References
Almagro, A., Lin, S. H., & Tsay, Y. F. (2008). Characterization of theArabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development. The Plant Cell, 20 (12), 3289-3299.
Anstead, J. A., Froelich, D. R., Knoblauch, M., & Thompson, G. A. (2012). Arabidopsis P-Protein Filament Formation Requires Both AtSEOR1 and AtSEOR2. Plant and Cell Physiology, 53 (6), 1033-1042.
Bauby, H., Divol, F., Truernit, E., Grandjean, O., & Palauqui, J.-C. (2007). Protophloem differentiation in early Arabidopsis thalianadevelopment. Plant and Cell Physiology, 48 (1), 97-109.
Byrne, N., Wang, L.-M., Belieres, J.-P., & Angell, C. A. (2007). Reversible folding–unfolding, aggregation protection, and multi-year stabilization, in high concentration protein solutions, using ionic liquids. Chemical Communications (26), 2714-2716.
Casadesús, J., Tapia, L., & Lambers, H. (1995). Regulation of K+ and NO3 fluxes in roots of sunflower (Helianthus annuus ) after changes in light intensity. Physiologia Plantarum, 93 (2), 279-285.
Chen, K.-E., Chen, H.-Y., Tseng, C.-S., & Tsay, Y.-F. (2020). Improving nitrogen use efficiency by manipulating nitrate remobilization in plants. Nature Plants, 6 (9), 1126-1135.
Chu, L. C., Offenborn, J. N., Steinhorst, L., Wu, X. N., Xi, L., Li, Z., . . . Schulze, W. X. (2020). Plasma membrane CBL Ca2+sensor proteins function in regulating primary root growth and nitrate uptake by affecting global phosphorylation patterns and microdomain protein distribution. New Phytologist , In press.
Coskun, D., Britto, D. T., & Kronzucker, H. J. (2017). The nitrogen–potassium intersection: membranes, metabolism, and mechanism.Plant Cell and Environment, 40 (10), 2029-2041.
Cui, J., Lamade, E., Fourel, F., & Tcherkez, G. (2020). δ15N values in plants are determined by both nitrate assimilation and circulation. New Phytologist, 226 (6), 1696-1707.
Gu, J., Li, Z., Mao, Y., Struik, P. C., Zhang, H., Liu, L., . . . Yang, J. (2018). Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Science, 274 , 320-331.
Hall, S. M., & Baker, D. A. (1972). The chemical composition ofRicinus phloem exudate. Planta, 106 (2), 131-140.
Hayashi, H., & Chino, M. (1985). Nitrate and other anions in the rice phloem sap. Plant and Cell Physiology, 26 (2), 325-330.
Hayashi, H., & Chino, M. (1986). Collection of pure phloem sap from wheat and its chemical composition. Plant and Cell Physiology, 27 (7), 1387-1393.
Hsu, P.-K., & Tsay, Y.-F. (2013). Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth. Plant Physiology, 163 (2), 844-856.
Iqbal, A., Qiang, D., Alamzeb, M., Xiangru, W., Huiping, G., Hengheng, Z., . . . Meizhen, S. (2020). Untangling the molecular mechanisms and functions of nitrate to improve nitrogen use efficiency. Journal of the Science of Food and Agriculture, 100 (3), 904-914.
Jekat, S. B., Ernst, A. M., von Bohl, A., Zielonka, S., Twyman, R. M., Noll, G. A., & Prüfer, D. (2013). P-proteins in Arabidopsis are heteromeric structures involved in rapid sieve tube sealing.Frontiers in Plant Science, 4 , Article 225.
Jeschke, W. D., & Pate, J. S. (1995). Mineral nutrition and transport in xylem and phloem of Banksia prionotes (Proteaceae), a tree with dimorphic root morphology. Journal of Experimental Botany, 46 (8), 895-905.
Kant, S. (2018). Understanding nitrate uptake, signaling and remobilisation for improving plant nitrogen use efficiency.Seminars in Cell and Developmental Biology, 74 , 89-96.
Kastelic, M., Kalyuzhnyi, Y. V., Hribar-Lee, B., Dill, K. A., & Vlachy, V. (2015). Protein aggregation in salt solutions. Proceedings of the National Academy of Sciences, 112 (21), 6766-6770.
