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Abstract

Hatching synchronisation is widespread in oviparous taxa. It has been demonstrated that
many species use sounds to coordinate synchronous hatching, being widespread among
archosaurs (birds and crocodilians). Recent studies have shown that some turtle species
produce sounds from within the egg, but the role of this behaviour in synchronising
hatch is untested. The reduced amount of information about sound production by turtle
embryos, limited to a handful of species, mostly close related, precludes any inferences
based on differences in their ecology, reproductive behaviour and phylogenetic context.
With the goal to investigate if coordinated synchronous behaviour is mediated by
within-egg vocalisations in turtles, we recorded clutches from six different turtle
species. The selected animals present different ecological and reproductive niches and
belong to distinct phylogenetic lineages at the family level. We aimed to understand: 1.
what is the phylogenetic distribution of within-egg vocal behaviour among turtles; 2. if
asynchronous-hatching turtle species vocalise from within the egg; 3. If clutch size
influences synchronous behaviour; and 4. If within-egg turtle sounds follow any
phylogenetic signal. Our results expand our understanding of the association of hatching
emergence and pre-emergence sound production in chelonians and challenge previous
hypothesis that within-egg sounds are accidentally produced as side-effects of other

behaviours.

Keywords: Nest emergence, Vocalization, Acoustic repertoire, Synchrony
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Introduction

Hatching synchronisation is widespread in oviparous taxa, being found in insects (Endo
and Numata, 2020), fish (Majoris et al., 2022), amphibians (Warkentin, 2011), turtles
(Spencer and Janzen, 2011), archosaurians (Ferguson, 1985; Vergne and Mathevon,
2008; Mariette et al., 2021), and squamates (Aubret et al. 2016); it may have evolved
recurrently in oviparous lineages. It acts in different forms and intensities (Colbert et al.,
2010), that can vary up to the population level (McGlashan et al., 2018). Although
seemingly widespread, the evolutionary drivers for the selection of synchronous
hatching are not well understood, and seem to vary among animals in different

ecological contexts (Riley et al., 2020).

Most of the knowledge about synchronous hatching behaviour comes from
archosaurians (birds and crocodilians; e.g., Ferguson, 1985; Vergne and Mathevon,
2008; Mariette et al., 2021), which are some of the most studied animals due to the high
number of social behaviours they display. In fact, synchronisation has been
hypothesized to be linked to highly social behaviours such as parental care and vocal
communication: prehatch vocalisations are used by birds (Brua, 2002; Mariette and
Buchanan, 2016; Noguera and Velando, 2019) and crocodilians (Magnusson, 1980;
Vergne and Mathevon, 2008) to mediate synchronous hatching. Furthermore,
synchronised hatching facilitates parental care, as incubation and feeding/protection of
hatchlings do not happen concurrently (Vergne and Mathevon, 2008; Mariette and
Buchanan, 2016; but see Wegrzyn et al., 2023). Birds may also synchronise hatching in
order to avoid less-favourable conditions after hatching of the first eggs (Mariette and
Buchanan, 2016), and both birds and crocodilians communicate with their parents from
within the egg (Brua et al., 1996; Vergne et al., 2007) — which may even be involved in

vocal learning in some birds (Katsis et al., 2018; Colombelli-Négrel et al., 2021).

4
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Differently from archosaurs, turtles mostly lack parental care, limited to temporary nest
protection in a handful of species (Barrent & Humphery, 1986; Iverson, 1990;
Kuchling, 1999). The South American river turtle (Podocnemis expansa) is currently
the only turtle species thought to display post-hatch parental care (Ferrara et al., 2012).
Many researchers advocate that synchrony in hatching behaviour is associated to the
lack of parental care (e.g., Jannet et al., 2018; Pearson and Warner 2018). Hatchlings
can benefit from synchronous hatching by sharing the burden of digging out of the nest
(Rusli et al., 2016), and decrease individual chances of being predated by swamping
predators (Arnold and Wassersug, 1978; Ims 1990; Santos et al., 2016). Predation
pressure might also have had a role in the selection of synchronous hatching, as eggs
that hatch late would get exposed once the first individuals leave the nest (McGlashan et

al., 2018).

Furthermore, in the last decade, turtles have been recognized as vocal animals, with all
studied species — around one third of the clade — being recorded producing sounds
(Ferrara et al., 2013; Jorgewich-Cohen et al., 2022b). Likewise, sound production from
within the eggs and nests has been reported in some species such as all sea turtles
(Ferrara et al., 2014a, 2014b, 2019; Monteiro et al., 2019; McKenna et al., 2019; Field,
2020; Nishizawa et al., 2021; Jorgewich-Cohen et al., 2022b), three river turtles
(Podocnemis spp.; Ferrara et al., 2012; Del Rio, 2022), one map turtle (Graptemys
ouachitensis; Geller and Casper, 2019a), one softshell turtle (Apalone spinifera; Geller
and Casper 2023), and the common snapping turtle (Chelydra serpentina, Geller and

Casper, 2019b; Lacroix et al., 2022).

