References
Almagro, A., Lin, S. H., & Tsay, Y. F. (2008). Characterization of theArabidopsis nitrate transporter NRT1.6 reveals a role of nitrate
in early embryo development. The Plant Cell, 20 (12), 3289-3299.
Anstead, J. A., Froelich, D. R., Knoblauch, M., & Thompson, G. A.
(2012). Arabidopsis P-Protein Filament Formation Requires Both
AtSEOR1 and AtSEOR2. Plant and Cell Physiology, 53 (6), 1033-1042.
Bauby, H., Divol, F., Truernit, E., Grandjean, O., & Palauqui, J.-C.
(2007). Protophloem differentiation in early Arabidopsis thalianadevelopment. Plant and Cell Physiology, 48 (1), 97-109.
Byrne, N., Wang, L.-M., Belieres, J.-P., & Angell, C. A. (2007).
Reversible folding–unfolding, aggregation protection, and multi-year
stabilization, in high concentration protein solutions, using ionic
liquids. Chemical Communications (26), 2714-2716.
Casadesús, J., Tapia, L., & Lambers, H. (1995). Regulation of
K+ and NO3− fluxes
in roots of sunflower (Helianthus annuus ) after changes in light
intensity. Physiologia Plantarum, 93 (2), 279-285.
Chen, K.-E., Chen, H.-Y., Tseng, C.-S., & Tsay, Y.-F. (2020). Improving
nitrogen use efficiency by manipulating nitrate remobilization in
plants. Nature Plants, 6 (9), 1126-1135.
Chu, L. C., Offenborn, J. N., Steinhorst, L., Wu, X. N., Xi, L., Li, Z.,
. . . Schulze, W. X. (2020). Plasma membrane CBL Ca2+sensor proteins function in regulating primary root growth and nitrate
uptake by affecting global phosphorylation patterns and microdomain
protein distribution. New Phytologist , In press.
Coskun, D., Britto, D. T., & Kronzucker, H. J. (2017). The
nitrogen–potassium intersection: membranes, metabolism, and mechanism.Plant Cell and Environment, 40 (10), 2029-2041.
Cui, J., Lamade, E., Fourel, F., & Tcherkez, G. (2020).
δ15N values in plants are determined by both nitrate
assimilation and circulation. New Phytologist, 226 (6), 1696-1707.
Gu, J., Li, Z., Mao, Y., Struik, P. C., Zhang, H., Liu, L., . . . Yang,
J. (2018). Roles of nitrogen and cytokinin signals in root and shoot
communications in maximizing of plant productivity and their agronomic
applications. Plant Science, 274 , 320-331.
Hall, S. M., & Baker, D. A. (1972). The chemical composition ofRicinus phloem exudate. Planta, 106 (2), 131-140.
Hayashi, H., & Chino, M. (1985). Nitrate and other anions in the rice
phloem sap. Plant and Cell Physiology, 26 (2), 325-330.
Hayashi, H., & Chino, M. (1986). Collection of pure phloem sap from
wheat and its chemical composition. Plant and Cell Physiology,
27 (7), 1387-1393.
Hsu, P.-K., & Tsay, Y.-F. (2013). Two phloem nitrate transporters,
NRT1.11 and NRT1.12, are important for redistributing xylem-borne
nitrate to enhance plant growth. Plant Physiology, 163 (2),
844-856.
Iqbal, A., Qiang, D., Alamzeb, M., Xiangru, W., Huiping, G., Hengheng,
Z., . . . Meizhen, S. (2020). Untangling the molecular mechanisms and
functions of nitrate to improve nitrogen use efficiency. Journal
of the Science of Food and Agriculture, 100 (3), 904-914.
Jekat, S. B., Ernst, A. M., von Bohl, A., Zielonka, S., Twyman, R. M.,
Noll, G. A., & Prüfer, D. (2013). P-proteins in Arabidopsis are
heteromeric structures involved in rapid sieve tube sealing.Frontiers in Plant Science, 4 , Article 225.
Jeschke, W. D., & Pate, J. S. (1995). Mineral nutrition and transport
in xylem and phloem of Banksia prionotes (Proteaceae), a tree
with dimorphic root morphology. Journal of Experimental Botany,
46 (8), 895-905.
Kant, S. (2018). Understanding nitrate uptake, signaling and
remobilisation for improving plant nitrogen use efficiency.Seminars in Cell and Developmental Biology, 74 , 89-96.
Kastelic, M., Kalyuzhnyi, Y. V., Hribar-Lee, B., Dill, K. A., & Vlachy,
V. (2015). Protein aggregation in salt solutions. Proceedings of
the National Academy of Sciences, 112 (21), 6766-6770.
