References
[1] C.E. Schmidt, J.B. Leach, Neural tissue engineering: strategies
for repair and regeneration, Annual review of biomedical engineering
5(1) (2003) 293-347.
[2] L. Ghasemi-Mobarakeh, M.P. Prabhakaran, L. Tian, E.
Shamirzaei-Jeshvaghani, L. Dehghani, S. Ramakrishna, Structural
properties of scaffolds: crucial parameters towards stem cells
differentiation, World journal of stem cells 7(4) (2015) 728-744.
[3] J.S. Joseph, S.T. Malindisa, M. Ntwasa, Two-dimensional (2D) and
three-dimensional (3D) cell culturing in drug discovery, Cell Culture 2
(2018) 1-22.
[4] J. Wu, L. Xie, W.Z.Y. Lin, Q. Chen, Biomimetic nanofibrous
scaffolds for neural tissue engineering and drug development, Drug
discovery today 22(9) (2017) 1375-1384.
[5] P. Jaiswal, Allied Market Research, 3D Cell culture Market,
Report code LI171474, 2017.
[6] B. Larson, 3D cell culture: A review of current techniques,
BioTek 6 (2015) 1-10.
[7] A. Subramanian, U.M. Krishnan, S. Sethuraman, Development of
biomaterial scaffold for nerve tissue engineering: Biomaterial mediated
neural regeneration, Journal of Biomedical Science 16(1) (2009) 108.
[8] E. Ansorena, P. De Berdt, B. Ucakar, T. Simón-Yarza, D. Jacobs,
O. Schakman, A. Jankovski, R. Deumens, M.J. Blanco-Prieto, V. Préat,
Injectable alginate hydrogel loaded with GDNF promotes functional
recovery in a hemisection model of spinal cord injury, International
journal of pharmaceutics 455(1-2) (2013) 148-158.
[9] S. Ansari, I.M. Diniz, C. Chen, P. Sarrion, A. Tamayol, B.M. Wu,
A. Moshaverinia, Human periodontal ligament‐and gingiva‐derived
mesenchymal stem cells promote nerve regeneration when encapsulated in
alginate/hyaluronic acid 3D scaffold, Advanced healthcare materials
6(24) (2017) 1700670.
[10] G. Wang, X. Wang, L. Huang, Feasibility of chitosan-alginate
(Chi-Alg) hydrogel used as scaffold for neural tissue engineering: a
pilot study in vitro, Biotechnology & Biotechnological Equipment 31(4)
(2017) 766-773.
[11] P. Prang, R. Müller, A. Eljaouhari, K. Heckmann, W. Kunz, T.
Weber, C. Faber, M. Vroemen, U. Bogdahn, N. Weidner, The promotion of
oriented axonal regrowth in the injured spinal cord by alginate-based
anisotropic capillary hydrogels, Biomaterials 27(19) (2006) 3560-3569.
[12] J. Sun, H. Tan, Alginate-based biomaterials for regenerative
medicine applications, Materials 6(4) (2013) 1285-1309.
[13] O. Akhavan, Graphene scaffolds in progressive
nanotechnology/stem cell-based tissue engineering of the nervous system,
Journal of Materials Chemistry B 4(19) (2016) 3169-3190.
[14] N. Li, Q. Zhang, S. Gao, Q. Song, R. Huang, L. Wang, L. Liu, J.
Dai, M. Tang, G. Cheng, Three-dimensional graphene foam as a
biocompatible and conductive scaffold for neural stem cells, Scientific
reports 3 (2013) 1604.
[15] W.C. Lee, K.P. Loh, C.T. Lim, When stem cells meet graphene:
Opportunities and challenges in regenerative medicine, Biomaterials 155
(2018) 236-250.
[16] W. Lee, C.Y.X. Lim, H. Shi, L.A.L. Tang, Y. Wang, C. Lim, K.
Loh, Origin of enhanced stem cell growth and differentiation on graphene
and graphene oxide, ACS nano 5(9) (2011) 7334-7341.
[17] M.C. Serrano, J. Patiño, C. García-Rama, M.L. Ferrer, J.L.G.
Fierro, A. Tamayo, J.E. Collazos-Castro, F. del Monte, M.C. Gutiérrez,
3D free-standing porous scaffolds made of graphene oxide as substrates
for neural cell growth, Journal of Materials Chemistry B 2(34) (2014)
5698-5706.
