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Abstract (250 words max)

Background:  We  used  long  read  sequencing  data  generated  from  Knightia  excelsaI  R.Br, a  nectar

producing Proteaceae tree endemic to Aotearoa New Zealand,  to  explore  how sequencing data type,

volume and workflows can impact final assembly accuracy and chromosome construction. Establishing a

high-quality genome for this species has specific cultural importance to Māori, the indigenous people, as

well as commercial importance to honey producers in Aotearoa New Zealand.

Results: Assemblies were produced by five long read assemblers using data subsampled based on read

lengths, two polishing strategies, and two Hi-C mapping methods. Our results from subsampling the data

by read length showed that each assembler tested performed differently depending on the coverage and

the read length of the data. Assemblies that used longer read lengths (>30 kb) and lower coverage were

the most contiguous, kmer and gene complete. The final genome assembly was constructed into pseudo-

chromosomes  using  all  available  data  assembled  with  FLYE,  polished  using  Racon/Medaka/Pilon

combined, scaffolded using SALSA2 and AllHiC, curated using Juicebox, and validated by synteny with

Macadamia. 

Conclusions: We highlighted the importance of developing assembly workflows based on the volume and

type  of  sequencing  data  and establishing  a  set  of  robust  quality  metrics  for  generating  high  quality

assemblies. Scaffolding analyses highlighted that problems found in the initial assemblies could not be

resolved accurately by utilizing Hi-C data and that scaffolded assemblies were more accurate when the

underlying contig assembly was of higher accuracy. These findings provide insight into what is required

for future high-quality de-novo assemblies of non-model organisms.
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Background

It is of critical importance that an optimal genome assembly strategy is used to maximize the impact,

effectiveness, and accuracy of resulting pseudo-chromosome-scale de novo reference genomes. As long

read  sequencing  data  becomes  more  affordable,  the  integration  of  a  multitude  of  next  generation

sequencing  (NGS)  platforms  is  becoming  standard  for  generating  near-complete  de  novo genome

assemblies. The construction of an accurate  de novo assembly is crucial to facilitating investigations of

species  evolution  ("https://vertebrategenomesproject.org/,"  ;  "https://www.darwintreeoflife.org/,"),

organism  diversity  (Gurdasani  D.,  Martinez  J.,  Pollard  M.,  Carstensen  T.,  &  C.,  2016;

"https://www.nist.gov/programs-projects/genome-bottle,"  ;  Project),  and  informing  health  and  disease

treatments in fields such as cancer treatment programs (Berger & Mardis, 2018) and vaccine development

(Prachi, Donati, Masciopinto, Rappuoli, & Bagnoli, 2013). To cater for the synergistic nature of different

types of sequencing data the research field of genome assembly is moving quickly, and new methods are

becoming more flexible, accurate and efficient.  Genome assembly software incorporates sophisticated

algorithms built  to  deal  with  a  multitude  of  sequencing  data  types;  for  instance,  accounting  for  the

different base calling accuracies of Oxford Nanopore Technology (ONT) (<5% error rate), PacBio Single

Molecule Real-Time (SMRT) (<1% error rate) and Illumina short paired-end (PE) reads (<0.1% error

rate). They also allow a multitude of parameter specifications to cater for various genome architectures.

For  example,  centroFlye  (Bzikadze  &  Pevzner,  2019) is  designed  for  centromere  assembly,  and

chloroExtractor  (Ankenbrand et  al.,  2018) developed to  assemble  chloroplastic  genomes from whole

genome sequencing (WGS) data.  Through different  error  correction and consensus approaches,  these

software use noisy ONT data to construct  contig assemblies which can then be further scaffolded to

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64



generate high-quality assemblies, but it is not generally clear what type of data are required or the volume

necessary to generate the ‘optimal’ assembly, or indeed what combination of software one should use

given the available types and volumes of data. 

Despite a thorough investigation of the computational resource performance of long read assemblers in

201 9(Wick & Holt, 2019), published data on the optimization of read length and depth in the context of

the most commonly used long read assemblers (NECAT, WTDBG2/RedBean, CANU, FLYE, FALCON

and SHASTA) is limited. Although the underlying long read data used by these toolkits were shared, their

methods  for  error  correction,  assembly  and consensus  generation  differ  greatly.  For  instance,  FLYE

(Kolmogorov, Yuan, Lin, & Pevzner, 2019) identifies “disjointigs” and uses these to firstly resolve the

repeat graph in order to construct the final assembly. CANU (Koren et al., 2017) carries out extensive

error correction and trimming prior to generating the final assembly using overlap-consensus methods

based on string graph theory (Myers, 2005). NECAT (Chen et al., 2020) acts similarly to CANU albeit

using a more progressive correction and assembly strategy. In contrast, WTDBG2/RedBean (Ruan & Li,

2020) uses only a single round of consensus by a fuzzy DeBruijn algorithm (Zerbino & Birney, 2008) that

is  based on initial  short  read assembly algorithms that  have been adjusted to accommodate the base

calling  inaccuracies  of  noisy  long  reads.  The  SHASTA  (Kishwar  Shafin  et  al.,  2020) algorithm

maximizes computational efficiency through the identification of reduced marker kmers to initially find

overlaps and then build the consensus sequence.

Gaining an understanding of each assembler’s advantages and shortcomings is an important consideration

prior  to  assembly  to  form a  more  educated  assembly  strategy and ultimately  resulting  in  a  genome

assembly  sufficient  for  individual  project  needs.  Quantitative  metrics  to  track  the  accuracy  and

completeness of the assembly must be performed as often as possible throughout the workflow. In the

past, appropriate non-manual methods of genome accuracy assessment have been limited, particularly in

regards to scaffolding steps using as proximity-guided methods like Hi-C (Lieberman-Aiden et al., 2009).

Recently,  more  advanced  quantitative  toolkits  have  become  available,  such  as  kmer  completeness
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[Merqury  (Rhie, Walenz, Koren, & Phillippy, 2020)], Long terminal repeat retrotransposons Assembly

Index [LAI (Ou, Chen, & Jiang, 2018)], mapping rate and highly conserved gene completeness [BUSCO

(Simão, Waterhouse, Ioannidis, Kriventseva, & Zdobnov, 2015)]. However, an educated selection of the

assembler only is insufficient in generating an optimal genome assembly, as post processing steps such as

polishing and scaffolding are also important considerations.

The identification and correction of mis-assemblies, or “polishing,” is determined by the initial assembler

and the algorithm used, however, comprehensive analyses of the impact of different polishing strategies

on genome accuracy are scarce. Assembler algorithms act differently during contig construction; thus, the

initial assembly accuracy they produce before polishing is not always a fair indication of the metrics that

will be obtained afterwards. Iterative polishing steps increase assembly accuracy after each step so that

reads previously unable to map due to error or mis-assembly in the initial assembly become mappable,

indicating a more accurate consensus assembly. Polishers are placed in two categories “Sequencer bound”

or “General”. Both Nanopolish (Loman, Quick, & Simpson, 2015) and Medaka (Technologies, 2018) are

examples of sequencer bound polishers that utilize raw signal information while Racon  (Vaser, Sović,

Nagarajan, & Šikić, 2017) and Pilon  (Walker et al.,  2014) are examples of general polishers that are

applicable to any sequencing platform. To obtain a better understanding of polishing and post assembly

processing performance, initial contig assemblies generated from a selection of ONT assemblers must be

tested using a combination of polishing strategies.

Three main methods are commonly used for scaffold ordering and orientation to generate chromosome

level assemblies. Traditionally, linkage maps made of thousands of genetic markers obtained from large

segregating progenies were used to anchor assembly contigs to linkage groups  (Linsmith et al., 2019).