Considering that turtles likely represent the sister clade to birds and crocodilians (Joyce
etal., 2021), it is reasonable to anticipate similar ecological value to the within-egg

vocalisations produced by these animals. The discovery of within-nest acoustically

5
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mediated interaction in turtles has opened the discussion about the role of such signals,
and the possibility that sounds are used to synchronise hatch (Ferrara et al., 2012,
2014a, 2014b, 2019; Geller and Casper, 2019a; Doody et al., 2021 — but see McKenna
etal., 2019 and Lacroix et al., 2022). Furthermore, the distinct absence of parental care
and the diversity of ecological niches occupied by turtles make them a great model to

study prehatch vocalisations and its potential links to synchronous hatching.

Synchronised hatching behaviour has only been studied in half dozen turtle species
(Spencer et al., 2001; Colbert et al., 2010; Spencer, 2012; Doody et al., 2012;
McGlashan et al., 2012, 2015, 2017; Riley et al., 2020; Field et al., 2021; Bock et al.,
2022; Lacroix et al., 2022), and the strategies used to achieve it have been shown to be
diverse. Synchronous behaviours can be divided into four not necessarily mutually
excluding categories: 1. temporal synchrony is induced by maternal effects that impose
constrained incubation periods (Ims 1990; Aubret et al. 2016). Although it influences
the time of egg incubation, it is not mediated by embryos coordination. Synchronicity
can also be achieved through 2. environmental synchrony, where ecological cues induce
hatching (Doody, 2011). This can be observed in the pig-nose turtle (Carettochelys
insculpta), where embryos emerge after being subjected to hypoxia caused by nest
flooding (Doody et al., 2012). This strategy also does not necessarily require any sort of
embryo-embryo communication. The necessity of coordination among hatchlings and
embryos has been reported in synchronised digging behaviour (Houghton and Hays,
2001, Rusli and Booth, 2016), which may represent a case of 3. apparent synchrony (or
emergence synchrony), where hatching does not happen at the same time, but the “first-
born” waits in the nest for their siblings to hatch (McGlashan et al., 2018), and only nest

emergence is synchronised.
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True hatch synchrony, or 4. coordinated synchrony, happens when hatchlings
communicate their developmental status to their siblings, which alter the time periods of
incubation through physiological mechanisms in order to hatch at a similar time, despite
potential thermal differences in the nest (Ims 1990; McGlashan et al., 2012; Aubret et
al. 2016). Hypothetically, there are three ways in which coordinated hatching synchrony
can happen: a. “catch up”, where embryos subjected to lower temperatures — i.e., less
developed — increase their developmental rates so that they can hatch at a synchronised
time with more developed clutch mates (e.g., Emydura, Chelodina and Apalone;
Spencer et al. 2001; McGlashan et al. 2011; Riley et al., 2020); b. delayed hatch, in
which embryos aestivate and eggs do not hatch although they are completely developed
or they stop developing at certain stage to wait for their siblings or better weather
condition (Doody, 2011); and c. early hatch, where not yet fully developed eggs simply
hatch following their siblings (e.g., Chelydra and Chrysemys; Spencer and Janzen 2011;

McGlashan et al. 2018; Riley et al., 2020; Lacroix et al., 2022).

The physiological costs associated to synchronised hatching indicates that this
behaviour has adaptative value (McGlashan et al. 2018; Riley et al., 2020). Together
with the fact that vocalisations are widely used by archosaurs in within-nest
communication (Brua et al., 1996; Vergne et al., 2007), it is parsimonious to infer
communicative meaning to similar vocal behaviours in turtles. Yet, the limited
information about turtle within-nest vocalisations makes it hard to understand patterns
based on the phylogenetic distribution of this behaviour. Moreover, the species so far
reported to vocalise prior hatching have similar reproductive strategies (Jorgewich-
Cohen et al., 2022a), with large clutches and synchronised hatch — which can be

expected to shape vocal behaviour. Information on species that lay one or few eggs that
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do not synchronise hatch would bring light to the discussion about the adaptative value

and use of within-egg vocalisations by turtles.

In order to investigate if coordinated synchronous behaviour is mediated by within-egg
vocalisations in turtles, we recorded clutches from different turtle species. The selected
animals present different ecological and reproductive niches and belong to distinct
phylogenetic lineages at the family level. We aimed to examine: 1. what is the
phylogenetic distribution of within-egg vocal behaviour among turtles; 2. if
asynchronous turtle species vocalise from within the egg; 3. if clutch size influences
prehatch sounds and synchronous behaviour, and 4. If within-egg turtle sounds follow
any phylogenetic signal. The new evidence provides light to the current knowledge

about synchronous behaviour and the sounds made by turtle hatchlings before hatching.

Methods

Nests from six different turtle species were recorded from the final 6 days of incubation

to hatching day. We conducted experiments in the field and in captivity.

