the Nile tilapia (Oreochromis niloticus). We performed a discovery and unbiased
quantification of bi-allelic sites and statistical assessment of SNPs in ASE in two tissues, gills and
kidney, and two environmental factors, freshwater and brackish water.

Material and methods

Ethical statement
This study was approved by the Agricultural Research Organization Committee for Ethics in
Experimental Animal Use, and was carried out in compliance with the current laws governing

biological research in Israel (Approval number: IL-715/17).

Samples origin, processing and sequencing

The sequences used in this study were from an experiment previously described by Root et al. (2021a,
2021b). Briefly, Twelve Nile tilapia male fish were randomly distributed between two 600 |
freshwater tanks. After 2-week acclimation, one group was exposed to a gradual salinity increase of
5 ppt per day up to a final salinity of 25 ppt. Gills and kidney samples were taken after 24 h at the
final salinity. mMRNA was extracted using TRIzol reagent (Thermo Fisher Scientific), and purified to
remove DNA contamination using the TURBO DNA-free kit (Invitrogen). Total mMRNA samples
were sent to the Israel National Center for Personalized Medicine (INCPM) at the Weizmann Institute
of Science (Rehovot, Israel), where quality was determined on TapeStation Agilent 2200 system,
before library preparation and sequencing on an Illumina Hi-Seq 2500 device.

For validation of the SNP calling, 8 tilapia individuals were sampled. RNA was extracted from the
gills and for genomic DNA was extracted from fin clips, using RNeasy mini kit and DNeasy blood

and tissue kit (Qiagen, Hilden, Germany), respectively. Sequencing of RNA and DNA was performed
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with Illumina NovaSeq S1 300 including UMI barcoding at 10x and 30x coverage respectively, in
the INCPM.

Pipeline for mapping bias removal by the use of pseudogenomes and SNP calling

A pipeline developed in Snakemake (Koster and Rahmann, 2012) is proposed here for retrieving
SNPs from transcriptome analysis, while eliminating the mapping bias without previous knowledge
of the genotypes (Figure 1, Supplementary 1). The entire code with scripts to the pipeline is available
at GitHub (https://github.com/AylaScientist/Snakemake_for SNPs). Fastq files received from the
INCPM were processed according to the proposed pipeline: The fastq files were trimmed with
Trimmomatic (Bolger, Lohse and Usadel, 2014) and quality was verified with FASTQC (v0.11.8,
Andrews, 2010). The trimmed fastq files mapped against the reference Genome of O. niloticus
(NMBU GCF_001858045.2) with the RNA-seq alignment tool STAR (v2.7.1a, Dobin et al., 2013).
SNPs were called following GATK best practices (Poplin et al., 2017) as described in GATK best
practices (https://github.com/gatk-workflows/gatk4-rnaseq-germline-snps-indels). Two samples
from different experimental groups were chosen for construction of two pseudogenomes from a vcf

file, following the protocol by Johan Zicola (https://github.com/johanzi/make pseudogenome, MIT

license). Fastq files were processed against the pseudogenomes described above. Two final vcf files
joining the SNPs from all samples were annotated using ANNOVAR (Wang, Li and Hakonarson,
2010). In order to annotate the SNPs of the non-model species Nile tilapia, we constructed a database
using the annotation file from the same release as the genome of reference and the ANNOVAR scripts
meant for creating such a database. Allele depth and genotype were collected into a table
(VariantsToTable, GATK). The two datasets were then submitted to home developed scripts in
Python v3.7.3. These scripts calculate the average counts for the reference and alternative allele,
calculate the allele frequency, checks the correction of the mapping bias and develop the statistical
analysis according to the experimental design. The home made scripts are part of the pipeline

designed in snakemake and can be found in the release on gitHub.

Data engineering and statistical analysis

The pipeline provided with two datasets, each one containing the SNP sites called to one of the
pseudogenomes. The two datasets were merged and filtered for multiallelic sites with Python using
pandas and Numpy specific for data science methods that can be found in the gitHub. Afterwards, the
counts of each reference and alternative polymorphic site were averaged (Figure 2A). SNPs for which
the depth of one allele was less than 3 and SNPs for which the total allele depth from reference and
alternative alleles was less than 10, were deleted. Those sites that had a monoallelic expression were

removed. Only SNPs shared by all individuals were left on the final data of consensus SNPs.
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These resultant SNPs were submitted to statistical analysis for Allele Specific Expression of treatment
using a Chi-square test for comparison between salinity treatments. Each experimental group was
compared with each other leading to four Chi-square tests (Table 1). The p-values were adjusted with
the Bonferroni test using the python library Multitest.

