REFERENCES
Bezemer, T.M., Harvey, J.A., & Cronin, J.T. (2014). Response of native insect communities to invasive plants. Annual Review of Entomology , 59 , 119-141.
Brown, J.H., Whitham, T.G., Ernest, S.K.M., & Gehring, C.A. (2001). Complex species interactions and the dynamics of ecological systems: long-term experiments. Science , 293 , 643-650.
Calvão, T., Duarte, C.M., & Pimentel, C.S. (2019). Climate and landscape patterns of pine forest decline after invasion by the pinewood nematode. Forest Ecology and Management , 433 , 43-51.
Castello, J.D., Leopold, D.J., & Smallidge, P.J. (1995). Pathogens, patterns, and processes in forest ecosystems.Bioscience ,45 , 16–24.
Cédric, F.D., Bill, S., & Yves, H. (2013). Linking plant and insect traits to understand multitrophic community structure in arid steppes.Functional Ecology , 27 , 3.
Ding, J., Mack, R.N., Lu P., Ren, M.X., & Huang, H.W. (2008). China’s booming economy is sparking and accelerating biological invasions.Bioscience , 58 , 317-324.
Firmino, P.N., Calvão, T., Ayres, M.P., & Pimentel, C.S. (2017).Monochamus galloprovincialis and Bursaphelenchus xylophilus life history in an area severely affected by pine wilt disease: implications for forest management. Forest Ecology and Management , 389 , 105-115.
Gao R.H., Wang, Z., Wang, H.X., Hao, Y.P., & Shi, J. (2019). Relationship between pine wilt disease outbreaks and climatic variables in the Three Gorges Reservoir Region. Forests , 10 , 9.
Gao, R.H., Luo, Y.Q., Wang, Z., Yu, H.J., & Shi, J. (2018). Patterns of biomass, carbon, and nitrogen storage distribution dynamics after the invasion of pine forests by Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae) in the three Gorges Reservoir Region. Journal of Forestry Research , 29 , 459-470.
Gao, R.H., Shi, J., Huang, R.F., Wang, Z., & Luo, Y.Q. (2015). Effects of pine wilt disease invasion on soil properties and Masson pine forest communities in the Three Gorges reservoir region, China. Ecology and Evolution , 5 , 1702-1716.
Gao, R.H., Wang, Z., Shi, J., & Luo, Y.Q. (2013). Characteristics of insect community and the spread of parasitic insects under environmental gradients in cut slash affected by pine wilt disease. Journal of Beijing Forestry University , 35 , 84-90.
Haddad, N.M., Tilman, D., Haarstad, J., Ritchie, M., & Knops, J.M.H. (2001). Contrasting effects of plant richness and composition on insect communities: a field experiment. American Naturalist , 158 , 17-35.
Hambäck P.A., Ågren, J., & Ericson, L. (2000). Associational resistance: insect damage to purple loosestrife reduced in thickets of sweet gale. Ecology , 81 , 1784-1794.
Humphrey, J., Hawes, C., Peace, A., Ferris-Kaan, R., & Jukes, M. (1999). Relationships between insect diversity and habitat characteristics in plantation forests. Forest Ecology and Management , 113 , 11-21.
Jobidon, R., Cyr, G., & Thiffault, N. (2004). Plant species diversity and composition along an experimental gradient of northern hardwood abundance in Picea mariana plantations. Forest Ecology and Management , 198 , 209-221.
June, M.J., Robert, J.M., & Rebecca, E.F. (2006). Forest age influences oak insect herbivore community structure, richness, and density.Ecological Applications , 16 , 901-912.
Karban, R. (2011). The ecology and evolution of induced resistance against herbivores: induced resistance against herbivores. Functional Ecology ,25 , 339-347.
Knops, J.M.H., Tilman, D., Haddad, N.M., Naeem, S., Mitchell, C.E., Haarstad, J., Ritchie, M.E., Howe, K.M., Reich, P.B., Siemann, E., & Groth, J. (1999). Effects of plant species richness on invasion dynamics, disease outbreaks, and insect abundances and diversity.Ecology Letters , 2 , 286-293.
Li, J., Shi, J., Luo, Y.Q., & Heliovaara, K. (2012). Plant and insect diversity along an experimental gradient of larch-birch mixtures in Chinese boreal forest.Turkish Journal of Agriculture and Forestry , 36 , 247-255.