Species

Species selection was subjected to the availability of nests, but aimed to include
representatives of all major turtle clades (Tab. 1). We also selected species with
different reproductive strategies regarding clutch size (Jorgewich-Cohen et al., 2022a)
that are expected to present different patterns of synchronous hatching behaviour: from

1 to 4 eggs, from 5 to 29 eggs, and 30 or more eggs. We included the South American
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river turtle (Podocnemis expansa) as a control species, since it is already known to

vocalise from within the egg (Ferrara et al., 2012).

Species Family Clutch size Source
Podocnemis expansa Podocnemididae Upto 130 InsHefP
Chitra indica Trionychidae up to 200 captive
Pseudemydura umbrina Chelidae 3to5 Mixezh
Kinosternon subrubrum Kinosternidae 2to 5 captive
Batagur baska Geoemydidae 15to 30 captive
Deirochelys reticularia Emydidae 4t010 «ca p_tiv_e

Table 1. Species selected for the present study.

Recordings

A professional recorder Tascam (dr-100 mk iii) with 192kHz/24-bit resolution was used
in combination with an omnidirectional microphone (Rode Lavalier Go) for egg
recording. The microphone was positioned among the eggs in both in situ and captive

settings (detailed information and photos can be found in Supplementary material 1).

Estimated hatching dates were calculated based on the known incubation period of each
species. Clutches were recorded every day, averaging between 7 and 8 hours a day,
starting 2 weeks prior expected hatch date in order to ensure that the last days of
development — where sound production is known in other species (Brua, 2002; Vergne
and Mathevon, 2008) — would be included in our sampled periods. We analysed the

recordings starting from 6 days prior hatching date until a day after hatching.

Recordings in captivity

Most recordings were conducted on captive turtles at Turtle Island, Styria, Austria.
Pseudemydura umbrina eggs were recorded at Perth Zoo, Australia. We had access to
one clutch from each species, except for P. umbrina, of which we analysed five
clutches. Eggs from the same clutch were incubated together and placed 1cm from each

other in all trials.
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Recordings in situ

Field recordings were conducted at the Trombetas River Biological Reserve, Parj,
Brazil, where ten nests of Podocnemis expansa were recorded for an average of 40
minutes each. Nests were oviposited approximately at the same date, and hatched a few
days after recordings were conducted. Additionally, approximately 8 hrs of recordings
were conducted in one wild nest of P. umbrina at Ellen Brook Nature Reserve, Perth,
Australia. This nest was oviposited on 14 November 2020, and the recording was
conducted on 28 April 2021 — approximately one week before nest emergence. The
microphone was inserted in the nest, where eggs were positioned as laid. In comparison
to recordings in captivity, wild nests were not exhaustively analysed due to time

constraints.

Analyses of acoustic repertoires

We used Raven Pro 1.6 (Cornell Lab of Ornithology, Ithaca, NY) to analyse the
recordings and search for sounds produced by embryos. The software R version 4.2.3
(R Core Team, 2022) was used to cut and measure sound parameters based on their
aural and spectral characteristics. Sounds were categorized following traits used in
previous research describing turtle acoustic repertoires (Ferrara et al., 2013; LaCroix et
al., 2022): dominant frequency, maximum and minimum frequency, sound duration,

mean variations of the intensity contour and number of pulses.

We chose for a conservative description of the vocal repertoire in order to assure we are
only including sounds produced by the species. Therefore, we excluded any sounds that
had an ambiguous source (i.e., not obviously produced by the turtles). Sounds were
sorted into different categories based on human perception, using acoustic and visual

cues based on the aural and spectral characteristics of the vocalisations.

10
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Phylogenetic distribution of prehatch sounds and synchronous birth in turtles

We compiled information about turtle species that have had their nests recorded in
search of acoustic behaviour and species that have been studied regarding synchronous
hatch. This information was then plotted in a phylogenetic tree with character states that
represent absence and presence of these behaviours: 1. Within-egg sounds (0. absent, 1.
present, 2. not recorded), and 2. Synchronous behaviour (0. absent, 1. present, 2.
apparently absent, 3. apparently present). Character states assigned to each turtle species
can be found in Supplementary Material 2. Additionally, we performed an ancestral-
state reconstruction analysis for the presence or absence of both synchronous behaviour
and prehatch call, which was inferred for each ancestral node in the tree using

maximum-likelihood reconstruction.

We used an edited version of the phylogeny proposed by Pereira et al. (2017). The tree
was pruned using the function drop.tip from the Ape package (Paradis and Schliep,
2019) in R platform (R core team, 2022). We created a tree containing only the taxa to
which some information about vocal and/or synchronous behaviours were available, and

used it to analyse the distribution of this traits among turtles.