Significant ASE SNPs for each treatment were analysed for GO function of its gene. DEG analysis
was performed with DESeq package (Anders et al., 2010) in R (v 3.6.3, Development Core Team,
2013) for salinity. In order to find regulatory pathways, the SNPs in ASE where contrasted with the
significant DEGs.

Validation by sequencing / re-sequencing:

For validation of SNP calling by the above described pipeline, eight additional fish were sampled.
RNA extracted from the gills and DNA extracted from fins of each individual were sequenced and
processed with the pipeline for SNP calling as described before in the text. The retrieved SNPs from
DNA were selected for exonic single nucleotide variant (SNVs), thus avoiding indels and intronic
sites. The monoallelic expression was also deleted in order to obtain normal distributed data for the
allele frequency. The selection of SNVs obtained with the pseudogenomes was contrasted with the
retrieved SNVs from RNA obtained with the reference using a T-Student test. A deeper analysis with

IGV (Robinson et al., 2017) was performed with 20 SNV among false positives.

Results

We were able to determine 103,843 informative SNPs from our experimental population present in
all the tilapia individuals, from which, 99,885 present monoallelic expression and 3,740 follow a
normal distribution.

The method for SNP calling was tested by comparing abundance distribution of the allele frequencies.
The comparison was performed on the SNPs that didn’t present monoallelic expression. There are
two clearly different distributions (p<0.01), one for classical SNP calling against reference genome
and the other for the calling against two pseudogenomes developed in this study (Figure 3, table 2).
The SNPs called in the kidney show a normal distribution of the frequency for both calling methods
(Supplementary 5, F and H). In these groups the most frequent alleles called after the reference
genome are at 0.65 and 0.6 in the fresh and salty water respectively. In the gills, the calling on the
reference genome produced three different distributions. One is biased towards the reference allele,
the second is biased towards the alternative allele and a third is a normal distribution. The highest
frequency of the alleles was biased mostly towards the reference allele but also to the alternative. The

alleles that show a normal distribution include the smallest number of alleles. The average allele
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frequency in the normal distribution shows of 0.55 in the fresh and salty water groups (Supplementary
5, Band D). The SNP called after mapping to the pseudogenomes shows unbiased normal distribution
marked by the highest frequency of the alleles at 0.5 for all the studied experimental groups. The
Student T-test shows significant differences in the distributions of the allele frequencies (Figure 3,
table 2, p<0.01).

Chi-square tests indicated ASE for the different salinities tested in the gills and the kidney on the
SNPs that do not show monoallelic expression (Table 1, Supplementary 1, 2, 3 and 4). The significant
ASE SNPs were classified according to their function (Figure 4, table 3). Nearly all SNPs were from
non-coding regions correspond to 3’UTR, non-coding region and 5°UTR for all the tests.
Substitutions occur in synonymous and non-synonymous variants with higher frequency for
synonymous. Few upstream/downstream, stop loss or stop gain, frameshift or non-frameshift
insertion or deletion were found. Additionally, some variants are found to be assigned to intronic,
intergenic upstream and downstream variants (Figure 4, table 3).

The analysis of differentially expressed genes indicated 899 SNPs corresponding to also differentially
expressed genes when comparing gills and kidney in fresh water (test 1), and 1,153 SNPs in
differentially expressed genes between gills and kidney in salty water (test 2) (Table 1, Supplementary
6 and 7 respectively). From these, 629 (69.6%) and 790 (68.5%) correspond to regulatory regions
such as UTRs and ncRNAs for tests 1 and 2 respectively. When comparing the salinity, there were
15 DEG with ASE SNPs in the gills (test 3) and none in the kidney (test 4). From these, 12 SNPs
(80%) are located in 3°UTR as the only regulatory region (Supplementary 8). No ASE SNPs with
differentially expressed genes in the kidney have been retrieved.