However, this method can be expensive and can give false orientations due to inaccuracies in marker

orientation and ordering due to genotyping errors. Synteny-based approaches can be used when a closely

related high quality genome is available. However, all results obtained via these strategies are heavily

biased toward the provided reference assembly, and any unique translocations or re-orderings will be lost.
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Further, errors in the provided reference assembly can cascade into further projects. Recently, proximity

ligation methods have become a more cost effective and less biased (Peichel, Sullivan, Liachko, & White,

2017) approach for generating chromosomal level assemblies. The Hi-C method is commonly used for

scaffolding genomes  (Lightfoot  et  al.,  2017;  Thrimawithana et  al.,  2019).  Hi-C data  is  generated by

cleaving chromatin  using  restriction endonucleases  and ligating  only fragments  that  are  close  in  3D

chromosomal space. The underlying premise is that the closer two fragments the more linkage markers

they will share. Hi-C scaffolding algorithms take advantage of interactions at contig ends to orient and

order scaffolds.  However,  many chromosome-level  assemblies generated using Hi-C are littered with

inaccurate contig placements due to shorter contigs that contain interactions spanning their entire length

inhibiting Hi-C software ability to effectively orient and order these contigs accurately. Traditionally, Hi-

C software are built for homozygous diploid genome assemblies and are heavily reliant on the accuracy

of the reference assembly provided and many require a priori knowledge of chromosome number such as

LACHESIS (Burton et al., 2013) and AllHiC (Zhang, Zhang, Zhao, Ming, & Tang, 2019). Two tools are

commonly employed for Hi-C scaffolding: SALSA2 (Ghurye et al., 2019) and AllHiC (the latest version

of  LACHESIS).  The  effects  of  input  assembly  on  Hi-C mapping rate  and the  performance  of  such

software must also be evaluated. 

Knightia  excelsa R.Br.  (rewarewa)  is  a  nectar  producing  tree  of  the  Proteaceae  family,  endemic  to

Aotearoa New Zealand. Despite its size [> 1660 species  (Christenhusz & Byng, 2016)], the Proteaceae

plant family has received minimal attention from genome researchers, likely due to most diversity being

restricted to the southern hemisphere and the fact  that  the nut-producing macadamia tree is the only

species in the family of significant worldwide economic interest. To date, only a partial genome assembly

of Macadamia integrifolia has been developed, the information from which is used for genome-informed

breeding  (O’Connor, Hayes, & Topp, 2018). Very little genetic information is available for  K. exselsa;

however  karyotype  analysis  indicated  it  is  a  diploid  species  with  n  =  14  chromosomes  (Hair  &

Beuzenberg, 1958). Rewarewa is the basis of a burgeoning honey industry in Aotearoa New Zealand.
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Most of such honeys are produced from traditional  land owned by Māori,  the first  nation people of

Aotearoa New Zealand. Rewarewa is considered ‘taonga’ by Māori, meaning this tree species is treasured

and under their ‘kaitiaki’ or guardianship, and therefore an ethical framework is necessary for managing

samples and data during the project, as has been performed for other  taonga species  (Marshall et al.,

2015; Morgan, Perry, & Chagne, 2019). 

The objective of this research is to investigate assembly strategies using K. excelsa as a model (Figure 1).

Subject to Māori consent, Illumina PE (61X), ONT (52X) and Hi-C data were obtained. Software for

contig assembly, polishing and error correction and Hi-C scaffolding were evaluated and quality metrics

measured at each step. Initial contig assemblies were generated from five long read assemblers across five

subsampled sets of ONT data (reads >5 kb,  >10 kb, >22 kb,  >30 kb and the full  data),  which were

corrected using a combination of long and short read polishing tools. General iterative Racon polishing

followed by subsequent Pilon short read polishing was compared to a combined sequence bound and

general polishing strategy of iterative Racon, Medaka and Pilon (Figure 1). The effectiveness of each

ONT assembly method on chromosomal construction was assessed through Hi-C scaffolding using two

software packages, SALSA2 and AllHiC, and conservation of macro-synteny against macadamia linkage

maps  (Alam,  Neal,  O'Connor,  Kilian,  &  Topp,  2018) was  tested.  These  tools  were  systematically

implemented and the accuracy of  each assembly was quantitatively assessed in order  to identify the

optimal K. excelsa genome assembly that could be generated from our data.

Materials and Methods

Sample collection

Knightia excelsa (rewarewa) is an endemic tree of Aotearoa New Zealand, mostly found on the North

Island, and common in coastal, lowland and lower montane habitats.  This evergreen tree species can

grow up to 30m tall (the tallest Proteaceae), bears dark green serrated leathery leaves and dense racemes

of red flowers. K. excelsa’s genome size was estimated to be 1.15 pg per 1C using flow cytometry.
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The single  K. excelsa tree selected for this project grows in the Warawara Forest, Northland, Aotearoa

New Zealand (Lat. ± 4 m35° 22' 1.9" South, Long. ± 4 m173° 16' 5.4" East, altitude 440 m). The leaves

were collected in November 2018, authorized by the Te Rarawa Anga Mua and the Komiti Kaitiaki for

Warawara Ngahere. At the time of collection, the tree was about 3 m tall, growing in full sun, isolated

from  other  trees,  and  colonizing  a  bulldozed  site  along  with  Lycopodiella  cernuua,  Leucopogon

fasciculatus,  and  Blechnum novae-zelandiae beneath it.  The tree  has  deep magenta  flowers  and was

fruiting at the time of sample collection. The tree had two trunks from the same base. One trunk was 4 cm

in diameter at 1.35 m above the ground and the other was 2 cm in diameter at 1.35 m above the ground.

The combined cross-sectional area at breast height was 15.7 cm2. The leaves sampled were undamaged

leaves without visible fungal infections that ranged in size from 8-12 cm long by 2-3 cm wide. Two leaf

samples were collected (~20 and ~30 g).

The leaves were collected aseptically and packed in a sealable plastic bag, placed inside a Styrofoam box

with crushed ice, and protected from ice burn by a stack of paper towels. The sample was delivered

within two days after collection and stored at -80°C upon arrival to the laboratory.

Nuclear genomic DNA extraction

Nuclei isolation

The nuclear genomic DNA was extracted from isolated nuclei as previously described  (Hilario, 2018;

Naim et al., 2012) with the following modifications regarding the homogenization method, the type of

lysis buffer and its ratio to the amount of nuclei obtained. The leaf sample (20 or 30 g) was ground with

liquid nitrogen in a precooled large mortar. The freeze/grinding cycle was repeated three times until a fine

powder was obtained. The complete nuclei isolation buffer (plus sodium metabisulfite, β-mercaptoethanol

and 0.5% Triton X-100)  was poured in  a  1  L beaker  with stirrer.  The powdered sample was added

gradually and stirred until  completely dissolved.  The homogenate was filtered through two layers  of
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Miracloth (Merck) over a funnel.  The nuclei  were collected by low speed centrifugation and washed

twice with the nuclei isolation buffer (with sodium metabisulfite only). The final nuclei pellet was stored

without any liquid at -80°C until used for DNA extraction.

DNA extraction

The nuclear genomic DNA was extracted with a cetyl trimethylammonium bromide (CTAB) based buffer

as described(Hilario, 2018; Naim et al., 2012) with the following modifications: The isolated nuclei were

lysed with 15 mL of CTAB buffer and 100 µL proteinase K (20 mg/mL). After the lysis incubation, the

sample was extracted with equal volume of chloroform:iso-amyl alcohol (24:1), precipitated with ethanol

and  the  DNA collected  by  centrifugation.  The  DNA pellet  was  washed  with  10  mL 70%  ethanol,

centrifuged  again  and  dissolved  in  200  µL  TE  buffer.  The  quality  of  the  DNA  was  assessed  by

spectrophotometry  (Nanodrop)  and  electrophoresis  separation  (standard  and  pulse  field  gel

electrophoresis). The amount of DNA was estimated by fluorometry (Qubit high sensitivity dsDNA kit).