Correlations among prehatch sounds, synchronous birth, and ecological traits

In order to understand if there are any correlations between prehatch sounds and
synchronous behaviour and if they correlate to clutch size in a phylogenetic context, we
performed a phylogenetic principal component analysis (phyPCA). Additionally, we
included information from previous studies about other ecological traits that may
influence vocal and synchronous behaviours: eggshell structure (hard or soft shelled),
mean incubation time, nest depth (Field et al., 2021), presence or absence of diapause

during incubation (Ewert, 1991; Horne, 2007), and type of sex determination (genetic or

11
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temperature determined; Bista and Valenzuela, 2020). We used the function phyl.pca

(package phytools; Revell, 2012) in R platform.

Test phylogenetic signal of within-egg turtle sounds

To test if there is any phylogenetic signal in within-egg turtle sounds, we used sounds
from all species recorded in this study and in previous studies that were available to us.
These include Podocnemis expansa and Batagur baska (present work), Chelydra
serpentina, Graptemys ouachitensis, and Apalone spinifera (Geller and Casper, 20193,
2019b, 2023, respectively), all sea turtles (Ferrara et al., 2014a; Field, 2020; Jorgewich-
Cohen et al., 2022b) except for Eretmochelys imbricata and Lepidochelys olivacea as

we were unable to access samples.

We used one sound sample of each kind from each species. Sounds were resampled to
the same sampling rate and bit depth using Audacity, and their characters were extracted
using the spectro_analysis function of the package warbleR (Araya-Salas and Smith-
Vidaurre, 2017). We ran a PCA using the extracted parameters and plotted the
information from the first two PCs in order to visualize the similarity among sounds.

Those that were plotted closer were considered more similar than those plotted far apart.

Results

In total, we analysed 147.8 hours of sound recordings from 19 nests. Audio files

containing each sound type can be found in Supplemental material 3 and 4, respectively.

Among the six species recorded in the present work, only two of them produced
vocalisations: Podocnemis expansa, confirming the findings from Ferrara et al. (2012);

and Batagur baska. Results from each species are as follows:

Pseudemydura umbrina SIEBENROCK, 1901 (Chelidae)

12



260  We analysed 37.5 hours of recordings from 6 nests containing 2—4 eggs each, being 1 in
261 the wild and 5 in captivity. No sounds were detected over the duration of the recordings,

262 including those in which hatchlings were already out of the eggs but still in the nest.

263  Podocnemis expansa (SCHWEIGGER, 1812) (Podocnemididae)

11 115

Ll
1..‘. IR

o

1446 15
s

Figure 1 prehatch acoustic repertoire of Podocnemis expansa. Warmer colours represent higher
amounts of energy

19 2

264 Intotal, from 7 hrs of recordings of 10 different nests, we were able to identify six
265  different call types (Fig. 1). All sounds were produced by both embryos and hatchlings

266  within the nest, often in association to digging.

267  Chitra indica (GRAY, 1831) (Trionychidae)

268  Over 32 hours of recordings were analysed from a subset of the original clutch (42)
269  containing 12 eggs, from which 4 died. We detected cracking sounds, which got more
270  frequent close to hatching date, but no vocalisations were captured. Hatchlings emerged

271 from their eggs within a clutch on different dates, with a total difference of 4 days from

13
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281

282

the first to the last egg. Two of the hatchlings hatched alone with over 24hrs difference.

The other six were hatched in two groups of three each, also with a day difference.

Batagur baska (GRAY, 1831) (Geoemydidae)

A
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10
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Figure 2 Prehatch acoustic repertoire of Batagur baska. Warmer colours represent
higher amounts of energy

In total, we analysed 21.8 hours of recordings from one nest originally containing 29
eggs of which 7 hatched. Successful eggs hatched asynchronously, with a total
difference of 21 days between the first and the last. We found, in total 22 sounds that

were categorized into 3 groups (Fig. 2).

Deirochelys reticularia (LATREILLE, 1801) (Emydidae)

We analysed 9.5 hrs of sound recordings from a nest containing 6 eggs from which all
survived. Eggs hatched in a relative asynchronous fashion, with a pair of hatchlings

hatching every day, with a total difference of 3 days between the first and the last

14



283  hatched egg. No sounds were found in the recordings except from sparce sounds which

284  appeared associated with eggshell cracking.

285  Kinosternon subrubrum BONNATERRE, 1789 (Kinosternidae)

286  No vocalisations were detected during the 40 hrs of recordings from one nest containing
287  two eggs. The hatchlings were unable to get out of the egg, so the zoo personnel freed
288  them manually at the same day. Sounds from eggshells cracking got more frequent

289  closer to hatching date.