Li, Y., Stam, J.M., Poelman, E.H., Dicke, M., & Gols, R. (2016). Community structure and abundance of insects in response to early-season aphid infestation in wild cabbage populations: community responses to aphid infestation. Ecological Entomology , 41 , 378-388.
Lovett, G.M., Canham, C.D., Arthur, M.A., Weathers, K.C., & Fitzhugh, R.D. (2006). Forest ecosystem responses to exotic pests and pathogens in eastern North America. BioScience , 56 , 395-405.
Root, R.B. (1973). Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleraceae).Ecological Monographs , 43 , 95-124.
Roques, A., Zhao, L.L., Sun, J.H., & Robinet, C. (2015). Pine wood nematode, pine wilt disease, vector beetle and pine tree: how a multiplayer system could reply to climate change. In Climate Change and Insect Pests ; Björkman, C., Niemelä, P., Eds.; CABI publishing: Oxfordshire, UK, pp. 220-234. ISBN 9781780643786.
Shi, J., Chen, F., Luo, Y.Q., Wang, Z., & Xie, B.Y. (2013). First isolation of pine wood nematode from Pinus tabuliformis forests in China. Forest Pathology ,43 , 59-66.
Shi, J., Luo, Y.Q., Song, J.Y., Wu, H.W., Wang, L., & Wang, G.Z. (2007). Traits of Masson pine affecting attack of pine wood nematode.Journal of Integrative Plant Biology , 49 , 1763-1771.
Siemann, E. (1998). Experimental tests of effects of plant productivity and diversity on grassland arthropod diversity. Ecology ,79 , 2057-2070.
Spiegel, K.S., & Leege, L.M. (2013). Impacts of laurel wilt disease on redbay (Persea borbonia (L.) Spreng.) population structure and forest communities in the coastal plain of Georgia, USA.Biological Invasions , 15 , 2467-2487.
Taki, H., Inoue, T., Tanka, H., Makihara, H., Sueyoshi, M., Isono, M., & Okabe, K. (2010). Responses of community structure, diversity, and abundance of understory plants and insect assemblages to thinning in plantations. Forest Ecology and Management , 259, 607-613.
Tchakonté, S., Ajeagah, G.A., Camara, A.I., Diomandé, D., Tchatcho, N.L.N., & Ngassam, P. (2015). Impact of urbanization on aquatic insect assemblages in the coastal zone of Cameroon: the use of bio-traits and indicator taxa to assess environmental pollution. Hydrobiologia ,755 , 123-144.
The 2020 No.4 bulletin of National Forestry and Grassland Administration-The epidemic area of Pine Wilt Disease. (2020). Available online: http://www.gov.cn/zhengce/zhengceku/2020-03/16/content
_5491788.
The 2020 No.18 bulletin of National Forestry and Grassland Administration-The epidemic area of Pine Wilt Disease. (2020). Available online: http://www.forestry.gov.cn/main/586/20201014/14424644 4501073.
Trotter, R., Talbot, C., Neil, S., & Whitham, T.G. (2008). Arthropod community diversity and trophic structure: a comparison between extremes of plant stress. Ecological Entomology , 33 , 1-11.
Vandewalle, M., Bello, F., Berg, M.P., Bolger, T., Doledec, S., Dubs, F., Feld, C.K., Harrington, R., Harrison, S.A., Lavorel, S., Martins, P., Moretti, M., Niemela, J., Santos, P., Sattler, T., Sykes, M.T., Vanbergen, A.J., & Woodcock, B.A. (2010). Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodiversity and Conservation ,19 , 2921-2947.
Visakorpi, K., Riutta, T., Martínez, A.E., Salminen, J.P., & Gripenberg, S. (2019). Insect community structure covaries with host plant chemistry but is not affected by prior herbivory. Ecology ,100 , 8, e02739.
Wan, F., Zheng, X., & Guo, J. (2005). Biology and management of invasive alien species in agriculture and forestry. Science Publication, Beijing, pp14-19.
Wang, J.F., & Wang, X.P. (2010). Analysis and evaluation of insect community diversity in Shuidonggou wetland of Ningxia. China Bulletin Entomology , 47 , 962-967.