Average yield of nuclear genomic DNA per gram of leaf sample was 1 µg. The quality parameters were

A260/280 = 2.0, A260/230 = 1.88, Qubit/Nanodrop ~ 0.5, and an average fragment size of 50 kbp.

NGS library preparation

Short insert Illumina sequencing library

Eight  reactions  of  500 ng of  nuclear  genomic DNA each were set  up for  preparing the short  insert

Illumina library with the NEBNext Ultra FS II DNA library kit  as described by the vendor with the

following parameters:  The  fragmentation,  end  repair  and  deoxyadenylation  incubation  was  3.75  min

(fragments ranging from 200 to 1000 bp). After USER digest, all the reactions were combined and split

into five tubes.  The library was left  size selected with AMPure XP beads at 0.4X ratio followed by

another  left  side  selection  at  0.2X ratio.  The  DNA was  eluted  from both  bead  fractions  (0.4X and
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0.4X/0.2X)  in  30  µL  TE  buffer  and  the  concentration  estimated  by  fluorometry.  A  cycle  test  was

performed with 5 ng of each size selected libraries (0.4X and 0.4X/0.2X) amplified 4, 6, 8, 10 or 12 times

with NEBNext Ultra II Q5 Master mix, the Illumina universal and index primers. Ten cycles produced the

optimal  amplicon size  after  a  dual  size  selection  (0.77X/0.61X)  from the  0.4X size  selected  library

fraction (average amplicon size: 473 bp). Four reactions from this library fraction were set up under these

conditions, pooled, dual size selected, quality checked and sent to our service provider (Custom Science,

New Zealand) to be sequenced.

Long range sequencing library (Hi-C)

The long range Hi-C sequencing library was prepared with isolated nuclei as starting material. The nuclei

enrichment method is similar to the protocol described above but with extra steps to remove contaminants

and large particle debris with polyvinylpolypyrrolidone (PVPP) and Percoll® gradients, respectively. The

Hi-C library was prepared with a combination of kits and in-house methods. The nuclei crosslinking,

quenching, washing, lysis and chromatin normalization steps were performed according to the Dovetail

Genomics Hi-C kit. The chromatin lysate was bound to AMPure XP beads and washed with 5 sets of 1

mL  Wash  buffer  (Dovetail  Genomics  Hi-C  kit).  Chromatin  fragmentation  and  biotinylation  were

performed with the Fragmentation buffer and Fragmentation Enzyme mix from the Phase Genomics Hi-C

kit for plants Version 1.0. Once the digestion was completed, the captured chromatin was washed twice

with Wash buffer (Dovetail Genomics). The intra-molecular ligation was performed in 500 µL of 1X T4

DNA ligase buffer (Invitrogen) and 10 units of T4 DNA ligase (Invitrogen). The ligation was performed

at 16°C in a thermomixer (Eppendorf) at 1250 rpm overnight. The ligation mixture was discarded and the

crosslink reversal was performed by adding 50 µL 1X CutSmart buffer (New England Biolabs) and 20 µg

Proteinase K (Qiagen) and incubated at 55°C for 15 min followed by 45 min at 68°C at 1250 rpm. The

released DNA was transferred to a new tube and purified with AMPure XP beads at 2X ratio. The DNA

was eluted in 150 µL 10 mM Tris-HCl pH 8 and the biotinylated molecules captured with Dynabeads
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M280 (Invitrogen) according to the manufacturer’s protocol but using150 µL Bead Binding buffer (Phase

Genomics) for coupling the biotinylated molecules to the beads and continue with the Phase Genomics

Hi-C kit  for  plants  protocol.  The  amplified  library  was  size  selected  by  agarose  gel  electrophoresis

followed by an  AMPure XP double  size  selection (0.77X/0.64X).  The  average fragment  size  of  the

selected amplicons was 500 bp. The size selected amplicons were assessed by capillary electrophoresis

(Fragment Analyzer) and showed an average fragment size of 441 bp, at 1.5 ng/µL and 4.7 nM. The

amplicons were sequenced (150 b paired end reads) and delivered 221,731,503 raw PE reads, and 66.96

Gb.

PromethION Oxford Nanopore Sequencing

The PromethION libraries  were prepared by the contracted service  provider  (Custom Sciences,  New

Zealand) with ~ 50 µg of nuclear genomic DNA preparation described above.

Genome assembly and assessment

Initial quality assessment and subset generation of Oxford Nanopore reads

All datasets were base-called using Guppy flip flop software package (Supplementary Material 1) and

quality assessed using the FASTQC raw reads for quality assessment. ONT sub-setting was carried out

using the porechop software package. The data was subsampled by read length into five read sets: >5 kb

reads only (52x), >10 kb reads only (50x), >22 kb reads only (33x), and > 30 kb (23x) reads only, and all

data. These values were selected in order to retain sufficient sequencing depth within each subset.

Oxford Nanopore Assembly

Five long read assemblers were used: CANU, FLYE, WTDBG2, SHASTA and NECAT (for parameters

and versions used see Supplementary Material 1). In order to further understand the effects of polishing

strategies on assembly accuracy combinations of polishings methods were examined and haplotigs purged
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[41]. These include general polishing strategies: Racon with four rounds (RX4) of polishing only, Racon

with eight  rounds  of  polishing both  before  (RX8)  and after  pilon (RX8_SR)  polishing  and haplotig

purging  (RX8_SR_PH).  A  Sequencer  specific  strategy  alone  was  also  included:  Medaka  only  (M)

polishing, as well as combined polishing approaches: Medaka with four iterations of Racon polishing

both with (M_RX4) and without pilon polishing (M_RX4_SR) and haplotig purging (M_RX4_SR_PH).

Each assembly was initially quality checked using QUAST, BUSCO and LAI.

Hi-C mapping

The Hi-C dataset was filtered using the Phase Genomics filtration guidelines (link). The data successfully

passed all quality assessment analysis requiring no additional filtration. The data was mapped to each

generated ONT contig set using bwa mem and scaffolding was carried out by SALSA2 and AllHiC (see

Supplementary Material 1 for parameters and versions used).

Hi-C assembly quantitative quality assessment

Each  Hi-C assembly  kmer  spectra  profile  was  assessed  through  meryl  and  consensus  accuracy  and

completeness analyzed using the merqury toolkit. Map back rates were also used to assess the quality of

each  assembly  using  samtools  (Cock,  Bonfield,  Chevreux,  &  Li,  2015) flagstat  statistics  (see

Supplementary Material 1 for parameters used). All assemblies were additionally compared using the

LAI index which assesses the LTR repeat completeness of plant genomes specifically. On top of this,

assemblies were compared through QUAST (Gurevich, Saveliev, Vyahhi, & Tesler, 2013) and BUSCO.

Along with contact  map manual  inspection by PretextMap and PretextView (https://github.com/wtsi-

hpag/PretextView).

Utilization of Macadamia linkage maps for QC
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Nine  linkage  maps  accompanying  64bp  DartSeq  reads  were  downloaded  from  the  Southern  Cross

University data repository [http://dx.doi.org/10.25918/5dc2589924ca2]. These reads were aligned using

blastn to three Hi-C assemblies (the best assemblies selected based on quantitative assembly accuracy

metrics) and only unique hits of > 90% identity were used. These markers were mapped to each assembly

using ALLMAPs (H. Tang et al., 2015) (see Supplementary Material 1 for versions and parameters).

Computational Resources:  The majority of analyses were carried out on the New Zealand eScience

Infrastructure high performance computer on the Mahuika partition. The Mahuika partition consists of a

Cray CS400 Cluster High Performance Computer with 8,424 x 2.1 GHz Intel Broadwell cores and 30

Terabytes of memory along with IBM ESS Disk and SSD storage. For computational efficiency each

assembly was run using minimal requirements (See  Supplementary Material 1).  CANU Assemblies

were performed at the University of Otago’s Biochemistry Servers, which have 1 Tb of memory, and 8x

Intel(R) Xeon(R) CPU E7-8860 v4 with 18 cores each, and 2 threads per core.