A o Chelodina longicollis o
o Emydura macquani < 437
+ Pseudemydura umbrina e
Podocnemis unifilis
E Podocnemis lewyana :j 1
Podocnemis expansa o;
o Lissemys punctata e

Pelodiscus sinensis d
=] Apalone spinifera :}_ @
Chitra indica

L

< Careffochelys inscuipta
» Kinosternon subrubruim e
o Chelydra serpentina o
) Chelonia mydas
Eretmochelys imbricata
Lepidachelys kempil
Lepidochelys olivacea
Caretta caretfta

—(¢ Dermachelys coriacea 4
O Acoustic present Chrysemys pf?ra ) O Synchronous
W Acoustic absent Graptemys ouachitensis B Asynchronous
B Nottested Graptemys geographica | B Apparently synchronous
DE‘H’GChEl’yS reticuiaria = Apparently aSYnChrOnOUS
] Batagur baska @

Figure 3 Phylogenetic tree with species of turtles that have been studied regarding
within-nest sound production and/or synchronous behaviour. A. Information about
acoustic behaviour and B. Information about synchronous behaviour. Both trees include
reconstructions of inferred ancestral states (pie charts) in every node.

290  The character plotting and the ancestral state reconstruction show at least three
291  evolutionary events that culminated in the innovation of within-egg acoustic behaviour
292  —in podocnemidids, in Apalone, and potentially in Durocryptodira (Cryptodira

293  excluding tryonichids). All tree tips reporting presence of vocalisations (12 species

15
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300

pPC2

-1

-2

representing 6 out 14 turtle families, Fig. 3A) match with presence or apparent presence

(not formally tested) of synchronous behaviour — except for Batagur Baska, apparently

asynchronous.

The phylogenetic PCA (Fig. 4) plotted the vocalisation axis in a nearly direct

correlation with the clutch size axis. Much greater angles were established between the

vocalisations and the embryonic arrest and incubation time axes, indicating negative

correlations.
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Figure 5 Similarities among within-egg turtle calls. Dots represent unique call types and colours

represent different species.

The PCA based on the spectro-analysis plotted the points in a seemingly random

distribution, indicating lack of phylogenetic signal.

Discussion

Knowledge about within-egg and hatching sound production by turtles is limited to a
small number of studied turtle species, and both behaviours are reported for just a few
species. Studies that report within-egg sounds focused mostly on sea turtles (Ferrara et
al., 20144, 2014b, 2019; Monteiro et al., 2019; McKenna et al., 2019; Field, 2020;
Nishizawa et al., 2021; Jorgewich-Cohen et al., 2022b), and species of the
Podocnemididae (Ferrara et al., 2012; Del Rio, 2022), but also on the Quachita map

turtle (Graptemys ouachitensis, Geller and Casper, 2019), the common shapping turtle
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(Chelydra serpentina, Lacroix et al., 2021), and the Spiny Softshell Turtle (Apalone

spinifera, Geller and Casper, 2023).

Studies on synchronous hatching behaviour have focused on eight species representing
six different families (Spencer et al., 2001; Colbert et al., 2010; Spencer, 2012; Doody
et al., 2012; McGlashan et al., 2012, 2015, 2017; Riley et al., 2020; Field et al., 2021;
Bock et al., 2022; Lacroix et al., 2022), all of which synchronise hatching except for the
Northern map turtle (Graptemys geographica, Riley et al., 2020). The only species that
have been empirically demonstrated to display both behaviours are the loggerhead turtle
(Caretta caretta, Field et al., 2021) and the common snapping turtle (Lacroix et al.,

2021).

The cues used by embryos to alter the incubation time and synchronise hatching are
currently unknown; various mechanisms may play a role either in isolation or in
combination. Since the first cases of within-egg vocalisations were reported for turtles
in the early 2010’s, the hypothesis that these sounds are associated to synchronous
hatching has been under discussion (Ferrara et al., 2012; Mckenna et al., 2019; Lacroix
et al., 2022) — especially because embryo vocal communication is widespread among
birds and crocodilians (Mariette et al., 2021), and has been shown to mediate
synchronous behaviour (Vergne and Mathevon, 2008). Nevertheless, the limited
number of empirical studies and the lack of data with broad phylogenetic and ecological

coverage prevents any interpretations.

In this study, we recorded the clutches of six turtle species that occupy diverse
ecological niches and phylogenetic distribution — increasing the knowledge about vocal
behaviour to nine families of which seven have at least one representative known to
vocalise (Podocnemididae, Trionychidae, Chelydridae, Cheloniidae, Dermochelyidae,

Emydidae and Geoemydidae). Most of the species we recorded (4/6), however, did not
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produce any sounds. The concatenated trees show that the presence of vocal behaviour
is associated to the presence (or apparent presence) of synchronous hatching behaviour.
This is supported by the phylogenetic PCA, that implies some degree of correlation

between the synchronous and vocal behaviour axes.

Our data does not empirically prove that vocalisations mediate social behaviours in
embryos and/or hatchlings, but the lack of vocalisations in some species may be
insightful. Although it is not possible to prove a negative assumption (i.e., they do not
vocalise), as it may only reflect the absence of data — Del Rio (2022) reported sounds
produced by embryos of the Magdalena River turtle (Podocnemis lewyana), while Bock
et al. (2022) reported not registering any sounds in another study on the same species —
our standardized protocol is expected to yield comparable results. That is, if no sounds
were produced by most of the recorded species, this indicates, at least, that they are less

vocal than the species with positive results.

