References

[1] C.E. Schmidt, J.B. Leach, Neural tissue engineering: strategies for repair and regeneration, Annual review of biomedical engineering 5(1) (2003) 293-347.
[2] L. Ghasemi-Mobarakeh, M.P. Prabhakaran, L. Tian, E. Shamirzaei-Jeshvaghani, L. Dehghani, S. Ramakrishna, Structural properties of scaffolds: crucial parameters towards stem cells differentiation, World journal of stem cells 7(4) (2015) 728-744.
[3] J.S. Joseph, S.T. Malindisa, M. Ntwasa, Two-dimensional (2D) and three-dimensional (3D) cell culturing in drug discovery, Cell Culture 2 (2018) 1-22.
[4] J. Wu, L. Xie, W.Z.Y. Lin, Q. Chen, Biomimetic nanofibrous scaffolds for neural tissue engineering and drug development, Drug discovery today 22(9) (2017) 1375-1384.
[5] P. Jaiswal, Allied Market Research, 3D Cell culture Market, Report code LI171474, 2017.
[6] B. Larson, 3D cell culture: A review of current techniques, BioTek 6 (2015) 1-10.
[7] A. Subramanian, U.M. Krishnan, S. Sethuraman, Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration, Journal of Biomedical Science 16(1) (2009) 108.
[8] E. Ansorena, P. De Berdt, B. Ucakar, T. Simón-Yarza, D. Jacobs, O. Schakman, A. Jankovski, R. Deumens, M.J. Blanco-Prieto, V. Préat, Injectable alginate hydrogel loaded with GDNF promotes functional recovery in a hemisection model of spinal cord injury, International journal of pharmaceutics 455(1-2) (2013) 148-158.
[9] S. Ansari, I.M. Diniz, C. Chen, P. Sarrion, A. Tamayol, B.M. Wu, A. Moshaverinia, Human periodontal ligament‐and gingiva‐derived mesenchymal stem cells promote nerve regeneration when encapsulated in alginate/hyaluronic acid 3D scaffold, Advanced healthcare materials 6(24) (2017) 1700670.
[10] G. Wang, X. Wang, L. Huang, Feasibility of chitosan-alginate (Chi-Alg) hydrogel used as scaffold for neural tissue engineering: a pilot study in vitro, Biotechnology & Biotechnological Equipment 31(4) (2017) 766-773.
[11] P. Prang, R. Müller, A. Eljaouhari, K. Heckmann, W. Kunz, T. Weber, C. Faber, M. Vroemen, U. Bogdahn, N. Weidner, The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels, Biomaterials 27(19) (2006) 3560-3569.
[12] J. Sun, H. Tan, Alginate-based biomaterials for regenerative medicine applications, Materials 6(4) (2013) 1285-1309.
[13] O. Akhavan, Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of the nervous system, Journal of Materials Chemistry B 4(19) (2016) 3169-3190.
[14] N. Li, Q. Zhang, S. Gao, Q. Song, R. Huang, L. Wang, L. Liu, J. Dai, M. Tang, G. Cheng, Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells, Scientific reports 3 (2013) 1604.
[15] W.C. Lee, K.P. Loh, C.T. Lim, When stem cells meet graphene: Opportunities and challenges in regenerative medicine, Biomaterials 155 (2018) 236-250.
[16] W. Lee, C.Y.X. Lim, H. Shi, L.A.L. Tang, Y. Wang, C. Lim, K. Loh, Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide, ACS nano 5(9) (2011) 7334-7341.
[17] M.C. Serrano, J. Patiño, C. García-Rama, M.L. Ferrer, J.L.G. Fierro, A. Tamayo, J.E. Collazos-Castro, F. del Monte, M.C. Gutiérrez, 3D free-standing porous scaffolds made of graphene oxide as substrates for neural cell growth, Journal of Materials Chemistry B 2(34) (2014) 5698-5706.