The CHI-tests (Figure 5) show 50 common SNPs in ASE independent of tissue or salinity treatment.
There are 929 SNPs in ASE found differentially expressed between gills and kidney, independently
of the salinity conditions. No SNPs in ASE were found common uniquely to the effect of the salinity
in gills and in kidney.

The comparative heatmap of the allele frequencies shows a differential pattern for tissues and salinity
(Figure 6).

The function described by Gene Ontology (GO) analysis in the ASE SNPs was compared for the
salinity challenge and the tissue differences. The ASE variants between tissues conserve a similar
proportion of functions both in fresh and salty water. On the other hand, the ASE SNPs between
salinities change the gene function within the kidney and within the gills (Figure 7).

The chromosomic regions of interest for significant ASE SNPs are illustrated in the Manhattan plot
(Figure 8).

Validation by sequencing
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The SNP calling through the pipeline from the gills transcriptome sequences of 8 Nile tilapia
individuals resulted in 85% of them also called from the genome sequences. We performed an
analysis of 20 single nucleotide variants (SNV) from the 15% of the SNPs not corresponding to the
genome, by visualization with IGV software (Robinson et al., 2017). SNVs called from the
transcriptome showed to be false SNPs in 14 cases, from which 7 cases where the allele counts were
below 5. Additionally, 6 SNVs proved to exist in the RNA. From those, 1 SNV was also present in
the DNA, and the other 5 SNVs were present only in RNA.

Data availability

The sequencing data was submitted to SRA under the bioproject PRINA669315. The snakemake
pipeline is submitted to the GitHub https://github.com/AylaScientist/snakemake for SNPs

Discussion

Two methods for SNP calling were compared in the present study. The first method is the commonly
used, which includes the mapping of the reads to the reference genome previous to the SNP calling.
As our results show, the allele frequency of the kidney follows a normal distribution with a slight bias
towards the reference genome marked by the highest density of allele frequency at 60% reference
allele versus 40% alternative allele (Supplementary 5 F and H). In the gills, most of the alleles follow
a binomial distribution, including some monoallelic expression and bias towards both the reference
and the alternative alleles (Supplementary 5 B and D). In the second method, using our new approach,
the SNP calling takes place after mapping the reads to pseudogenomes (Figure 1). These
pseudogenomes contain the SNPs expressed in the experimental set. Our result shows that the allele
frequency of the average counts on these SNPs will follow an unbiased normal distribution (Figure
3, supplementary 5, table 2, p<0.01).

Previous strategies for removing mapping bias require prior knowledge of genotypes (Rozowsky et
al., 2011; Yuan and Qin, 2012; Pandey et al., 2013; Xin et al., 2013; Mayba et al., 2014; Braasch et
al., 2016; Guillocheau et al., 2019), elimination of sites showing bias after simulation (Pickrell et al.,
2010; Stevenson, Coolon and Wittkopp, 2013; Panousis et al., 2014; Hodgkinson et al., 2016), the
SNPs previously informed in a panel (Van De Geijn et al., 2015; Salavati et al., 2019; Gutierrez-
Arcelus et al., 2020) or direct use of a variant-aware alignment (Hach et al., 2014; Buchkovich et al.,
2015; Miao et al., 2018). The pipeline developed in this study does not require this previous
knowledge. Instead, it detects the sites expressed in at least one of the individuals in the experiment.

This detection takes place after mapping to the reference genome previous to SNP calling (Figure 1).
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The sites revealed in this first calling may correspond to alleles found in the genotype, but also to few
SNPs generated after mRNA modifications or editing.