Results

Sequencing data

In total, 2.3M ONT sequencing reads were obtained totaling 52.5 Gbp of data and with a read N50 of

28kbp. Table 1 indicates the initial summary read statistics for the ONT data. The significance of base-

calling was assessed both before and after base-calling using MinIon QC (Lanfear, Schalamun, Kainer,

Wang, & Schwessinger, 2019) (Supplementary Material 2). A significant increase overall Q score was

achieved and specifically for longer read lengths. Hi-C data produced from the Phase Genomics kit and

Illumina PE sequencing yielded 443M reads in total (67Gb of data). Short read WGS data was obtained
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and consisted of 407M PE Illumina reads. Through kmer counting (k=21) a genome size of 0.95Gb and

heterozygosity as 0.1-1.0% was estimated.

An in depth performance critique of ONT assemblers and iterative polishing

An assessment of the performance of five long read assemblers; NECAT, CANU, SHASTA, FLYE and

WTDBG2 was carried out and initial contig sets generated. ONT data was then split into five subsamples

based on read length, these subsamples included >5 kb, >10 kb, >22 kb, >30 kb and all read lengths.

Assembly performance was compared across these subsamples to assess how read length might affect the

performance of individual long read assemblers. 

Firstly,  the output from iterative long read polishing using Racon was examined to explore potential

effects on assembly accuracy. Based on contiguity, total length and N50, eight rounds of iterative Racon

polishing  had  little  effect  on  the  accuracy  of  the  initial  contigs  sets  across  CANU and  FLYE with

quantitative metrics remaining consistent regardless of number of polishing iterations applied across each

read  subsample  (Figure  2).  Interestingly,  the  NECAT  assembly  generated  for  All_Data  subsample

appears  collapsed after  two rounds of  polishing,  with a  drastic reduction in contig number  and total

assembly length below flow cytometry estimations (1 Gbp). NECAT failed to complete for all other read

length subsamples and therefore was not included in further performance comparison analysis. Shasta-

generated assembly metrics remain consistent in the >10, >22 and >30kb read subsamples with iterative

polishing  having  little  effect,  however,  total  genome  length  slightly  reduced  in  >5kb  and  All_Data

subsamples. WTDBG2 assembly metrics remained robust against polishing for all read subsamples, apart

from the >10kb subsample which encountered a total length expansion.

Gene completeness was assessed; generally, iterative long read polishing slightly increased the number of

complete genes identified across assemblers, except for CANU and FLYE’s >22 kb subsample assembly
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that experienced a 169 and 224 complete gene reduction, respectively, and FLYEs >10 kb assembly that

showed a 135 reduction. SHASTA experienced a complete gene reduction of 158, 10 and 208 in >10 kb,

>22 kb and >5kb read subsamples, respectively, and WTDBG2 only experienced a reduction of 111 genes

in the assembly constructed by the All_Data subsample. Across all assemblies the accuracy of Illumina

data increased the gene completeness through Pilon polishing. Interestingly, the ONT assemblies that

experienced  a  reduction  in  gene  completeness  score  after  iterative  long  read  polishing  incurred  the

greatest  increase  in  score  post  short  read  polishing,  with  CANU  and  FLYE  >22  kb  subsample

experiencing an increase of 388 and 286 genes, respectively, and SHASTA >5 kb, >10 kb and >22 kb

read subsamples gaining 669, 593 and 536 genes, respectively.

In terms of total length and contiguity, FLYE’s performance appeared the most robust, with total length

and  N50  values  remaining  consistent  (Figure  2),  however,  contiguity  was  increased  in  the  >30  kb

subsample (smaller  number of contigs).  WTDBG2,  SHASTA and CANU appeared to perform much

better with longer read lengths, based on the lower number of contigs and increased N50 for the >30 kb

subsample. However, the total length of the assembly seemed to be compromised, with a decreased total

length below the expected genome size when using the >30 kb subsample. This may have been the result

of low depth of coverage in this read length subsample and may be improved with an increase in data

volume within this read length subsample.

An assessment of post-assembly polishing strategies across read subsets

In  the  previous  section  it  was  clear  that  iterative  Racon  polishing  improved assembly  metrics.  The

assemblies  were  also  used  to  assess  polishing  strategies  (Figure  3).  The  first  polishing  strategy

implemented eight iterative rounds of long read polishing by Racon (RX8), with the results after four

rounds are displayed (RX4) in Figure 3 for comparative purposes, followed by an additional short read

polishing by Pilon (RX8_SR) - an example of a “General” polishing strategy. The haplotigs from each

contig  set  were  then  removed  using  the purge_haplotigs  software  package  (RX8_SR_PH).  This
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experiment aimed to investigate the benefits of using Racon, a tool developed for assemblies prior to

consensus,  on  assemblies  after  consensus  has  taken  place.  The  second  polishing  strategy  designed

consisted of  Medaka (M) only polishing in order to  test  a  tool  developed specifically for consensus

polishing and an example of a “Sequencer specific” polishing strategy. The third strategy integrated both

tools through an initial four rounds polishing with Racon, followed by a single round of both Medaka

(M_RX4) and Pilon polishing (M_RX4_SR) that was then purged of haplotigs (M_RX4_SR_PH). The

effect of these polishing strategies was assessed by examining the total read assembly size, contiguity and

BUSCO completeness (Figure 3). 

With the >5 kb and >10 kb subsamples, CANU, FLYE, WTDBG2 and SHASTA perform consistently

well in regards to total length in strategies combining Racon and Medaka (M_RX4, M_RX4_SR_PH and

M_RX4_SR) (Figure 3a,b).  Here, both FLYE and WTDBG2 obtained a contig set that was the most

representative of the expected genome size, with no bias toward general or sequencer specific polishing

identified. However, when gene completeness is considered all assemblers showed a benefit from using

polishing strategies that incorporate Medaka (M, M_RX4, M_RX4_SR_PH and M_RX4_SR). 

Analyses  using the >22 kb subsample indicated that  read length and depth of  coverage enabled the

WTDBG2  assembler  to  more  accurately  represent  the  total  genome  size  while  retaining  gene

completeness in comparison to that with the >5 kb and >10 kb subsamples and again no polisher bias was

apparent (Figure 3c). However, they remained more fragmented when compared to those constructed by

FLYE and CANU, whose bias toward a combined polishing (M_RX4, M_RX4_SR_PH and M_RX4_SR)

remained consistent to that constructed with >5 kb and >10 kb subsamples. 

CANU outperformed all other assemblers in regards to gene completeness when only read lengths of >30

kb were included and compared to its performance in all other read length subsamples, and there is a clear

bias towards polishing strategies that include Medaka. Here, both SHASTA and WTDBG2’s performance

were  compromised  from  the  lack  of  read  depth,  as  highlighted  by  the  continual  reduction  of  total
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assembly size as read length cut offs increase and both assemblers remain consistent across polishers.

FLYE’s  performance  at  this  read  length  remained  consistently  biased  toward  Medaka  incorporated

strategies (Figure 3d). 

When all data is included, SHASTA and WTDBG2 failed to represent an accurate total length despite

becoming more contiguous. Both assemblers experienced the same shortcomings when polished using

Racon only, Medaka only and combined strategies. CANU’s total genome length suffered despite good

performance in regards to  gene completion and retained its  bias  towards Medaka polishing.  FLYE’s

performance  was  relatively  constant  across  all  subsets.  Interestingly,  although  an  integrated

Racon/Medaka polishing strategy still performed better here, Racon only polished assemblies performed

better than across other read length subsamples (Figure 3e).

Assemblers performed differently to haplotig purging,  with diploid aware assemblers such as CANU

experiencing a reduction in gene completeness score when this technique was implemented across all

read subsamples. Overall, FLYE retained gene completeness and increased its contiguity in response to

haplotig purging,  however,  across each read subset  the total  genome size experienced a reduction to

below what was expected for the genome. WTDBG2 responded similarly to FLYE across all read subsets

whilst SHASTA experienced varying shifts in performance over all read subsets.