Interestingly, the existence of seemingly silent embryos challenges the recently proposed
idea that within-nest sounds are no more than accidental byproducts of other behaviours
(McKenna et al., 2019; Field et al., 2021). The hypothesis that within-egg vocalisations
mediate social behaviour is supported by the apparent absence of vocalisations in species
with small and/or asynchronous hatching, while present in synchronously hatching
species with similar ecological niches but different evolutionary histories (i.e.,
podocnemidids and sea turtles — see more below). Furthermore, the idea that acoustic
repertoires comprised of several types of sounds play an ecological role is the most
parsimonious alternative. Considering that archosaurians are known to mediate
synchronous behaviour through within-egg sounds (Vergne and Mathevon, 2008;

Mariette et al., 2021), and that vocalisations are generally used in social interactions by
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adult archelosaurians (turtles + archosaurians; Jorgewich-Cohen et al., 2022), the role of

within-nest vocalisations should not be prematurely dismissed.

Lacroix et al. (2021) got no response in a playback experiment designed to test if sounds
induce pipping in eggs of the common snapping turtle. They proposed that either sounds
do not mediate synchronous hatching behaviour or that they do so in much more specific
and refined manner. In fact, these possibilities are not mutually exclusive if considered in
a broad phylogenetic perspective (see below). Whereas focusing on the matter of the
potentially higher complexity of sounds mediating within-nest behaviours, there are
several stages from an embryonic stage to the life out of the nest that should be

considered.

The relevance of acoustic signals potentially starts during the second phase of the
embryological development (linked to maturation of the neuromuscular system,
whereas the primary is linked to organ/tissue development), a few days before hatching,
when neuromuscular activity increases (Spencer et al., 2001; Colbert et al., 2010;
McGlashan et al., 2012). At this phase, acoustic signals would possibly play an
important role in species that display “catch up” (i.e., Chelodina longicollis, Emydura
mcquarii, Apalone spinifera, Podocnemis lewyana, and Caretta caretta; McGlashan et
al.,2015, 2017; Riley et al., 2020; Field et al., 2021; Bock et al., 2022) or “delayed” (not
reported in any species so far) synchrony. These types of synchronous behaviours could
also be mediated by other channels such as heart rate, vibrations, and chemical cues
(Spencer et al., 2001; Spencer, 2012; McGlashan et al., 2012; Mariette et al., 2021), in
combination, excluding the use of sounds. The same or different sounds may stimulate
the previously mentioned modalities of coordinated synchronous behaviour during

pipping and hatching (potentially as two separate events). Additionally, species that
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present early hatch synchrony (i.e., Chrysemys picta and Chelydra serpentina; Colbert

et al., 2010; McGlashan et al., 2012) could also benefit from acoustic cues at this stage.

After hatching, sounds could be used to mediate several species-specific behaviours that
can sometimes be classified as apparent or emergence synchrony: both sea turtles and
podocnemidids emit sounds while digging (Mckenna et al., 2019; Field et al., 2021,
present work), a behaviour known to decrease individual energy investment (Rusli et
al., 2016a, 2016b) — especially in species with deep nests (Field et al., 2021). Species
could be using sounds to mediate waiting periods in the nest, regardless of if they
synchronize hatching or not (i.e., sea turtles, Chrysemys, respectively; Hays et al., 1992;

McGlashan et al., 2012).

Seemingly, several species that leave the nest en masse are known to produce — quite
similar — sounds (i.e., sea turtles, podocnemidids, Dermatemys mawii; Ferrara et al.,
2012; McKenna et al., 2019; Field et al., 2021; Jorgewich-Cohen et al., 2022),
hypothetically in an ecological strategy that decreases individual risks through predator
swamping (Santos et al., 2016), where sounds coming from multiple locations could be
helpful to confuse predators, as it is known in other animal groups (Goodale et al., 2019,
although turtle predators seem to orientate mostly visually, making this hypothesis less
likely, especially in loud environments such as close to ocean waves). Synchronous nest
emergence could also help to avoid exposure in open nests after the exit of clutch mates
(Tucker et al., 2008; McGlashan et al., 2012), a behaviour that differs from predator

swamping, but can also be sound mediated.

When conducting empirical tests on the role of acoustic cues in embryo and hatchling
behaviour, it is crucial that the experimental design takes into account the different phases
of development and the different behaviours they may mediate. As much as this approach

can lead to clearer correlations between embryos “words” and actions (e.g., Vergne and
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Mathevon, 2008), the outcome can be hard to decipher. McKenna et al. (2019) reported
not finding any differences in the sounds produced by embryos and hatchlings of the olive
ridley turtles (Lepidochelys olivacea) during incubation, hatching, and emerging from the
nest. They proposed that these sounds have no biological purpose as they would expect
them to differ from each other in each phase — such sounds are, unfortunately, not

available.