Knoblauch, M., Froelich, D. R., Pickard, W. F., & Peters, W. S. (2014).
SEORious business: structural proteins in sieve tubes and their
involvement in sieve element occlusion. Journal of Experimental
Botany, 65 (7), 1879-1893.
Kunz, W. (2010). Specific ion effects in colloidal and biological
systems. Current Opinion in Colloid & Interface Science,
15 (1-2), 34-39.
Lazof, D. B., Rufty, T. W., & Redinbaugh, M. G. (1992). Localization of
nitrate absorption and translocation within morphological regions of the
corn root. Plant Physiology, 100 (3), 1251-1258.
Léran, S., Garg, B., Boursiac, Y., Corratgé-Faillie, C., Brachet, C.,
Tillard, P., . . . Lacombe, B. (2015). AtNPF5.5, a nitrate transporter
affecting nitrogen accumulation in Arabidopsis embryo.Scientific Reports, 5 (1), Article 7962.
Li, H., Yu, M., Du, X.-Q., Wang, Z.-F., Wu, W.-H., Quintero, F. J., . .
. Wang, Y. (2017). NRT1.5/NPF7.3 functions as a proton-coupled
H+/K+ antiporter for
K+ loading into the xylem in Arabidopsis .The Plant Cell, 29 (8), 2016-2026.
Limami, A. M., & Morère-Le Paven, M.-C. (2019). Nitrate signaling
pathway via the transporter MtNPF6.8 involves abscisic acid for the
regulation of primary root elongation in Medicago truncatula In
F. De Bruijn (Ed.), The model legume Medicago truncatula (pp.
118-124). Hoboken: John Wiley & Sons, Wiley Blackwell.
Liu, K.-h., Niu, Y., Konishi, M., Wu, Y., Du, H., Chung, H. S., . . .
Maekawa, S. (2017). Discovery of nitrate–CPK–NLP signalling in central
nutrient–growth networks. Nature, 545 (7654), 311-316.
Lohaus, G., Hussmann, M., Pennewiss, K., Schneider, H., Zhu, J. J., &
Sattelmacher, B. (2000). Solute balance of a maize (Zea mays L.)
source leaf as affected by salt treatment with special emphasis on
phloem retranslocation and ion leaching. Journal of Experimental
Botany, 51 (351), 1721-1732.
Mähönen, A. P., Bonke, M., Kauppinen, L., Riikonen, M., Benfey, P. N.,
& Helariutta, Y. (2000). A novel two-component hybrid molecule
regulates vascular morphogenesis of the Arabidopsis root. Genes
and Development, 14 (23), 2938-2943.
Marschner, H., Kirkby, E. A., & Engels, C. (1997). Importance of
cycling and recycling of mineral nutrients within plants for growth and
development. Botanica Acta, 110 (4), 265-273.
Naulin, P. A., Armijo, G. I., Vega, A. S., Tamayo, K. P., Gras, D. E.,
de la Cruz, J., & Gutiérrez, R. A. (2020). Nitrate induction of primary
root growth requires cytokinin signaling in Arabidopsis thaliana .Plant and Cell Physiology, 61 (2), 342-352.
Ohkubo, Y., Tanaka, M., Tabata, R., Ogawa-Ohnishi, M., & Matsubayashi,
Y. (2017). Shoot-to-root mobile polypeptides involved in systemic
regulation of nitrogen acquisition. Nature Plants, 3 (4), Article
no. 17029.
Pate, J. S., Sharkey, P. J., & Lewis, O. A. M. (1975). Xylem to phloem
transfer of solutes in fruiting shoots of legumes, studied by a phloem
bleeding technique. Planta, 122 (1), 11-26.
Peel, A. J., & Weatherley, P. E. (1959). Composition of sieve-tube sap.Nature, 184 (4703), 1955-1956.
Pellizzaro, A., Clochard, T., Cukier, C., Bourdin, C., Juchaux, M.,
Montrichard, F., . . . Morère-Le Paven, M.-C. (2014). The nitrate
transporter MtNPF6.8 (MtNRT1.3) transports abscisic acid and mediates
nitrate regulation of primary root growth in Medicago truncatula .Plant Physiology, 166 (4), 2152-2162.
Peuke, A. (2010). Correlations in concentrations, xylem and phloem
flows, and partitioning of elements and ions in intact plants. A summary
and statistical re-evaluation of modelling experiments in Ricinus
communis . Journal of Experimental Botany, 61 (3), 635-655.
Peuke, A., Gessler, A., & Tcherkez, G. (2013). Experimental evidence
for diel δ15N‐patterns in different tissues, xylem and
phloem saps of castor bean (Ricinus communis L.). Plant,
Cell and Environment, 36 (12), 2219-2228.