Across  both  “general”  and  “sequencer-specific”  polishing,  WTDBG2  assemblies  appeared  the  most

fragmented, with expanded genome total lengths and no bias toward polishing strategy was identified. In

contrast all SHASTA assemblies appeared highly contiguous, however, they had unexpectedly small total

lengths  and  are  unaffected  by  polisher.  FLYE  and  CANU  appeared  to  perform  best  with  FLYE

performing equally well across all polishing methods in regards to genome size representation. These

results highlight a clear bias toward polishing strategies that incorporate Medaka as opposed to those

utilizing Racon alone,  this  indeed suggests  that  polishing methods specific  to  the  sequence platform

utilize have a superior performance than “General” polishers that are not platform specific.
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Comparison of Hi-C scaffolding strategies in preparation for pseudo-chromosome construction

Eighteen initial ONT assemblies were generated utilizing the All_Data read length subset, however, it

was not known which subsample was the most appropriate for Hi-C mapping or what Hi-C mapping

workflow to use.  Hi-C data was mapped and duplicates filtered in accordance with Phase Genomics

quality assessment guidelines (Supplementary Material 3). Each assembly assessment indicated that the

library preparation would sufficiently inform the underlying assembly. However, for  de-novo assembly

scaffolding  high  quality  read  pairs  between  contigs  are  crucial  and  those  found  within  contigs  are

uninformative.  During QC it  was found that  WTDBG2 and NECAT assemblies had a reduced inter-

contig RP percentage when compared to that of CANU, FLYE and SHASTA each peaking at 19%, 21%

and 22%, respectively. 

All  ONT  assembly  constructs  created  were  scaffolded  using  two  software  packages,  SALSA2  and

AllHiC. After initial scaffolding a series of quantitative quality assessments including gene completeness,

total length assessment, map back rate, kmer spectra analysis, kmer completeness profiling, consensus

accuracy and LAI were calculated. 

Through comparing quantitative metrics (Figure 4), the quality of assemblies with a poor initial contig

set, specifically in regards to total length accuracy such as initial NECAT contigs, could not be recovered

by either Hi-C scaffolding pipelines. This holds true in WTDBG2 contigs sets, with total genome size and

overall kmer completeness scores falling short after Hi-C data was mapped. CANU assemblies performed

well,  furthermore  scaffolding  on  assemblies  based  on  a  Racon/Medaka/Pilon  polishing  strategy

outperformed those produced by Racon/Pilon only polishing. CANU initial ONT assemblies produced

scaffold sets by both AllHiC and SALSA2 that were 93% kmer complete. However, read map back rates

suggested SALSA2 utilized 7% more input data when compared to scaffold sets produced by AllHiC.

The  CANU-SALSA2 strategy also  outperformed in  regards  genome completeness  with  scaffold  sets

containing 77% complete genes in comparison to CANU-AllHiC scaffolds having only 70% complete
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genes. All FLYE scaffold sets perform well in regards to kmer completeness. However, FLYE-SALSA2

and FLYE-AllHiC mappings  with  Racon/Pilon  only  polishing  produced more  accurate  total  genome

lengths  but  had  lower  gene  completeness  scores.  By  comparing  metrics  across  the  eighteen  initial

assemblies, two assemblies were selected for further analyses before pseudo-chromosome construction –

those  produced  by  the  FLYE/Medaka/Racon/Pilon/SALSA  and  FLYE/Medaka/Racon/Pilon/AllHiC

workflows.

A  comparison  of  Hi-C  scaffolding  strategies  on  ONT  assemblies  generated  by  read  length

subsampling

To assess the impact  of the underlying read length, coverage and genome assembly quality on Hi-C

scaffolding each subsampled (>5 kb read, >10 kb read, >22 kb read and >30 kb read samples) ONT

assembly  (Racon+Pilon  polished  assemblies  only)  was  taken  and  further  scaffolded  by  AllHiC and

SALSA2. Each scaffolded assembly was quality assessed as summarized in Table 2.

The results (Table 2) demonstrated the inability of Hi-C scaffolding to effectively reduce the high contig

number found across all WTDBG2 initial ONT assemblies. AllHiC failed to complete scaffolding on the

>5 kb and >10 kb read length subsamples and only a 16% and 17% reduction in contig number was

achieved  for  >22  kb  and  >30  kb  subsamples,  respectively.  AllHiC-WTDBG2  >30  kb  and  >22  kb

subsample assemblies  consisted  of  a  single  ‘mega’  scaffold that  contained >97% of  the  total  length

(Figure 5d), which is not consistent with the expected karyotype for  K. excelsa.  This peculiar length

distribution was rectified in the All_Data read subsample (Figure 5a). Despite producing less contiguous

assemblies, SALSA2 scaffolding produced using the initial WTDBG2 assemblies appeared more accurate

with optimal performance resulting from using the >30 kb subsample, achieving a kmer completeness

value of 83%, gene completeness score of 85% and an 85% reduction in contig number observed, and

gave a contig length distribution (Figure 5c) more similar to the known karyotype.
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Similarly, the problem of greatly reduced SHASTA ONT assembly length relative to the genome size

estimated by flow cytometry, was not resolved by Hi-C scaffolding using either SALSA2 or AllHiC.

AllHiC scaffolding,  although greatly  reducing  contig  number  produced a  suspicious ‘mega’  scaffold

similar  to  the  distribution  found  in  WTDBG2  scaffolded  assemblies  (Figure  5d).  However,  unlike

WTDBG2 scaffolds the issue for SHASTA scaffolds was not resolved in the All_Data read subsample.

Again, SALSA2 scaffolds constructed using the >30 kb subsample appeared to be the most accurate, with

a gene completeness of 85% and a 99% reduction in contig number and no ‘mega’ scaffold (Figure 5c).

Unfortunately, due to the poor total length of the initial ONT assembly provided by SHASTA, the kmer

completeness score of the final assembly remained low at 55%, therefore drastically under-utilizing the

data provided.

AllHiC performed optimally when utilizing the more robust initial ONT assemblies generated by FLYE

(Table 2), achieving a >90% contig number reduction across all read length subsamples, and although a

‘mega’ scaffold still persists, its size reduced to ~50% of the total genome length and the distribution

seemed  comparable  to  SALSA2  scaffolds  using  All_Data  subsample  (Figure5a  and  Figure5b).

Interestingly, the >5 kb and >10 kb subsampled assemblies represented more of the data, with higher gene

completeness values and a kmer completeness score of 91% for both, in comparison to >22 kb and >30 kb

subsamples that  had lower  gene completeness scores  and a  kmer completeness value of only ~80%.

Comparatively, SALSA2 scaffolding failed to reduce contig numbers in the >5 kb and >30 kb subsamples

and only achieved a  34% and 36% reduction  in  >10 kb and >22 kb read subsamples,  respectively.

Although SALSA2 assemblies have lower contiguity in comparison to that of AllHiC, they consistently

outperformed in terms of gene completeness. 

Finally, AllHiC scaffolding for all CANU ONT assemblies yield a suspicious contig length distribution,

with >92% of total genome size being placed on a single mega-scaffold. Gene completeness values were

also poor with all samples below 80%, which was surprising considering the scaffolds generated were the

most kmer complete, peaking at 93% across samples. Again, the optimal initial CANU assembly from the
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>30kb  read  subsample  generated  the  optimal  assembly  after  SALSA2  scaffolding,  with  gene

completeness of 85% and 93% kmer completeness. In this case, SALSA2 also reduced contig numbers by

39%.

Overall, AllHiC with prior knowledge of karyotype performed well with higher contiguity and longer

scaffolds. However, on comparison of the scaffold length distribution, SALSA2 generated more uniform

scaffold  lengths  across  subsamples  whereas  ALLHiC tended to  generate  assemblies  with  one  single

mega-scaffold and a multitude of much shorter scaffolds – which is not in agreement with the known

karyotype of K. excelsa. 