Editing of RNA consists of discrete changes to specific nucleotide sequences within an RNA molecule
after it has been transcribed by RNA polymerase (Maas and Rich, 2000; Kiss, 2001). This molecular
process is found in every living organism and it is evolutionary conserved (Song, Yi and He, 2012;
Li and Mason, 2014; Meyer and Jaffrey, 2014; Sun et al., 2016). It can include deamination of single
sites leading the substitution of cytidine (C) to uridine (U) and adenosine (A) to inosine (Takenaka et
al., 2014; Shikanai, 2015; Licht et al., 2016; Licht, Hartl, et al., 2019; Licht, Kapoor, et al., 2019) but
also generalized insertions and deletions of uracil in the same transcript by an editosome, also known
as pan-editing (Blum, Bakalara and Simpson, 1990; Stuart, 1991; Benne, 1994; Simpson and
Thiemann, 1995; Jan Arts and Benne, 1996; Alfonzo, Thiemann and Simpson, 1997; Kable,
Heidmann and Stuart, 1997). If the editing takes place in the mRNA it can derive in the modification
of the aminoacid sequence of the protein encoded (Brennicke, Marchfelder and Binder, 1999).
These editions in RNA can modify the cell biology by modifying the RNA structure, tuning
interactions within the ribosome and by recruiting specific binding proteins that intersect with other
signalling pathways (Nachtergaele and He, 2017). Interestingly, they are also dynamic, changing in
distribution or level in response to stresses, such as heat shock and nutrient deprivation (Carlile et al.,
2014; Schwartz et al., 2014; Li et al., 2015), translation control in immune processes (Piccirillo ef al.,
2014; Araki et al., 2017; Wolf et al., 2020), during cancer proliferation (Gingold et al., 2014; Zviran
et al., 2019), post-transcriptional modifications in development and stem cells (Frye and Blanco,
2016) and during physiologically normal proliferation of T cells (Rak ef al., 2021). In our pipeline,
the SNPs found in the mRNA belong to the expression under experimental conditions. These variants
can include both genomic alleles and post-transcriptional editions that are substituted into the
reference genome thus creating a pseudogenome.

Finally, the constitution of two pseudogenomes with RNA expressed under two different conditions
of the study compiles a wider scope of the variability in the analysis. By mapping to the
pseudogenomes, the pipeline developed here may allow the unbiased quantification of the SNPs in
the genotype and of the post-transcriptional modifications of the mRNA also. We performed a
validation of the SNV sites identified by our pipeline towards the genotype of a control population of
tilapia exposed to fresh water. The results indicate that 85% of the SNVs are correctly called after an
existing genotype. The study of 20 SNV sites among the 15% that were not found in the genotype
revealed that only 60% of them are false positives and mostly related to a low count of the reads.
Interestingly, 30% of these SNVs were consistently expressed in the sequenced mRNA and the allele
depth estimation allowed a correct allelic imbalance estimated by the pipeline. These results indicate

a possible mRNA editing among the sources of false positives. Consequently, the SNPs in ASE from



2178
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

our analysis may include the variant sites whose expression and modification is regulated under the
salinity challenge and the different studied tissues, gills and kidney.

Our analysis on the allele frequency indicates two types of imbalanced SNPs: monoallelic expression
and normal distribution (Supplementary 9 A). The monoallelic expression is represented by the allele
frequencies 0 or 1 in heterozygote sites indicating allele imprinting. Tissue-specific imprinting was
described before in human and mouse (Babak et al., 2015) concluding that nearly all the imprinted
alleles were imprinted in early development. In our analysis, when MAE alleles detected in one tissue,
they show higher allelic imbalance towards the reference allele in another studied tissue
(Supplementary 9 A). Such distribution has been described previously and was called variable ASE
(Skelly et al., 2011). Variable ASE is represented by non-normal distribution of the allele frequencies
in the graphs (Supplementary 9 A). This distribution is consistent with the one described by Skelly et
al. @19 indicating greater dispersion in read counts after differential exon expression. This indicates
complex patterns of ASE, such as allele specific alternative splicing. Tissue-specific genetic control
of splicing have been described in humans for polymorphisms affecting splicing and expression in
human blood and brain tissues (Heinzen et al., 2008). Tissue-specific isomorphs can be regulated by
alternative polyadenylation of the 3’UTR length in human (Weng et al., 2016; Macdonald, 2019),
Drosophila (Sanfilippo, Wen and Lai, 2017), Caenorhabditis elegans (Khraiwesh and Salehi-ashtiani,
2017) and yeast (Liu et al., 2017). Our analysis indicates that a tissue-specific imprinting and splicing
may occur in gills and kidney of Nile tilapia driven by ASE. Interestingly, when MAE sites are strictly
filtered (Supplementary 9 B) the variable ASE is also filtered, meaning that the SNPs in charge of the
variable ASE may be also related to the monoallelic expression in other tissues. Further analyses on
imprinted genes may illustrate this phenomenon and evaluate the network of MAE genes associated
to variable ASE phenomenon, especially in regard to the tissue function under environmental

challenge.