The lack of complex vocalisations or a more refined use of specific sounds in association
to specific behaviours, emplace of a seemingly random use of an unelaborated repertoire
may be a reflex of the developmental stage of hatchling’s vocal abilities. Many species
are known to babble in the first stages of life, and refine their acoustic repertoire later
(i.e., birds, bats, dolphins and humans; Ter Haar et al., 2021; Eggleston et al., 2022).
Unfortunately, at present, no studies on the ontogenetic changes of the acoustic repertoire

in turtles exist.

Comparing putatively sound-mediated behaviours to (either analogous or homologous)
behaviours displayed by potentially mute species can bring several insights on the
processes that underlie synchrony. Considering that both hatching synchrony and vocal
behaviour have costs (Deecke et al., 2005; Colbert et al., 2010), different ecological
contexts are expected to yield different combinations of these behaviours. Some species,
in theory, can be synchronous but silent: when behaviours are mediated by other channels
of communication, or in cases where synchrony is not embryo-coordinated (i.e.,
environmental and temporal synchrony). Vibro-acoustic environmental cues such as
thunder and rain, and vibrations caused by translocation, can elicit synchronous hatch in
the Indian flapshell turtle (Lissemys punctata, Vijaya, 1983) and the pig-nosed turtle
(Carettochelys insculpta, Doody et al., 2012). Experiments at Perth Zoo (unpublished

data) have demonstrated that eggs of the Western swamp tortoise (Pseudemydura
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umbrina) have higher chances of hatching when exposed to constant vibrations during
incubation, although hatching is asynchronous. In a natural context, the pig-nosed turtle
synchronises hatch when the nest gets flooded and embryos experience hypoxia (Doody
etal., 2012). The embryos go through a developmental arrest until the rainy season, when
conditions are more suitable (Doody et al., 2012). Although embryos of this species have
never been sound recorded, our analysis indicates them to be most likely non-vocal, based

on its distribution in the PCA.

We did not detect any sounds in the recordings from clutches of the chicken turtle
(Deirochelys reticularia) or the Eastern mud turtle (Kinosternon subrubrum). Both
species hatch asynchronously and go through diapause (embryological arrest) during
incubation (Ewert, 1991; Horne, 2007. Observations from captive breeding suggests that
species that go through diapause rarely synchronise hatching (P. Praschag, personal

observation), which could at least partially explain the lack of vocalisations.

Shorter incubation time (2.5 months or less), with no diapause, is a characteristic in
common to all species known to vocalise from within the egg. The Chinese softshell turtle
(Pelodiscus sinensis), the turtle species with the shortest incubation period (Kuchling,
1999) and known to synchronize hatch (seemingly based on external temperatures, Zhu
et al., 2023), was grouped within the known vocal species in our analysis. In contrast, the
common Australian snake-necked turtle (Chelodina longicollis), that can have incubation
periods of 2.5 years (Cann, 1998), was plotted in the opposite side of the graph. Curiously,
studies focused on this species reached opposite conclusions regarding the presence of

synchronous hatching (Spencer, 2012; McGlashan et al., 2015).

Some species of snake-necked turtles and mud turtles go through diapause and long
incubation periods, although this occurs in the minority of the species in these distantly

related genera (Kennett et al., 1993; Booth, 2002; Horne, 2007). A comparative study on

23



459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

synchronous and acoustic behaviour including species with different ecological traits can
help elucidating this matter. Besides turtles, chameleons are the only reptile group in
which post-laying true embryonic diapause is known to exist in some species (Ewert,
1991). Like turtles, chameleons display a great diversity of breeding strategies, sometimes
exhibiting synchronous hatching and/or nest emergence. This, together with the recurrent
discoveries of “mute” species vocalizing, makes chameleon eggs a potential valuable
comparative model in which to study prehatch sounds and synchronous behavior in

reptiles.

Interpreting results from species-specific studies in a phylogenetic perspective can be
insightful, but the current widespread absence of data can only lead to preliminary
conclusions. The presence of synchronous hatching in two distantly related species
(Chrysemys picta, Cryptodira, and Emydura mcquarii, Pleurodira) has been used as an
argument to propose the plesiomorphy of this trait (Colbert et al., 2010; Mcglasham et
al., 2012). The same authors suggested that the potential ubiquity of synchronous
behaviour could explain why the painted turtle (Chysemys picta) synchronises hatch
although hatchlings overwinter in the nest. The same rationale can be applied to the
apparent lack of influence that sounds have over synchronous pipping in the snapping
turtle (Lacroix et al., 2022). However, our ancestral state reconstruction analysis had no
resolution, recovering equal probabilities for all proposed states from both traits in most
tree nodes. With the current state of knowledge about synchronous hatch and acoustic
behaviour in turtles, it is not possible to infer their ancestral states and, therefore, the

homology of these behaviours remains contentious.