Verification of Hi-C scaffolding using synteny with nine Macadamia genetic maps

After quantitative metric assessment along with scaffold length distribution analyses of assemblies across

all readlength subsamples, two All_Data assemblies generated using the initial ONT workflow of FLYE/

Racon/Medaka/Pilon and further scaffolded with SALSA2 or AllHiC were selected for further validation

using 14  linkage groups generated for  the  macadamia genome  (Nock et  al.,  2020).  Macadamia  was

selected as it belongs to the Proteaceae and shares a karyotype of 14 chromosomes with K. excelsa. Using

BLASTn, unique markers were identified (mean = 227 unique markers identified per map) across nine

maps. These unique markers were then mapped using ALLMAPs (H. B. Tang et al., 2015) to the two K.

exselsa assemblies  and  the  order  and  orientation  of  scaffolds  were  visually  examined  for  synteny

(Supplementary Material 4). Whole genome alignments were constructed to compare each Macadamia

informed assembly to its original Hi-C assembly.  From this it was clear that scaffolds generated using

SALSA2 shared a greater proportion of synteny with Macadamia when compared to AllHiC scaffolds,

although  they  were  less  contiguous.  To  further  assess  accuracy,  the  location  of  the  telomere  motif

“TTAAGGG” was identified in each assembly using EMBOSS (Rice, Longden, & Bleasby, 2000) and

visual  constructions  created  using  ChromoMap  (Anand,  2019) (Supplementary  Material  4).  These

analyses  indicate  that  both  Hi-C  scaffolders  are  unable  to  accurately  represent  telomere  sequences,
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however,  SALSA2  scaffolds  generated  a  more  accurate  assignment  than  scaffolds  constructed  using

AllHiC.

Overall  the  analyses  confirmed  that  SALSA2’s  scaffolding  of  the  initial  FLYE ONT assembly  and

polished with a combined Medaka/Racon/Pilon strategy outperformed the scaffolds produced by AllHiC,

using  the  same  initial  ONT assembly,  with  regard  to  the  orientation  and  ordering  of  scaffolds  and

accuracy of regions of complexity.

Pseudo-chromosome level assembly construction

After linkage group validation the SALSA2-FLYE based assembly was selected for further scaffolding

using  the  AllHiC  package.  Here,  pseudo-chromosomes  were  identified  and  metrics  of  92%  kmer

completion, a QV score of 26 and a total length of 0.97Gb were obtained. However, although a higher

level of contiguity was achieved, gene completeness scores dropped to 80% from 87%. On inspection of

the AllHiC contact map a mis-assembly was identified and rectified through manual intervention using

JuiceBox (Figure  6a).  This  manual  curation resulted in  a  10% increase of  gene completeness  whilst

retaining the contiguity provided by AllHiC. The final K. excelsa assembly (Table 3) had a 90% and 97%

gene complete using the embryophyta & eukaryota databases, respectively, an N50 of 114Mb (Figure 6c),

a  karyotype  similar  to  that  expected  for  the  species  (Figure  6b)  and  is  available  through

https://doi.org/10.7931/paqg-kk20.

Discussion

Long Read Assembler Performance with Iterative Polishing
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Here  we  report  and  outline  the  importance  of  utilizing  a  synergistic  assembly,  polishing  and  Hi-C

scaffolding  workflow,  using  the  construction  of  the  ‘optimal’  pseudo-chromosomal  assembly  for  K.

excelsa as the exemplar.

It is crucial that an appropriate assembler and sequencing strategy is selected prior to data generation, in

order to maximize the use of both the data type and data volume during assembly to meet the goal of

constructing an assembly optimal for individual project needs. The performance of five ONT assemblers

across five read length subsets [reads >5 kb only, >10 kb only, >22 kb only, >30 kb only and the entire

data (unfiltered by length)] was investigated. This work was used to construct an optimal ONT initial

assembly for  further  Hi-C scaffolding but  also has  the  potential  to  inform future  project’s  assembly

workflows  where  data  volume  is  different,  saving  time  and  computational  resources  spent  on

benchmarking.  In order to compare performance across  assemblers  quantitative  metrics  such as total

length, contiguity and N50 for each assembly were generated.

SHASTA  was  built  for  quick  assembly  constructions  and  was  originally  developed  for  the  human

genome, with 11 human genomes assembled in nine days on a single compute node. This feat was made

possible  by  strategic  read  length  encoding,  reduced  marker  representation  and  heuristics.  However,

although being fast, SHASTA requires a large amount of RAM, 1-2 Tb for the human genome (K. Shafin

et al.), which is not always readily available and compromises assembly accuracy over contiguity and

total length. Figure 2 highlights this assembler shortcoming with assemblies across all read lengths unable

to  represent  the  expected  total  length  of  K.  excelsa (1Gb)  whilst  consistently  achieving  high  gene

completeness scores.

Interestingly, Figure 2 illustrates this assembler’s dependency on a high depth of coverage for optimal

performance, with subsamples that include additional read depth, e.g. >5 kb assemblies and All_Data

being of better quality than those with a lower depth of coverage such as >30 kb. SHASTA appears to

positively respond to iterative Racon polishing with continuous improvements in contiguity found across
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subsamples  when  implemented  (Figure  2).  When  alternative  polishing  strategies  were  tested  across

subsampled datasets SHASTA appeared unbiased with both “general” and “sequencer-specific” polishers

performing equally well in the All_Data, >30Kb and 22Kb subsamples whilst Medaka based approaches

seem to outperform “general” approaches in the >5 and >10Kb subsample.

WTDBG2 produces highly fragmented assemblies in comparison to all other assemblers when shorter

read lengths are included, with enhanced N50 and reduced number of contigs occurring when only longer

read lengths are provided (Figure 2). This result is due to its underlying algorithm having only a single

consensus step and is reiterated by a significant improvement of contiguity, gene completeness and N50

after Racon and Pilon polishing, which has been identified as an issue in other plant species assemblies

such as Acer yangbiense (Yang et al., 2019). 

Consistent  with  results  found  for  prokaryotes  (Wick  &  Holt,  2019),  we  demonstrated  WTDBG2’s

decreased performance at lower read depths with assemblies produced by >30 kb read subsample failing

to span the expected total length, which was not rescued by iterative polishing. WTDGB2 was the only

assembler  identified  without  a  bias  toward  a  Medaka-based  polishing  strategy,  with  Racon-based

strategies also performing well.

CANU’s optimal performance is reached when only longer read lengths are provided, and performance is

compromised when additional shorter read length data is added. This clearly shows a preference by this

assembler for read length over depth of coverage, supporting claims made by the developers that only

>20X coverage is required for accurate assembly. Algorithmically, CANU contains extensive rounds of

error correction and consensus, and the developers do not suggest additional long read polishing. Thus, as

expected, the post assembly iterative polishing shown in Figure 2 has the least effect on these assemblies

when compared to all other assemblers, as the initial assemblies generated have substantially fewer errors

to correct. This finding does not appear to be specific to Racon and Medaka long read polishers only, as

these minimal effects have also been identified by other long read polishing tools. For example, it has
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been shown that by polishing bacterial assemblies generated by CANU using Nanopolish an increase in

errors found in the assembly occurred when compared to short read polishing alone  (Goldstein, Beka,

Graf,  & Klassen,  2019).  Similar  results  are  represented in  Figure  2,  as  implementing the short  read

polishing  recommended  by  developers  achieved  a  substantial  gene  completeness  score  across  all

subsamples.