Salinity challenge in tilapia

In the present study we obtained an unbiased counting of allele expressed in different tissues, gills
and kidney, after exposure to salinity challenge. The process followed the GATK best practices
recommendations (Poplin et al., 2017) and provided with unbiased SNPs from which 236 are
associated to the salinity challenge in gills and 1,126 in the kidney. Other algorithms depending on
DNAseq data for calculating ASE have also established genomic x environmental interactions, as for
example the EAGLE tool (Knowles et al., 2017). This tool is only applying to certain model
organisms and it provided with 442 ASE SNPs (associations in the article) for the reaction of the

human liver to different molecules. Therefore, the number of ASE SNPs retrieved after the
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environmental challenge in our pipeline with non-model organism are within the range of results
obtained with tools limited to model organisms.

The statistical analysis showed more SNPs in ASE for the tests between tissues than for the tests on
the salinity challenge, independently of the salinity process. The GO functions of the genes containing
the ASE SNPs between gills and kidney are highly similar between both salinities tested, also in
proportion of functions. Previous studies of cattle ASE SNPs, in tissues of one individual, evaluated
the allelic imbalance within each tissue. This analysis reported that at minimum 89% of the total SNPs
were imbalanced in at least one tissue out of 18 studied (Chamberlain et al., 2015). Allelic imbalance
was also common between 19 muscles samples of the Limousine cattle breed (Guillocheau et al.,
2019). Tissue-specific regulation of allele expression was also studied in mouse allelome
(Andergassen et al., 2017), finding that the regulation of ASE may be driven by tissue-specific
enhancers or by post-transcriptional differences. In our study we also find a basal regulation of this
tissue-specific allelic expression affecting 1,589 SNPs for gills and kidney independently of the
salinity (Figure 5 and Figure 6). More epigenomic analyses are needed for testing if there is tissue
specific epigenomic regulation of SNP expression such imprinting in tilapia, as previously suggested
for mouse development (Andergassen et al., 2017).

The number of SNPs in ASE for the challenged gills (236 SNPs) is about a quarter of the SNPs in
ASE for the kidney (1,126 SNPs) (Table 1). Some of the SNPs in ASE where associated with
differentially expressed genes. Both gills and kidney have SNPs in ASE related to protein binding,
membrane and integral components of membrane, membrane and oxidation-reduction process
(Figure 7). On the other hand, gills change the expression of SNPs in genes associated to tricarboxylic
acid cycle, transmembrane transport and oxoglutarate dehydrogenase activity that is not present in
the kidney. Previous transcriptomic and proteomic analysis on these data indicated that there is a
response in the gills to salinity by differential expression of genes related to epithelium turnover
(Root, Campo, Macniven, Con, Cnaani and Kiltz, 2021; Campo et al., 2022). Not only that, the
proteomic analysis revealed higher post-translational modifications in the kidney as a response to the
salinity exposure in contrast with few differentially expressed genes (Root, Campo, Macniven, Con,
Cnaani and Kdltz, 2021). These results are consistent with this complementary analysis where ASE
SNPs are associated to DEGs in the gills but not in the kidney. All taken together may indicate the
differential expression found in gills to cope with the salinity challenge may be regulated partially by
ASE SNP, thus driving the epithelium turnover. Our results suggest that the salinity, as environmental
factor, may challenge each tissue in a different manner. While the response in gills correspond to a
higher DEG, the response in the kidney provides with higher number of ASE SNPs.

The 3’UTR SNPs is the most frequent type of SNP found (Figure 4, table 3). The role of 3’UTR in

regulation of MRNA was reviewed by Mayr (2017), finding functions of degradation, translation and
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localization as well as interactions to noncoding and small RNA. Additionally, the functional
interpretation of variants in the 3’UTR has been related to modification of alternative polyadenylation
motifs and RNA-binding protein binding sites, also known as 3’QTLs, and can be used to interpret
16.1% of trait-associated variants in human (Li et al., 2019). Therefore, some of the found SNPs are
likely regulatory ones.