[18] A.M. Pinto, I.C. Goncalves, F.D. Magalhães, Graphene-based materials biocompatibility: a review, Colloids and Surfaces B: Biointerfaces 111 (2013) 188-202.
[19] X. Zhang, T. Viitala, R. Harjumäki, A. Kartal-Hodzic, J.J. Valle-Delgado, M. Österberg, Effect of laminin, polylysine and cell medium components on the attachment of human hepatocellular carcinoma cells to cellulose nanofibrils analyzed by surface plasmon resonance, Journal of Colloid and Interface Science 584 (2020) 310-319.
[20] D. Liu, N. Pavathuparambil Abdul Manaph, M. Al-Hawwas, L. Bobrovskaya, L.-L. Xiong, X.-F. Zhou, Coating Materials for Neural Stem/Progenitor Cell Culture and Differentiation, Stem Cells and Development 29(8) (2020) 463-474.
[21] V. Serpooshan, M. Mahmoudi, M. Zhao, K. Wei, S. Sivanesan, K. Motamedchaboki, A.V. Malkovskiy, A.B. Goldstone, J.E. Cohen, P.C. Yang, Protein corona influences cell–biomaterial interactions in nanostructured tissue engineering scaffolds, Advanced functional materials 25(28) (2015) 4379-4389.
[22] I. Lynch, A. Salvati, K.A. Dawson, Protein-nanoparticle interactions: What does the cell see?, Nature nanotechnology 4(9) (2009) 546-547.
[23] B. Andrée, H. Ichanti, S. Kalies, A. Heisterkamp, S. Strauß, P.-M. Vogt, A. Haverich, A. Hilfiker, Formation of three-dimensional tubular endothelial cell networks under defined serum-free cell culture conditions in human collagen hydrogels, Scientific reports 9(1) (2019) 1-11.
[24] N. Mansouri, S.F. Al-Sarawi, J. Mazumdar, D. Losic, Advancing fabrication and properties of three-dimensional graphene–alginate scaffolds for application in neural tissue engineering, RSC Advances 9(63) (2019) 36838-36848.
[25] X. Lan, Z. Sun, C. Chu, J. Boltze, S. Li, Dental pulp stem cells: an attractive alternative for cell therapy in ischemic stroke, Frontiers in neurology 10 (2019) 824.
[26] S. Gronthos, M. Mankani, J. Brahim, P.G. Robey, S. Shi, Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo, Proceedings of the National Academy of Sciences 97(25) (2000) 13625-13630.
[27] D.L. Alge, D. Zhou, L.L. Adams, B.K. Wyss, M.D. Shadday, E.J. Woods, T. Gabriel Chu, W.S. Goebel, Donor‐matched comparison of dental pulp stem cells and bone marrow‐derived mesenchymal stem cells in a rat model, Journal of tissue engineering and regenerative medicine 4(1) (2010) 73-81.
[28] H. Li, A.Q. Ye, M. Su, Application of stem cells and advanced materials in nerve tissue regeneration, Stem cells international 2018 (2018).
[29] A. Arthur, G. Rychkov, S. Shi, S.A. Koblar, S. Gronthos, Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues, Stem cells 26(7) (2008) 1787-1795.
[30] I.V. Nosrat, C.A. Smith, P. Mullally, L. Olson, C.A. Nosrat, Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system, European Journal of Neuroscience 19(9) (2004) 2388-2398.
[31] I.V. Nosrat, J. Widenfalk, L. Olson, C.A. Nosrat, Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury, Developmental biology 238(1) (2001) 120-132.
[32] K. Sakai, A. Yamamoto, K. Matsubara, S. Nakamura, M. Naruse, M. Yamagata, K. Sakamoto, R. Tauchi, N. Wakao, S. Imagama, Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms, The Journal of clinical investigation 122(1) (2012) 80-90.
[33] W.K. Leong, T.L. Henshall, A. Arthur, K.L. Kremer, M.D. Lewis, S.C. Helps, J. Field, M.A. Hamilton-Bruce, S. Warming, J. Manavis, Human adult dental pulp stem cells enhance poststroke functional recovery through non‐neural replacement mechanisms, Stem cells translational medicine 1(3) (2012) 177-187.