FLYE achieved the most robust performance, with the assemblies generated not significantly impeded by

the addition or exclusion of certain read lengths or read depths. This result has been demonstrated for

bacterial genome assemblies whereby the assembler performs well at <10X coverage and in Eucalyptus

pauciflora genome assembly  (Wang et al., 2020) where FLYE performs consistently well when >1 kb

read lengths are subsampled when compared to >35kb read length subsamples. Iterative Racon polishing

appears to have a beneficial effect (Figure 2). Across all read lengths a combined Medaka and Racon

polishing strategy yields the most enhanced genome assembly (Figure 3).

Overall, this analysis highlights the advantages and shortcomings of various assemblers and provides use

cases for each. SHASTA, when given higher coverage data, is an incredibly powerful assembler that runs

quickly (Wick & Holt, 2019) and generates extremely accurate contigs. However, SHASTA is not robust

in regards to data volume, as without sufficient read depth this assembler performs sub-optimally and

fails to generate complete assemblies. It could still be useful at a lower depth of coverage for the purposes

of complete and fast gene identification, particularly for large genomes. In comparison, CANU is the

slowest  running  assembler,  due  to  its  extensive  pre-assembly  error  correction  and  trimming  steps.

However, length can be prioritized over depth when using this assembler read and the incorporation of

shorter read lengths may even result in sub-optimal results. The advantage of this assembler for more

advanced users is the ability to modify parameters, however, this may not be appropriate for novices.

FLYE is the most robust of the assemblers tested, with results across subsamples appearing consistent.

This assembler may be an attractive tool for most data volumes and particularly for novice usage, as

minimal parameter adjustments are required with the single caveat of a user-defined genome size.
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Hi-C Mapping performance across K. excelsa read length subsets

To assess the impact of initial assembly quality on Hi-C mapping performance, Hi-C data generated using

the Phase  Genomics  kit  was mapped to the  initial  assemblies  generated  across  five  K.  excelsa read

subsets. The contigs were further scaffolded using two commonly used software packages, AllHiC and

SALSA2. AllHiC uses “pruning” and “optimization” steps to produce allele aware scaffolds, however, it

requires a priori knowledge of the chromosome number. SALSA2 uses the ONT assembly graph in order

to  assess  assembly  accuracy  prior  to  Hi-C  scaffolding,  and  does  not  require  karyotype  information.

Assessing  assembly  constructs  from  these  two  scaffolding  software  programs  allowed  not  only  a

comparison of informed (AllHiC) and non-informed (SALSA2) strategies but also the performance of a

software that corrects mis-assemblies prior to scaffolding to a software that scaffolds based on the input

assembly  alone.  When  comparing  scaffolder  performance,  it  was  important  to  integrate  quantitative

metrics such as N50 and total length but also intrinsic karyotype information, as these quantitative metrics

alone fail  to determine over-assembly by the scaffolder and although give an indication of assembly

accuracy they are unable to determine the scaffolders precision. This strategy has been integrated into the

Vertebrate Genomes Project’s (RhieMcCarthy, et al., 2020) validation workflow in order to generate near

error-free genome assemblies using Hi-C data.

Amongst all  read length subsamples the resulting assemblies from the SALSA2 Hi-C scaffolding are

more accurate than those produced by the AllHiC package. SALSA2 generates assemblies that are more

complete  and  are  of  a  total  length  closer  to  the  expected  genome  size.  These  findings  are  further

supported  by Figure  5c and 5d that  highlight  suspicious scaffold length  distributions  constructed by

AllHiC, a result of over-assembly. This over-assembly could be a consequence of the homozygous  K.

excelsa sample resulting in a reduced long range interaction signal  (Zhang et al., 2019) and other more

heterozygous genomes may indeed perform better.  
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However,  AllHiC also fails  to construct  scaffolds from ONT assemblies with an abundance of short

contigs, this shortcoming being highlighted in the failure of AllHiC to construct scaffolds for >5 kb and

10 kb read subsample assemblies  produced by WTDBG2,  which contain 10,317 and 10,043 contigs

respectively. SALSA2 circumvents this issue by removing all contigs <1000 bp prior to HiC assembly.

Through  shorter  contig  removal  SALSA2  achieves  scaffolds  utilizing  all  WTDBG2 subsamples  and

overall performs better when longer reads are supplied, although the >30 kb read subsample SALSA2

scaffolding slightly underestimated the total length. As previously mentioned, all  SHASTA generated

assemblies,  although gene  complete,  underestimate  the  total  length  of  the  genome and despite  Hi-C

scaffolding the assembly failed to gain coverage of the entire genome but retained gene completeness

score. For instance, the SHASTA assembly constructed using the >30kb subsample and scaffolded with

SALSA2’s gene completeness was 85%, which was the highest score achieved when compared to all

other ONT assemblers but the total length was less than half the expected length. Similarly, SALSA2

performs optimally for both the CANU and FLYE assembly constructed using the >30kb subsample as it

does with SHASTA.

From these analyses it is clear that the input assembly does substantially affect the accuracy of Hi-C

scaffolding, as the issue of fragmentation found in ONT assemblies produced by WTDBG2 profoundly

affected the scaffolding process, generating assemblies of low contiguity even after Hi-C scaffolding.

Furthermore, the lack of genome length coverage of the initial SHASTA assemblies was not resolved

with the addition of Hi-C data. Again, FLYE appears more robust than other assemblers to scaffolding

software, however, AllHiC still produces a suspicious read length distribution suggesting over-assembly

in individual subsamples. CANU assemblies perform sub-optimally using the AllHiC scaffolder but the

high quality initial >30kb read subsample ONT assembly appears to remain the superior assembly post

SALSA2 scaffolding.

Pseudo-chromosome construction of the final K. excelsa genome
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Scaffolding of the K. excelsa was carried out by AllHiC and SALSA2. Overall, this analysis highlighted

the importance of ONT assembly accuracy prior to Hi-C scaffolding as errors found in these assemblies

were unresolved by further scaffolding.  Consistent  with the assessment  of  the  ONT contig assembly

performance,  both  FLYE  and  CANU  assemblies  retained  the  greatest  amount  of  the  input  data  in

scaffolds  constructed  when  compared  to  WTDBG2,  NECAT  and  SHASTA.  This  is  highlighted  by

quantitative metrics such as high consensus quality (QV), a kmer completion scores peaking at 91% and

93% respectively and map back rates peaking at 84% for both. The more accurate CANU and FLYE

based scaffolds appear to be caused by the higher accuracy of the underlying ONT assembly.

Interestingly,  FLYE-based Hi-C assemblies  appear  to  have a  higher  degree of  gene completeness  in

comparison to CANU however they have slightly smaller total assembly lengths than expected from flow

cytometry.  FLYE initial  assemblies also appear robust  to different  scaffolding strategies with similar

results  across  both  AllHiC  and  SALSA2  being  achieved.  In  contrast,  the  CANU  assemblies  from

SALSA2 appear to be superior. Focusing on N50, contiguity, gene completeness scores and total length

alone lead to misleading conclusions about  genome accuracy being drawn as AllHiC appeared more

contiguous  and had similar  total  lengths  and gene  completeness  scores  when compared  to  SALSA2

assemblies. Through the integration of scaffold length distributions as a quality metric, the accuracy of

these assemblies could be more thoroughly evaluated as the karyotype shows all 14 chromosomes are of

similar length (Hair & Beuzenberg, 1958) and this should be represented in the scaffolds produced after

Hi-C data integration. Here, SALSA2 had a more realistic length distribution whilst AllHiC generated

assemblies with length distributions inconsistent with the karyotype.

SHASTA, NECAT and WTDBG2 all  failed to produce reliable scaffolded assemblies, suffering from

collapsed genome lengths, low kmer completeness, and poor mapping back rates and therefore were not

considered for further analyses. 

A pseudo-chromosome length near-complete genome assembly for Proteaceae
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After initial scaffolding, quality metrics were assessed, and the initial FLYE ONT assemblies scaffolded

with  AllHiC  and  SALSA2  were  selected  for  additional  pseudo-chromosome  construction.  AllHiC

produced high quality metrics with a gene completeness of 88%, N50 of 66.6 Mbp, kmer completeness of

91%, and a Hi-C read map-back rate of 80%. However, total length is lower than expected at 816 Mbp,

and  evidence  of  over-assembly  was  identified  with  50%  of  the  genome  being  placed  on  a  single

chromosome.