Nevertheless, our findings bring new insights about the evolution of synchronous and
acoustic behaviours. The production of sounds by embryos of Batagur baska can be

interpreted as evidence of convergent evolution. Like in the case of sea turtles and
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podocnemidids, two distantly related groups with similar ecological traits, B. baska is a
large bodied species that lays soft-shelled eggs in deep sand nests that incubate during a
short period of time (~2 months). Differently from sea turtles and Podocnemis, B. baska
did not synchronise hatch, with some of the eggs from our studied clutch hatching over
20 days apart from each other. We chose to be conservative and treat them as
“apparently asynchronous™ in our analysis, as there are no published accounts on their
behaviour either in the wild or in captivity. Nevertheless, clutches incubated in captivity
at the Project Batagur, ran by the Bangladesh Forest Department, hatch within one day

(P. Praschag personal observation).

Based on studies that hypothesize that synchrony is an adaptative behaviour that
promotes social facilitation by sharing the costs of digging (Rusli et al., 2016a, 2016b),
Field et al. (2021) proposed that nest depth influences synchrony in nest emergence.
Nest depth can potentially induce asynchronous hatching in species that most often
show synchronous hatching (Field et al., 2021) as a consequence of a disparity in
developmental stages caused by exposure to different temperatures during the
incubation period and the time required to dig out of the nest (e.g., Chrysemys picta and
Caretta carta; Houghton and Hays, 2001; Field et al., 2021). The high degree of nest
emergence synchrony observed in some podocnemidids opposed to B. baska and some
sea turtles (Houghton and Hays, 2001; Rusli and Booth, 2016), may be associated to
additional environment cues. Rain induces nest emergence in Podocnemis expansa
(Simoncini et al., 2022) — which could additionally be classified as environmental

synchrony (Doody, 2011).

Shallow or exposed nests and hard-shelled eggs of turtles like Chitra indica,
Pseudemydura umbrina and Kinosternon subrurbum, recorded in the present study, may

help explaining the absence of vocalisations. Temperature gradients do not change as
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much in shallow nests and hatching does not seem to be coordinated. Furthermore, these
species do not need to invest as much effort in nest emergence as species with deep
nests. Many species with small clutches hatch and emerge from nest individually (e.g.,
Terrapene ornata and Malaclemys terrapin; Baker et al., 2013), making cooperative
digging less important. Additionally, the costs associated to sound production would
select for the disappearance of this behaviour in species that do not need to mediate any
behaviour — especially in species with single-egged clutches like the twist-neck turtle
(Platemys platicephala) or the pancake tortoise (Malacochersus tornieri). The presence
of sounds and synchronous hatching in species such as Graptemys ouachitensis (Geller
and Casper, 2019a) challenges this hypothesis. More species need to be recorded to
clarify how much some of the traits selected in this study are correlated to sound

production and hatching synchrony.

Traits associated to breeding in turtles, such as clutch size, nest depth, eggshell
microstructures, egg arrested diapause and synchronous hatching behaviour seem to
have evolved convergently and recurrently in the evolutionary history of the group
(Ewert, 1991; Horne, 2007; Jorgewich-Cohen et al., 2022a). Some of these traits seem
to be correlated, suggesting convergent evolution selected by similar ecological
conditions (Jorgewich-Cohen et al., 2022a). Likewise, synchronous hatching behaviour
seems to have evolved several times in association with species-specific ecological
characteristics. Different types of synchronous behaviours probably have different
selective pressures and evolutionary histories, with similar modalities potentially being

convergent in different lineages.

Within-nest vocalisations could have a similar evolutionary pattern to the one observed
in synchronous behaviour, potentially having evolved in association. Nevertheless, there

is some evidence suggesting embryo sounds are most likely a plesiomorphic trait, as
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within-egg vocalisations being widespread in archosaurs and some squamates.
Conversely, our phylogenetic distance analysis did not show any patterns based on the
phylogenetic distribution of the studied species. This could be an artefact of the limited
sample size, or it may indicate that there is no evolutionary pattern associated to such
sounds. In the latter case, it can represent both a case of conservative behaviour or a
case of strong convergence. Both scenarios rely on the assumption that strong selective
pressures (e.g., predation) would maintain or develop similar behaviours in distant
lineages. Considering our findings, it seems most parsimonious to interpret both within-
egg and synchronous behaviours as traits that converged among lineages with similar
ecologies. Understanding the mechanisms that mediate synchronous hatching

behaviours may help elucidating this mystery.

Conclusions

Communication is central to group mediation and sociality. There are many social
behaviours expressed by turtles during development, from embryo to nest emergence,
that could be mediated by acoustic signals. Synchronous hatching behaviour might not
necessarily be coordinated by sounds in every species — as seems to be the case in
Chelydra serpentina (Lacroix et al., 2022) — but may be important for others. It is
crucial that more experiments are conducted combining synchrony and acoustic tests, so
we can have a clearer understanding of the patterns in which these behaviours are
associated. Moreover, future work should aim to understand the behavioural patterns of
synchronous embryonic development, hatching, dig, nest emergence, and dispersal as
separate ecological events, as sounds might be used to mediate one of these behaviours

but not the other.
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