[34] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved Synthesis of Graphene Oxide, ACS Nano 4(8) (2010) 4806-4814.
[35] X. Zhou, Y. Pan, R. Liu, X. Luo, X. Zeng, D. Zhi, J. Li, Q. Cheng, Z. Huang, H. Zhang, Biocompatibility and biodegradation properties of polycaprolactone/polydioxanone composite scaffolds prepared by blend or co-electrospinning, Journal of Bioactive and Compatible Polymers 34(2) (2019) 115-130.
[36] F. Rostami, E. Tamjid, M. Behmanesh, Drug-eluting PCL/graphene oxide nanocomposite scaffolds for enhanced osteogenic differentiation of mesenchymal stem cells, Materials Science and Engineering: C (2020) 111102.
[37] G. Lalwani, M. D’agati, A. Gopalan, M. Rao, J. Schneller, B. Sitharaman, Three‐dimensional macroporous graphene scaffolds for tissue engineering, Journal of Biomedical Materials Research Part A 105(1) (2017) 73-83.
[38] S.M. Willerth, S.E. Sakiyama-Elbert, Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery, StemJournal 1(1) (2019) 1-25.
[39] H. Samadian, S. Farzamfar, A. Vaez, A. Ehterami, A. Bit, M. Alam, A. Goodarzi, G. Darya, M. Salehi, A tailored polylactic acid/polycaprolactone biodegradable and bioactive 3D porous scaffold containing gelatin nanofibers and Taurine for bone regeneration, Scientific reports 10(1) (2020) 1-12.
[40] S.D. Purohit, R. Bhaskar, H. Singh, I. Yadav, M.K. Gupta, N.C. Mishra, Development of a nanocomposite scaffold of gelatin–alginate–graphene oxide for bone tissue engineering, International journal of biological macromolecules 133 (2019) 592-602.
[41] B.M. Baker, C.S. Chen, Deconstructing the third dimension–how 3D culture microenvironments alter cellular cues, Journal of cell science 125(13) (2012) 3015-3024.
[42] C. Jensen, Y. Teng, Is It Time to Start Transitioning From 2D to 3D Cell Culture?, Frontiers in Molecular Biosciences 7 (2020) 33.
[43] A. Pisciotta, L. Bertoni, M. Riccio, J. Mapelli, A. Bigiani, M. La Noce, M. Orciani, A. de Pol, G. Carnevale, Use of a 3D floating sphere culture system to maintain the neural crest-related properties of human dental pulp stem cells, Frontiers in physiology 9 (2018) 547.
[44] M.S. Liberio, M.C. Sadowski, C. Soekmadji, R.A. Davis, C.C. Nelson, Differential effects of tissue culture coating substrates on prostate cancer cell adherence, morphology and behavior, PLoS One 9(11) (2014) e112122.
[45] Y. Qian, J. Song, X. Zhao, W. Chen, Y. Ouyang, W. Yuan, C. Fan, 3D fabrication with integration molding of a graphene oxide/polycaprolactone nanoscaffold for neurite regeneration and angiogenesis, Advanced Science 5(4) (2018) 1700499.
[46] M. Domingos, F. Intranuovo, T. Russo, R. De Santis, A. Gloria, L. Ambrosio, J. Ciurana, P. Bartolo, The first systematic analysis of 3D rapid prototyped poly (ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability, Biofabrication 5(4) (2013) 045004.
[47] V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials 26(27) (2005) 5474-5491.
[48] F.J. O’Brien, B.A. Harley, I.V. Yannas, L.J. Gibson, The effect of pore size on cell adhesion in collagen-GAG scaffolds, Biomaterials 26(4) (2005) 433-441.
[49] F.J. O’Brien, B.A. Harley, M.A. Waller, I.V. Yannas, L.J. Gibson, P.J. Prendergast, The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering, Technology and Health Care 15(1) (2007) 3-17.