Peuke, A., Glaab, J., Kaiser, W. M., & Jeschke, W. D. (1996). The
uptake and flow of C, N and ions between roots and shoots inRicinus communis L. IV. Flow and metabolism of inorganic nitrogen
and malate depending on nitrogen nutrition and salt treatment.Journal of Experimental Botany, 47 (296), 377-385.
Rodríguez-Celma, J., Ceballos-Laita, L., Grusak, M. A., Abadía, J., &
López-Millán, A.-F. (2016). Plant fluid proteomics: Delving into the
xylem sap, phloem sap and apoplastic fluid proteomes. Biochimica
et Biophysica Acta (BBA) - Proteins and Proteomics, 1864 (8), 991-1002.
Ruffel, S., Krouk, G., Ristova, D., Shasha, D., Birnbaum, K. D., &
Coruzzi, G. M. (2011). Nitrogen economics of root foraging: Transitive
closure of the nitrate–cytokinin relay and distinct systemic signaling
for N supply vs. demand. Proceedings of the National Academy of
Sciences of the USA, 108 (45), 18524-18530.
Sakakibara, H., Takei, K., & Hirose, N. (2006). Interactions between
nitrogen and cytokinin in the regulation of metabolism and development.Trends in Plant Science, 11 (9), 440-448.
Scheible, W.-R., Lauerer, M., Schulze, E.-D., Caboche, M., & Stitt, M.
(1997). Accumulation of nitrate in the shoot acts as a signal to
regulate shoot-root allocation in tobacco. The Plant Journal,
11 (4), 671-691.
Schobert, C., & Komor, E. (1992). Transport of nitrate and ammonium
into the phloem and the xylem of Ricinus communis seedlings.Journal of Plant Physiology, 140 (3), 306-309.
Taiz, L., Zeiger, E., Moller, I., & Murphy, A. (2015). Plant
physiology and development (Sixth Edition ed.). Sunderland,
Massachusetts: Sinauer Associates Inc.
Tegeder, M., & Masclaux-Daubresse, C. (2018). Source and sink
mechanisms of nitrogen transport and use. New Phytologist,
217 (1), 35-53.
Tillard, P., Passama, L., & Gojon, A. (1998). Are phloem amino acids
involved in the shoot to root control of
NO3- uptake in Ricinus communisplants? Journal of Experimental Botany, 49 (325), 1371-1379.
van Bel, A. J. E., Furch, A. C. U., Will, T., Buxa, S. V., Musetti, R.,
& Hafke, J. B. (2014). Spread the news: systemic dissemination and
local impact of Ca2+ signals along the phloem pathway.Journal of Experimental Botany, 65 (7), 1761-1787.
van Die, J., & Tammes, P. (1975). Phloem exudationfrom Monocotyledonous
axes. In M. Zimmermann & J. Milburn (Eds.), Transport in plants
I. Phloem transport (pp. 196-222). Berlin: Springer.
van Helden, M., Tjallingh, W. F., & van Beek, T. A. (1994). Phloem sap
collection from lettuce (Lactuca sativa L.): Chemical comparison
among collection methods. Journal of Chemical Ecology, 20 (12),
3191-3206.
Vega, A., O’Brien, J. A., & Gutiérrez, R. A. (2019). Nitrate and
hormonal signaling crosstalk for plant growth and development.Current Opinion in Plant Biology, 52 , 155-163.
Wang, Y., & Tsay, Y.-F. (2011). Arabidopsis nitrate transporter
NRT1.9 is important in phloem nitrate transport. The Plant Cell,
23 (5), 1945-1957.
Wang, Y., & Wu, W.-H. (2013). Potassium transport and signaling in
higher plants. Annual review of plant biology, 64 , 451-476.
Wilson, A. C. C., Sternberg, L. d. S. L., & Hurley, K. B. (2011).
Aphids alter host-plant nitrogen isotope fractionation.Proceedings of the National Academy of Sciences, 108 (25),
10220-10224.
Zang, L., Morère-Le Paven, M.-C., Clochard, T., Porcher, A., Satour, P.,
Mojović, M., . . . Montrichard, F. (2020). Nitrate inhibits primary root
growth by reducing accumulation of reactive oxygen species in the root
tip in Medicago truncatula . Plant Physiology and
Biochemistry, 146 , 363-373.
Ziegler, H. (1975). Nature of transported substances. In M. Zimmermann
& J. Milburn (Eds.), Transport in plants I. Phloem transport(Vol. 1, pp. 59-100). Berlin: Springer.