Knoblauch, M., Froelich, D. R., Pickard, W. F., & Peters, W. S. (2014). SEORious business: structural proteins in sieve tubes and their involvement in sieve element occlusion. Journal of Experimental Botany, 65 (7), 1879-1893.
Kunz, W. (2010). Specific ion effects in colloidal and biological systems. Current Opinion in Colloid & Interface Science, 15 (1-2), 34-39.
Lazof, D. B., Rufty, T. W., & Redinbaugh, M. G. (1992). Localization of nitrate absorption and translocation within morphological regions of the corn root. Plant Physiology, 100 (3), 1251-1258.
Léran, S., Garg, B., Boursiac, Y., Corratgé-Faillie, C., Brachet, C., Tillard, P., . . . Lacombe, B. (2015). AtNPF5.5, a nitrate transporter affecting nitrogen accumulation in Arabidopsis embryo.Scientific Reports, 5 (1), Article 7962.
Li, H., Yu, M., Du, X.-Q., Wang, Z.-F., Wu, W.-H., Quintero, F. J., . . . Wang, Y. (2017). NRT1.5/NPF7.3 functions as a proton-coupled H+/K+ antiporter for K+ loading into the xylem in Arabidopsis .The Plant Cell, 29 (8), 2016-2026.
Limami, A. M., & Morère-Le Paven, M.-C. (2019). Nitrate signaling pathway via the transporter MtNPF6.8 involves abscisic acid for the regulation of primary root elongation in Medicago truncatula In F. De Bruijn (Ed.), The model legume Medicago truncatula (pp. 118-124). Hoboken: John Wiley & Sons, Wiley Blackwell.
Liu, K.-h., Niu, Y., Konishi, M., Wu, Y., Du, H., Chung, H. S., . . . Maekawa, S. (2017). Discovery of nitrate–CPK–NLP signalling in central nutrient–growth networks. Nature, 545 (7654), 311-316.
Lohaus, G., Hussmann, M., Pennewiss, K., Schneider, H., Zhu, J. J., & Sattelmacher, B. (2000). Solute balance of a maize (Zea mays L.) source leaf as affected by salt treatment with special emphasis on phloem retranslocation and ion leaching. Journal of Experimental Botany, 51 (351), 1721-1732.
Mähönen, A. P., Bonke, M., Kauppinen, L., Riikonen, M., Benfey, P. N., & Helariutta, Y. (2000). A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes and Development, 14 (23), 2938-2943.
Marschner, H., Kirkby, E. A., & Engels, C. (1997). Importance of cycling and recycling of mineral nutrients within plants for growth and development. Botanica Acta, 110 (4), 265-273.
Naulin, P. A., Armijo, G. I., Vega, A. S., Tamayo, K. P., Gras, D. E., de la Cruz, J., & Gutiérrez, R. A. (2020). Nitrate induction of primary root growth requires cytokinin signaling in Arabidopsis thaliana .Plant and Cell Physiology, 61 (2), 342-352.
Ohkubo, Y., Tanaka, M., Tabata, R., Ogawa-Ohnishi, M., & Matsubayashi, Y. (2017). Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition. Nature Plants, 3 (4), Article no. 17029.
Pate, J. S., Sharkey, P. J., & Lewis, O. A. M. (1975). Xylem to phloem transfer of solutes in fruiting shoots of legumes, studied by a phloem bleeding technique. Planta, 122 (1), 11-26.
Peel, A. J., & Weatherley, P. E. (1959). Composition of sieve-tube sap.Nature, 184 (4703), 1955-1956.
Pellizzaro, A., Clochard, T., Cukier, C., Bourdin, C., Juchaux, M., Montrichard, F., . . . Morère-Le Paven, M.-C. (2014). The nitrate transporter MtNPF6.8 (MtNRT1.3) transports abscisic acid and mediates nitrate regulation of primary root growth in Medicago truncatula .Plant Physiology, 166 (4), 2152-2162.
Peuke, A. (2010). Correlations in concentrations, xylem and phloem flows, and partitioning of elements and ions in intact plants. A summary and statistical re-evaluation of modelling experiments in Ricinus communis . Journal of Experimental Botany, 61 (3), 635-655.
Peuke, A., Gessler, A., & Tcherkez, G. (2013). Experimental evidence for diel δ15N‐patterns in different tissues, xylem and phloem saps of castor bean (Ricinus communis L.). Plant, Cell and Environment, 36 (12), 2219-2228.