After 3°’UTR, the second most common SNPs identified for significant allelic expression were found
in codifying regions, mostly synonymous SNPs. The synonymous sites were around 11 to 13 times
more abundant than the non-synonymous in all the tests, except in the comparison of the gills from
fresh to salty water (test 3, table 3), where the ratio of synonymous vs. non-synonymous is ~8.
Diversity among non-synonymous SNPs is significantly lower than among synonymous substitutions
(Graur and Li, 1997) due to the natural selection acting on the non-synonymous SNPs (Ohta, 1995),
and that was the case in all our comparisons. It yet to be determine if different ratios of
synonymous/non-synonymous SNPs in ASE between tissues can indicate different evolutionary
adaptation mechanism between them.

Intronic SNPs in ASE were captured in our analysis. Nascent RNAs of longer genes often include
extensive intronic regions that would commonly be removed in the mature RNAs captured in the
whole cells (Mercer et al., 2012; Lake et al., 2017), thus indicating RNA previous to the splicing was
captured. Additionally, the presence of intronic RNAs have been related to transcriptional regulation
events such as splicing and also to cellular identity (Ameur et al., 2011; Gaidatzis et al., 2015; Lake
et al., 2016; Sheng et al., 2017; Yang et al., 2017). Therefore, the significant change in the allele
frequency of intronic SNPs may be related to de novo expression of genes and specific splicing
processes depending on tissue and also salinity challenge. The little variation that was found for
upstream/downstream, stop loss or stop gain, frameshift nor non-frameshift insertion or deletion,
indicating that nonsense-mediated decay and other pathological processes are not dominating the

specific expression after salinity exposure on the studied tissues.

Conclusions

Our pipeline succeeded in providing a robust method on quantification of SNPs that allow the
unbiased determination of SNPs in ASE, under different factors, without the prior knowledge of the
genotype. This approach is suitable for any non-model organism, independently of the strain or the
available genome of reference.

Our tool provides with the possibility to reanalyze data of DEGs experiments in order to find gene
regulation and new protein to protein interactions determined by specifically expressed alleles. The

coordinates of the SNPs can be also merged with other sources of transcript data such as methylome.
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After adaptating of the database for gene annotation, transcriptomes can also be used for SNP calling
in case there is no genome of reference.

In the presented example of use for this pipeline we discovered allelic resources for copying with
salinity exposure in the kidney and in the gills, and that there is differential allelic response to

environment factor, depending on tissue.
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Tables:

Test description Test SNPs in Genes containing DEGs with SNPs in
number ASE ASE ASE

Gills and kidney in fresh water 1 1731 963 899

Gills and kidney in salty water 2 2311 1254 1153

Gills in fresh and salty water 3 236 193 15

Kidney in fresh and salty 4 1126 715 0

water

Table 1: Number of SNPs obtained in each test after applying the pipeline. Chi-sq test on the allele
frequency data for each individual. Five individuals in each group, n=10 for each test, p<0.05.

Group T-statistic P-value
GF 17,40 1,57E-66
GS 8,62 8,14E-18
KF 9,47 3,65E-21
KS 4,66 3,22E-06

Table 2: Statistics and p-value of each T-student test. The test was performed on the abundance of

the allele frequencies called against the reference genome and called against the pseudogenome, n=
3,740 SNPs. One test was performed in each experimental group: GF gills fresh water, GS gills
salty water, KF kidney fresh water, KS kidney salty water.

SNP type Testl Test2 Test3 Test4d
UTR3 1064 1379 122 613
CDS 474 611 63 347
NncRNA_exonic 50 106 23 58
UTR5 45 66 7 37
Downstream 38 51 2 24
Intergenic 26 40 11 20
Intronic 20 28 2 13
upstream\x3bdownstream 7 12 1 4
Upstream 5 9 4 7
ncRNA_intronic 2 8 1 2
synonymous_SNV 432 548 54 316
nonsynonymous_SNV 35 49 7 23
Ratio synonymous/non-synonymous 12,34 11,18 7,71 13,74
nonframeshift_deletion 3 4 1 3
nonframeshift_insertion 1 2 0 1
frameshift_insertion 1 4 1 1
Unknown 1 1 0 1
frameshift_deletion 1 3 0 2
UTR5\x3bUTR3 0 1 0 1
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Table 3: Type of SNPs in ASE found for each test, namely: test 1 gills and kidney in fresh water,
test 2 gills and kidney in salty water, test 3 gills in fresh and salty water, test 4 kidney in fresh and
salty water; Chi-sq test, p<0.05