SALSA2 produced scaffolds also performed well, with a gene completeness score of 87%, a total length

of 977Mbp, kmer completeness of 84%, a Hi-C read map-back rate of 84% and a chromosome length

distribution in line with what is expected for this species. However, in this case contiguity suffered with

an  N50 of  only 1.56  Mbp being obtained.  Both assemblies  were  further  validated for  structure  and

orientation  accuracy  through  comparison  to  macadamia  linkage  maps.  This  analysis  highlighted  the

accuracy  and  orientation  of  both  scaffolds  sets.  Despite  SALSA2  being  less  contiguous  the  metrics

suggested more accurate scaffolds, therefore this assembly was further scaffolded to increase contiguity.

After additional scaffolding, contiguity was increased with an N50 of 114 Mbp, whilst retaining high

quality a total length and kmer completion, however, gene completeness scores dropped by 8%. In order

to assess this, the data was manually curated using Juicer and Juicebox. Here, a single mis-assembly was

detected and manually curated resulting in a genome that is 91% kmer complete, 97 5Mbp in length, 90%

gene complete (99% complete if considering Eukaryota dataset) and has an N50 of 114 Mbp.

This assembly is  the first  near-complete genome sequence for the Proteaceae clade and will  provide

invaluable information to the honey production industry in Aotearoa New Zealand, but also provides a

reference for other Proteaceae in this clade.

Conclusions

Our long read and Hi-C based assemblies of  K. excelsa could potentially be useful as a benchmarking

resource to be utilized regularly on release of new ONT assembly and Hi-C scaffolding tools. This will
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allow the continuous assessment of performance of new genomic packages across both read length and

read depth. Furthermore, this could enhance the genomics community’s ability to make a more educated

de novo genome assembly pipeline prior to assembly whilst also giving information on the data volume

required.  In  the  future  it  will  be  important  that  more  assemblers,  polishing  mechanisms  and  Hi-C

scaffolders are investigated and benchmarked. Finally, the  K. excelsa assembly produced here will be

used in the future to assess the genomic diversity of rewarewa across its natural range in Aotearoa New

Zealand, in collaboration with Māori agribusinesses involved in the honey industry.

Availability of Supporting Data and Materials
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material used for this study. Further studies using this material, raw sequencing data and final genome

assembly will require consent from the Māori iwi (tribe) who exercises guardianship for this material
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rights of indigenous peoples. Raw and analyzed data is available through the Manaaki Whenua Landcare

Research data repository (https://doi.org/10.7931/paqg-kk20) with managed access. Access to this data

will require permission from representatives of the Te Rarawa iwi (tribe). 

Availability of Source Code and Requirements

See Supplementary Material 1. 
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ONT: Oxford Nanopore Technology; SMRT: (PacBio) Single Molecule Real-Time; PE: (Illumina short)

paired-end reads; WGS: whole genome sequencing; Hi-C: high-throughput chromosome conformation

capture;  kb:  kilobase  pairs;  LAI:  Long  terminal  repeat  retrotransposons  Assembly  Index:  BUSCO:

Benchmarking  Universal  Single-Copy  Orthologs;  RX4:  Racon  polishing  (4  rounds);  RX8:  Racon

polishing (8 rounds); SR: sort read polishing using Pilon; PH: purge_haplotigs software.

Tables and figures captions

Table 1: Basic Statistics of Oxford Nanopore Technologies sequencing data for K. excelsa

Table 2: Quantitative quality assessment of the impact of two Hi-C mapping strategies on five read

length  subsampled  genome  assemblies  of  Knightia  excelsa produced  across  four  long  read

assemblers.

Table 3: Pseudo-chromosome length of the final K. excelsa genome assembly 

Figure  1:  Bioinformatics  workflow  used  for  constructing  an  optimal  Knightia  excelsa genome

assembly. 

Figure 2: A comparison of the performance of five ONT assemblers and iterative polishing by

Racon across assemblies generated by all read length subsamples.  A comparison of contig number,

N50 and Total length of a single Racon polishing in comparison to eight rounds of polishing. Complete

gene scores after  long read polishing are displayed in red inside its  corresponding assembly bar and

numbers in yellow indicate complete gene scores post short read Pilon polishing.
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Figure  3:  A comparison  of  polishing strategy performance  on  all  read  subsets  using five  read

subsets across contig sets generated by four long assemblers. A) >5kb read length subsample, B)

>10kb read length subsample, C) 22kb read length subsample, D) >30kb read length subsample, and E)

All_Data read length subsample. Vertical red line illustrates the estimated genome size, horizontal red

line highlights maximum number of BUSCO genes within the embryophyta_odb9 dataset. Increasing data

point size indicates an increase in contig number within the assembly.

Figure 4: An extensive quantitative quality assessment of scaffold sets produced by both SALSA2

and AllHiC on ONT assemblies constructed from all read lengths. Quantitative metric summary of

Hi-C assemblies generated using AllHiC and SALSA 2. Figure displays LAI, kmer completeness, base

error rate, consensus accuracy (QV), total length, and gene completeness (BUSCO).

Figure 5: A comparison of scaffold lengths for  K. excelsa  genome assemblies produced by both

SALSA2 and AllHiC Hi-C mapping. A) Scaffold lengths for assemblies generated using read length

subsampled data by four long read assemblers across four read lengths and Hi-C data mapped using

SALSA2. B) Scaffold lengths for genomes produced using data subsampled by read length by four long

read assemblers and Hi-C data mapped using AllHiC. C) Scaffold lengths for assemblies produced using

all read length data by five long read assemblers utilizing two alternative polishing strategies and Hi-C

data mapped using SALSA2. D) Scaffold lengths for assemblies produced using all read lengths by five

long read assemblers utilizing two alternative polishing strategies and Hi-C data mapped using AllHiC.

Figure 6: Pseudo-chromosome assembly curation and validation using both quantitative metrics,

karyotype evaluation and manual curation. A) Illustrates the contact map generated for FLYE/Racon/

Medaka/Pilon/SALSA2/AllHiC  assembly  and  zooms  in  on  the  mis-assembly  both  before  and  after

manual correction. B) Illustrates the scaffold lengths of the 13 pseudo-chromosomes and the longest two

additional scaffolds.  C) A panel of quantitative statistics generated to compare each scaffolding iteration.
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Supplementary Material 1: Software packages versions and parameters. 

Supplementary Material 2: Illustration of Oxford Nanopore Technologies (ONT) read quality for

Knightia excelsa before and after rebase-calling.  A) Distribution of read lengths generated from the

ONT library. B) Distribution of Q scores per read. C) Summary of Qscore (Y axis) compared to read

length (X axis) with higher read counts colored green.

Supplementary Material 3: Quality assessment of all K. excelsa assemblies for Hi-C scaffolding

Supplementary Material 4: Utilization of Macadamia linkage maps to validate the orientation and

order of the  K. excelsa Hi-C scaffolds. A summary of the results of the mapping of 14 Macadamia

linkage groups two the two FLYE/MEDAKA/PILON/ K. excelsa scaffolds generated using AllHiC and

SALSA2. A) Whole genome alignment of the Left) FLYE-SALSA2 Hi-C assembly Right) FLYE-AllHiC

Hi-C assembly against the Macadamia scaffold sets produced by ALLMAPS. B) Telomere positions of

Right) Longest 21 scaffolds produced by FLYE-SALSA2 and B) 14 pseudo-chromosomes produced by

FLYE-AllHiC.  C)  Unique  markers  found  in  the  Macadamia  linkage  groups  mapped  to  the  FLYE-

SALSA2 Hi-C assembly.
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