[50] C.M. Murphy, F.J. O’Brien, Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds, Cell adhesion & migration 4(3) (2010) 377-381.
[51] C.M. Conde, F.F. Demarco, L. Casagrande, J.C. Alcazar, J.E. Nör, S.B.C. Tarquinio, Influence of poly-L-lactic acid scaffold’s pore size on the proliferation and differentiation of dental pulp stem cells, Brazilian dental journal 26(2) (2015) 93-98.
[52] R.A. Morsy, H. Beherei, M. Ellithy, H.E. Tarek, M. Mabrouk, The odontogenic performance of human dental pulp stem cell in 3-dimensional chitosan and nano-bioactive glass-based scaffold material with different pores size, Journal of The Arab Society for Medical Research 14(2) (2019) 82.
[53] S. Dinescu, M. Ionita, S.-R. Ignat, M. Costache, A. Hermenean, Graphene Oxide Enhances Chitosan-Based 3D Scaffold Properties for Bone Tissue Engineering, International journal of molecular sciences 20(20) (2019) 5077.
[54] M. Kalbacova, A. Broz, J. Kong, M. Kalbac, Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells, Carbon 48(15) (2010) 4323-4329.
[55] Y. Luo, A. Lode, A.R. Akkineni, M. Gelinsky, Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting, RSC Advances 5(54) (2015) 43480-43488.
[56] C.F. Jones, D.W. Grainger, In vitro assessments of nanomaterial toxicity, Advanced drug delivery reviews 61(6) (2009) 438-456.
[57] J. Van der Valk, D. Mellor, R. Brands, R. Fischer, F. Gruber, G. Gstraunthaler, L. Hellebrekers, J. Hyllner, F. Jonker, P. Prieto, The humane collection of fetal bovine serum and possibilities for serum-free cell and tissue culture, Toxicology in vitro 18(1) (2004) 1-12.
[58] V. Bonnamain, R. Thinard, S. Sergent-Tanguy, P. Huet, G. Bienvenu, P. Naveilhan, J.-C. Farges, B. Alliot-Licht, Human dental pulp stem cells cultured in serum-free supplemented medium, Frontiers in physiology 4 (2013) 357.
[59] L. Xiao, T. Tsutsui, Characterization of human dental pulp cells‐derived spheroids in serum‐free medium: Stem cells in the core, Journal of cellular biochemistry 114(11) (2013) 2624-2636.
[60] J. Jung, J.-W. Kim, H.-J. Moon, J.Y. Hong, J.K. Hyun, Characterization of neurogenic potential of dental pulp stem cells cultured in xeno/serum-free condition: in vitro and in vivo assessment, Stem cells international 2016 (2016).
[61] W. Hu, C. Peng, M. Lv, X. Li, Y. Zhang, N. Chen, C. Fan, Q. Huang, Protein corona-mediated mitigation of cytotoxicity of graphene oxide, ACS nano 5(5) (2011) 3693-3700.
[62] X.-Q. Wei, L.-Y. Hao, X.-R. Shao, Q. Zhang, X.-Q. Jia, Z.-R. Zhang, Y.-F. Lin, Q. Peng, Insight into the interaction of graphene oxide with serum proteins and the impact of the degree of reduction and concentration, ACS applied materials & interfaces 7(24) (2015) 13367-13374.
[63] A. Lesniak, A. Campbell, M.P. Monopoli, I. Lynch, A. Salvati, K.A. Dawson, Serum heat inactivation affects protein corona composition and nanoparticle uptake, Biomaterials 31(36) (2010) 9511-9518.
[64] A. Lesniak, F. Fenaroli, M.P. Monopoli, C. Åberg, K.A. Dawson, A. Salvati, Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells, ACS nano 6(7) (2012) 5845-5857.
[65] O. Karaman, Z.B. Yaralı, Determination of minimum serum concentration to develop scaffold free micro-tissue, The European Research Journal 4(3) (2018) 145-151.