[18] A.M. Pinto, I.C. Goncalves, F.D. Magalhães, Graphene-based
materials biocompatibility: a review, Colloids and Surfaces B:
Biointerfaces 111 (2013) 188-202.
[19] X. Zhang, T. Viitala, R. Harjumäki, A. Kartal-Hodzic, J.J.
Valle-Delgado, M. Österberg, Effect of laminin, polylysine and cell
medium components on the attachment of human hepatocellular carcinoma
cells to cellulose nanofibrils analyzed by surface plasmon resonance,
Journal of Colloid and Interface Science 584 (2020) 310-319.
[20] D. Liu, N. Pavathuparambil Abdul Manaph, M. Al-Hawwas, L.
Bobrovskaya, L.-L. Xiong, X.-F. Zhou, Coating Materials for Neural
Stem/Progenitor Cell Culture and Differentiation, Stem Cells and
Development 29(8) (2020) 463-474.
[21] V. Serpooshan, M. Mahmoudi, M. Zhao, K. Wei, S. Sivanesan, K.
Motamedchaboki, A.V. Malkovskiy, A.B. Goldstone, J.E. Cohen, P.C. Yang,
Protein corona influences cell–biomaterial interactions in
nanostructured tissue engineering scaffolds, Advanced functional
materials 25(28) (2015) 4379-4389.
[22] I. Lynch, A. Salvati, K.A. Dawson, Protein-nanoparticle
interactions: What does the cell see?, Nature nanotechnology 4(9) (2009)
546-547.
[23] B. Andrée, H. Ichanti, S. Kalies, A. Heisterkamp, S. Strauß,
P.-M. Vogt, A. Haverich, A. Hilfiker, Formation of three-dimensional
tubular endothelial cell networks under defined serum-free cell culture
conditions in human collagen hydrogels, Scientific reports 9(1) (2019)
1-11.
[24] N. Mansouri, S.F. Al-Sarawi, J. Mazumdar, D. Losic, Advancing
fabrication and properties of three-dimensional graphene–alginate
scaffolds for application in neural tissue engineering, RSC Advances
9(63) (2019) 36838-36848.
[25] X. Lan, Z. Sun, C. Chu, J. Boltze, S. Li, Dental pulp stem
cells: an attractive alternative for cell therapy in ischemic stroke,
Frontiers in neurology 10 (2019) 824.
[26] S. Gronthos, M. Mankani, J. Brahim, P.G. Robey, S. Shi,
Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo,
Proceedings of the National Academy of Sciences 97(25) (2000)
13625-13630.
[27] D.L. Alge, D. Zhou, L.L. Adams, B.K. Wyss, M.D. Shadday, E.J.
Woods, T. Gabriel Chu, W.S. Goebel, Donor‐matched comparison of dental
pulp stem cells and bone marrow‐derived mesenchymal stem cells in a rat
model, Journal of tissue engineering and regenerative medicine 4(1)
(2010) 73-81.
[28] H. Li, A.Q. Ye, M. Su, Application of stem cells and advanced
materials in nerve tissue regeneration, Stem cells international 2018
(2018).
[29] A. Arthur, G. Rychkov, S. Shi, S.A. Koblar, S. Gronthos, Adult
human dental pulp stem cells differentiate toward functionally active
neurons under appropriate environmental cues, Stem cells 26(7) (2008)
1787-1795.
[30] I.V. Nosrat, C.A. Smith, P. Mullally, L. Olson, C.A. Nosrat,
Dental pulp cells provide neurotrophic support for dopaminergic neurons
and differentiate into neurons in vitro; implications for tissue
engineering and repair in the nervous system, European Journal of
Neuroscience 19(9) (2004) 2388-2398.
[31] I.V. Nosrat, J. Widenfalk, L. Olson, C.A. Nosrat, Dental pulp
cells produce neurotrophic factors, interact with trigeminal neurons in
vitro, and rescue motoneurons after spinal cord injury, Developmental
biology 238(1) (2001) 120-132.
[32] K. Sakai, A. Yamamoto, K. Matsubara, S. Nakamura, M. Naruse, M.
Yamagata, K. Sakamoto, R. Tauchi, N. Wakao, S. Imagama, Human dental
pulp-derived stem cells promote locomotor recovery after complete
transection of the rat spinal cord by multiple neuro-regenerative
mechanisms, The Journal of clinical investigation 122(1) (2012) 80-90.