Peuke, A., Glaab, J., Kaiser, W. M., & Jeschke, W. D. (1996). The uptake and flow of C, N and ions between roots and shoots inRicinus communis L. IV. Flow and metabolism of inorganic nitrogen and malate depending on nitrogen nutrition and salt treatment.Journal of Experimental Botany, 47 (296), 377-385.
Rodríguez-Celma, J., Ceballos-Laita, L., Grusak, M. A., Abadía, J., & López-Millán, A.-F. (2016). Plant fluid proteomics: Delving into the xylem sap, phloem sap and apoplastic fluid proteomes. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1864 (8), 991-1002.
Ruffel, S., Krouk, G., Ristova, D., Shasha, D., Birnbaum, K. D., & Coruzzi, G. M. (2011). Nitrogen economics of root foraging: Transitive closure of the nitrate–cytokinin relay and distinct systemic signaling for N supply vs. demand. Proceedings of the National Academy of Sciences of the USA, 108 (45), 18524-18530.
Sakakibara, H., Takei, K., & Hirose, N. (2006). Interactions between nitrogen and cytokinin in the regulation of metabolism and development.Trends in Plant Science, 11 (9), 440-448.
Scheible, W.-R., Lauerer, M., Schulze, E.-D., Caboche, M., & Stitt, M. (1997). Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. The Plant Journal, 11 (4), 671-691.
Schobert, C., & Komor, E. (1992). Transport of nitrate and ammonium into the phloem and the xylem of Ricinus communis seedlings.Journal of Plant Physiology, 140 (3), 306-309.
Taiz, L., Zeiger, E., Moller, I., & Murphy, A. (2015). Plant physiology and development (Sixth Edition ed.). Sunderland, Massachusetts: Sinauer Associates Inc.
Tegeder, M., & Masclaux-Daubresse, C. (2018). Source and sink mechanisms of nitrogen transport and use. New Phytologist, 217 (1), 35-53.
Tillard, P., Passama, L., & Gojon, A. (1998). Are phloem amino acids involved in the shoot to root control of NO3- uptake in Ricinus communisplants? Journal of Experimental Botany, 49 (325), 1371-1379.
van Bel, A. J. E., Furch, A. C. U., Will, T., Buxa, S. V., Musetti, R., & Hafke, J. B. (2014). Spread the news: systemic dissemination and local impact of Ca2+ signals along the phloem pathway.Journal of Experimental Botany, 65 (7), 1761-1787.
van Die, J., & Tammes, P. (1975). Phloem exudationfrom Monocotyledonous axes. In M. Zimmermann & J. Milburn (Eds.), Transport in plants I. Phloem transport (pp. 196-222). Berlin: Springer.
van Helden, M., Tjallingh, W. F., & van Beek, T. A. (1994). Phloem sap collection from lettuce (Lactuca sativa L.): Chemical comparison among collection methods. Journal of Chemical Ecology, 20 (12), 3191-3206.
Vega, A., O’Brien, J. A., & Gutiérrez, R. A. (2019). Nitrate and hormonal signaling crosstalk for plant growth and development.Current Opinion in Plant Biology, 52 , 155-163.
Wang, Y., & Tsay, Y.-F. (2011). Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport. The Plant Cell, 23 (5), 1945-1957.
Wang, Y., & Wu, W.-H. (2013). Potassium transport and signaling in higher plants. Annual review of plant biology, 64 , 451-476.
Wilson, A. C. C., Sternberg, L. d. S. L., & Hurley, K. B. (2011). Aphids alter host-plant nitrogen isotope fractionation.Proceedings of the National Academy of Sciences, 108 (25), 10220-10224.
Zang, L., Morère-Le Paven, M.-C., Clochard, T., Porcher, A., Satour, P., Mojović, M., . . . Montrichard, F. (2020). Nitrate inhibits primary root growth by reducing accumulation of reactive oxygen species in the root tip in Medicago truncatula . Plant Physiology and Biochemistry, 146 , 363-373.
Ziegler, H. (1975). Nature of transported substances. In M. Zimmermann & J. Milburn (Eds.), Transport in plants I. Phloem transport(Vol. 1, pp. 59-100). Berlin: Springer.