Wang, Z., Luo, Y.Q., Shi, J., Gao, R.H., & Wang, G.M. (2014). Quantitative classification and environmental interpretation of secondary forests 18 years after the invasion of pine forests byBursaphelenchus xylophilus (Nematoda: Aphelenchoididae) in China.Journal of Insect Science , 14 , 10. 1093.
Westphal, M.I., Browne, M., MacKinnon, K., & Noble, I. (2008). The link between international trade and the global distribution of invasive alien species. Biological Invasions , 10 , 391-398.
Wu, R., Chen, Y.W., Chen, Z.M., Lin, X.J., & Liang, D.D. (2005). Effects of pine wood nematode invasion on succession of different pine forest communities. Journal of Southwest Forestry College ,2 , 39-43.
Zhao, B.G. (2008). Pine wilt disease in China. In pine wilt disease; Zhao, B.G., Futai, K., Sutherland, J.R., Takeuchi, Y., Eds.; Springer: Tokyo, Japan, pp. 18-25. ISBN 978-4-431-75655-2.
Figure legends :
Figure 1. The actual epidemic distribution areas of pine wilt disease in China in August 2020. (Data obtained from the No.4 and No.18 bulletin of National Forestry and Grassland Administration in 2020).
Figure 2. Principal component analysis ordination diagram of plant community structure in different Masson pine forest stands.1. Pinus massoniana ; 2. Cinnamomum camphora ; 3. Quercus aliena ; 4. Quercus variabilis ; 5. Loropetalum chinensis ; 6.Rhus chinensis ; 7. Celtis bungeana ; 8.Trachycarpus fortunei ; 9. Cotinus coggygria ;10. Litsea cubeba ; 11. Symplocos paniculata ; 12. Rhus typhina ; 13.Dalbergia hupeana ; 14. Ilex cornuta ; 15.Albizia kalkora ; 16. Symplocos caudata ;17. Aralia chinensis ; 18. Rhamnus parvifolius ; 19. Castanea mollissima ; 20.Pistacia chinensis ; 21. Deutzia grandiflora ;22. Camellia oleifera ; 23. Melia azedarach ; 24. Sapium sebiferum ; 25.Sabina chinensis ; 26. Remaining species.
Figure 3. The difference of insect functional groups at the level of species and individuals in different Masson pine forest stands. (a ) the difference of insect functional groups for herbivorous insects; (b ) the difference of insect functional groups for parasitic insects; (c ) the difference of insect functional groups for predatory insects; (d ) the difference of insect functional groups for omnivorous insects; (e ) the difference of insect functional groups for detritivorous insects. Mean values of the number of species among different stand types followed by different uppercase letters are significantly different at P = 0.05 level, mean values of the number of individuals among different stand types followed by different lowercase letters are significantly different atP = 0.05 level.
Figure 4. Principal component analysis ordination diagram of insect functional groups in different Masson pine forest stands.He-S : Number of species of herbivorous insects; He-I : Number of individuals of herbivorous insects; Pa-S : Number of species of parasitic insects; Pa-I : Number of individuals of parasitic insects; Pr-S : Number of species of predatory insects; Pr-I : Number of individuals of predatory insects;Om-S : Number of species of omnivorous insects; Om-I: Number of individuals of omnivorous insects; De-S : Number of species of detritivorous insects; De-I : Number of individuals of detritivorous insects.
Figure 5. Results of the RDA ordination biplot presenting woody plant species and insect functional groups in different Masson pine forest stands. For woody plant species variables: 1.Pinus massoniana ; 2. Cinnamomum camphora ;3. Quercus aliena ; 4. Quercus variabilis ; 5. Loropetalum chinensis ; 6.Rhus chinensis ; 7. Celtis bungeana ; 8.Trachycarpus fortunei ; 9. Cotinus coggygria ;10. Litsea cubeba ; 11. Symplocos paniculata ; 12. Rhus typhina ; 13.Dalbergia hupeana ; 14. Ilex cornuta ; 15.Albizia kalkora ; 16. Symplocos caudata . For insect functional group variables: He-S : Species of herbivorous insects; He-I : Individuals of herbivorous insects;Pa-S : Species of parasitic insects; Pa-I : Individuals of parasitic insects; Pr-S: Species of predatory insects; Pr-I : Individuals of predatory insects; Om-S : Species of omnivorous insects; Om-I : Individuals of omnivorous insects;De-S : Species of detritivorous insects; De-I : Individuals of detritivorous insects.