[33] W.K. Leong, T.L. Henshall, A. Arthur, K.L. Kremer, M.D. Lewis,
S.C. Helps, J. Field, M.A. Hamilton-Bruce, S. Warming, J. Manavis, Human
adult dental pulp stem cells enhance poststroke functional recovery
through non‐neural replacement mechanisms, Stem cells translational
medicine 1(3) (2012) 177-187.
[34] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun,
A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved Synthesis of
Graphene Oxide, ACS Nano 4(8) (2010) 4806-4814.
[35] X. Zhou, Y. Pan, R. Liu, X. Luo, X. Zeng, D. Zhi, J. Li, Q.
Cheng, Z. Huang, H. Zhang, Biocompatibility and biodegradation
properties of polycaprolactone/polydioxanone composite scaffolds
prepared by blend or co-electrospinning, Journal of Bioactive and
Compatible Polymers 34(2) (2019) 115-130.
[36] F. Rostami, E. Tamjid, M. Behmanesh, Drug-eluting PCL/graphene
oxide nanocomposite scaffolds for enhanced osteogenic differentiation of
mesenchymal stem cells, Materials Science and Engineering: C (2020)
111102.
[37] G. Lalwani, M. D’agati, A. Gopalan, M. Rao, J. Schneller, B.
Sitharaman, Three‐dimensional macroporous graphene scaffolds for tissue
engineering, Journal of Biomedical Materials Research Part A 105(1)
(2017) 73-83.
[38] S.M. Willerth, S.E. Sakiyama-Elbert, Combining stem cells and
biomaterial scaffolds for constructing tissues and cell delivery,
StemJournal 1(1) (2019) 1-25.
[39] H. Samadian, S. Farzamfar, A. Vaez, A. Ehterami, A. Bit, M.
Alam, A. Goodarzi, G. Darya, M. Salehi, A tailored polylactic
acid/polycaprolactone biodegradable and bioactive 3D porous scaffold
containing gelatin nanofibers and Taurine for bone regeneration,
Scientific reports 10(1) (2020) 1-12.
[40] S.D. Purohit, R. Bhaskar, H. Singh, I. Yadav, M.K. Gupta, N.C.
Mishra, Development of a nanocomposite scaffold of
gelatin–alginate–graphene oxide for bone tissue engineering,
International journal of biological macromolecules 133 (2019) 592-602.
[41] B.M. Baker, C.S. Chen, Deconstructing the third dimension–how
3D culture microenvironments alter cellular cues, Journal of cell
science 125(13) (2012) 3015-3024.
[42] C. Jensen, Y. Teng, Is It Time to Start Transitioning From 2D
to 3D Cell Culture?, Frontiers in Molecular Biosciences 7 (2020) 33.
[43] A. Pisciotta, L. Bertoni, M. Riccio, J. Mapelli, A. Bigiani, M.
La Noce, M. Orciani, A. de Pol, G. Carnevale, Use of a 3D floating
sphere culture system to maintain the neural crest-related properties of
human dental pulp stem cells, Frontiers in physiology 9 (2018) 547.
[44] M.S. Liberio, M.C. Sadowski, C. Soekmadji, R.A. Davis, C.C.
Nelson, Differential effects of tissue culture coating substrates on
prostate cancer cell adherence, morphology and behavior, PLoS One 9(11)
(2014) e112122.
[45] Y. Qian, J. Song, X. Zhao, W. Chen, Y. Ouyang, W. Yuan, C. Fan,
3D fabrication with integration molding of a graphene
oxide/polycaprolactone nanoscaffold for neurite regeneration and
angiogenesis, Advanced Science 5(4) (2018) 1700499.
[46] M. Domingos, F. Intranuovo, T. Russo, R. De Santis, A. Gloria,
L. Ambrosio, J. Ciurana, P. Bartolo, The first systematic analysis of 3D
rapid prototyped poly (ε-caprolactone) scaffolds manufactured through
BioCell printing: the effect of pore size and geometry on compressive
mechanical behaviour and in vitro hMSC viability, Biofabrication 5(4)
(2013) 045004.
[47] V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial
scaffolds and osteogenesis, Biomaterials 26(27) (2005) 5474-5491.
[48] F.J. O’Brien, B.A. Harley, I.V. Yannas, L.J. Gibson, The effect
of pore size on cell adhesion in collagen-GAG scaffolds, Biomaterials
26(4) (2005) 433-441.
[49] F.J. O’Brien, B.A. Harley, M.A. Waller, I.V. Yannas, L.J.