Figures

Figure 1: Schema representing the key steps of the pipeline. The RNA is extracted from the
experimental samples and sequenced for obtaining of the fastq files. These files are trimmed and
after quality filters are mapped to the reference genome for a first SNP calling. The biallelic variant
sites obtained in this first call are then used for the creation of two pseudogenomes. The fastq files
are then mapped twice, one to each pseudogenome, and the SNP call is performed also twice. The
resulting variant call files are then submitted to home scripts for the merging and averaging of the
allele depths. The pipeline is developed in snakemake and the scripts are submitted to GitHub.

Figure 2: A. Calculation of the average allele depth after the calling to the two pseudogenomes.
The first genotype of the allele found in the first sample for a site is considered as reference and it is
marked in blue. The next genotype found for the same site in the allele is set as alternative and it is
marked in orange. Only biallelic sites are considered in this pipeline. The figure illustrates the
possibilities of homozygosis and heterozygosis, as well as the no expression after a sample is called
to pseudogenome 1 (PSG1) or pseudogenome 2 (PSG2). B. Assignation of the reference and
alternative alleles after homozygosis in one pseudogenome, or different order of the alleles in each
pseudogenome. The first sample is established as a model for the reference and alternative alleles.
The next samples reorganize their position following the model of the first sample. If a site is found
expressed in a sample different than the first model, the position of the alleles is set as the next
sample where there is expression (symbol *).

Figure 3: T-student test on each experimental group. The test was performed on the abundance of
the allele frequencies called against the reference genome and called against the pseudogenome, n=
3,740 SNPs. One test was performed in each experimental group.

Figure 4: Classification of the ASE SNPs by the type predicted from the coordinates as set in the
annotation. On the right the classification of the non-coding section and on the left the classification
of the coding section. Tests are as follows: : test 1 gills and kidney in fresh water, test 2 gills and
kidney in salty water, test 3 gills in fresh and salty water, test 4 kidney in fresh and salty water.

Figure 5: Venn graph illustrating the common ASE SNPs for each test. Absolute values of SNPs.

Figure 6: Heatmap including the allele frequencies of the total SNPs found in each experimental
group. The linkage group is described on the left.
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Figure 7: GO functions and percentage of the ASE SNPs found in each test.

Figure 8: Manhattan plot generated with the ASE SNPs found in each tests.

Supplementary 1: Table including ASE SNPs contained in genes that are differentially expressed
between gills and kidney in fresh water (test 1). Coordinates of chromosome and position, as well as
CHI statistic, product description and GO function associated.

Supplementary 2: Table including ASE SNPs contained in genes that are differentially expressed
between gills and kidney in salty water (test 2). Coordinates of chromosome and position, as well as
CHI statistic, product description and GO function associated.

Supplementary 3: Table including ASE SNPs contained in genes that are differentially expressed
between gills in fresh and salty water (test 3). Coordinates of chromosome and position, as well as
CHI statistic, product description and GO function associated.

Supplementary 4: Table including ASE SNPs contained in genes that are differentially expressed
between kidney in fresh and salty water (test 4). Coordinates of chromosome and position, as well
as CHI statistic, product description and GO function associated.

Supplementary 5: Figure including the distribution of the allele frequencies on the experimental
groups. A, gills in fresh water called against the pseudogenomes. B, gills in fresh water called
against the reference genome. G, gills in salty water called against the pseudogenomes. D, gills in
salty water called against the reference genome. E, kidney in fresh water called against the
pseudogenomes. F, kidney in fresh water called against the reference genome. G, kidney in salty
water called against the pseudogenomes. H, kidney in salty water called against the reference
genomes.

Supplementary 6: Table including the differentially expressed genes between gills and kidney in
fresh water (test 1) that present ASE SNPs for the same test.

Supplementary 7: Table including the differentially expressed genes between gills and kidney in
fresh water (test 2) that present ASE SNPs for the same test.

Supplementary 8: Table including the differentially expressed genes between gills and kidney in
fresh water (test 3) that present ASE SNPs for the same test.