Gibson, P.J. Prendergast, The effect of pore size on permeability and
cell attachment in collagen scaffolds for tissue engineering, Technology
and Health Care 15(1) (2007) 3-17.
[50] C.M. Murphy, F.J. O’Brien, Understanding the effect of mean
pore size on cell activity in collagen-glycosaminoglycan scaffolds, Cell
adhesion & migration 4(3) (2010) 377-381.
[51] C.M. Conde, F.F. Demarco, L. Casagrande, J.C. Alcazar, J.E.
Nör, S.B.C. Tarquinio, Influence of poly-L-lactic acid scaffold’s pore
size on the proliferation and differentiation of dental pulp stem cells,
Brazilian dental journal 26(2) (2015) 93-98.
[52] R.A. Morsy, H. Beherei, M. Ellithy, H.E. Tarek, M. Mabrouk, The
odontogenic performance of human dental pulp stem cell in 3-dimensional
chitosan and nano-bioactive glass-based scaffold material with different
pores size, Journal of The Arab Society for Medical Research 14(2)
(2019) 82.
[53] S. Dinescu, M. Ionita, S.-R. Ignat, M. Costache, A. Hermenean,
Graphene Oxide Enhances Chitosan-Based 3D Scaffold Properties for Bone
Tissue Engineering, International journal of molecular sciences 20(20)
(2019) 5077.
[54] M. Kalbacova, A. Broz, J. Kong, M. Kalbac, Graphene substrates
promote adherence of human osteoblasts and mesenchymal stromal cells,
Carbon 48(15) (2010) 4323-4329.
[55] Y. Luo, A. Lode, A.R. Akkineni, M. Gelinsky, Concentrated
gelatin/alginate composites for fabrication of predesigned scaffolds
with a favorable cell response by 3D plotting, RSC Advances 5(54) (2015)
43480-43488.
[56] C.F. Jones, D.W. Grainger, In vitro assessments of nanomaterial
toxicity, Advanced drug delivery reviews 61(6) (2009) 438-456.
[57] J. Van der Valk, D. Mellor, R. Brands, R. Fischer, F. Gruber,
G. Gstraunthaler, L. Hellebrekers, J. Hyllner, F. Jonker, P. Prieto, The
humane collection of fetal bovine serum and possibilities for serum-free
cell and tissue culture, Toxicology in vitro 18(1) (2004) 1-12.
[58] V. Bonnamain, R. Thinard, S. Sergent-Tanguy, P. Huet, G.
Bienvenu, P. Naveilhan, J.-C. Farges, B. Alliot-Licht, Human dental pulp
stem cells cultured in serum-free supplemented medium, Frontiers in
physiology 4 (2013) 357.
[59] L. Xiao, T. Tsutsui, Characterization of human dental pulp
cells‐derived spheroids in serum‐free medium: Stem cells in the core,
Journal of cellular biochemistry 114(11) (2013) 2624-2636.
[60] J. Jung, J.-W. Kim, H.-J. Moon, J.Y. Hong, J.K. Hyun,
Characterization of neurogenic potential of dental pulp stem cells
cultured in xeno/serum-free condition: in vitro and in vivo assessment,
Stem cells international 2016 (2016).
[61] W. Hu, C. Peng, M. Lv, X. Li, Y. Zhang, N. Chen, C. Fan, Q.
Huang, Protein corona-mediated mitigation of cytotoxicity of graphene
oxide, ACS nano 5(5) (2011) 3693-3700.
[62] X.-Q. Wei, L.-Y. Hao, X.-R. Shao, Q. Zhang, X.-Q. Jia, Z.-R.
Zhang, Y.-F. Lin, Q. Peng, Insight into the interaction of graphene
oxide with serum proteins and the impact of the degree of reduction and
concentration, ACS applied materials & interfaces 7(24) (2015)
13367-13374.
[63] A. Lesniak, A. Campbell, M.P. Monopoli, I. Lynch, A. Salvati,
K.A. Dawson, Serum heat inactivation affects protein corona composition
and nanoparticle uptake, Biomaterials 31(36) (2010) 9511-9518.
[64] A. Lesniak, F. Fenaroli, M.P. Monopoli, C. Åberg, K.A. Dawson,
A. Salvati, Effects of the presence or absence of a protein corona on
silica nanoparticle uptake and impact on cells, ACS nano 6(7) (2012)
5845-5857.
[65] O. Karaman, Z.B. Yaralı, Determination of minimum serum
concentration to develop scaffold free micro-tissue, The European
Research Journal 4(3) (2018) 145-151.