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Abstract 17	

Understanding the genetic properties of adaptive trait evolution is a 18	

fundamental crux of biological inquiry that links molecular processes to 19	

biological diversity. Important uncertainties persist regarding the genetic 20	

predictability of adaptive trait change, the role of standing variation, and 21	

whether adaptation tends to result in the fixation of favored variants. Here, 22	

we use the recurrent evolution of enhanced ethanol resistance in Drosophila 23	

melanogaster during this species’ worldwide expansion as a promising 24	

system to add to our understanding of the genetics of adaptation. We find 25	

that elevated ethanol resistance has evolved at least three times in different 26	

cooler regions of the species' modern range - not only at high latitude but 27	

also in two African high altitude regions - and that ethanol and cold 28	

resistance may have a partially shared genetic basis.  Applying a bulk 29	

segregant mapping framework, we find that the genetic architecture of 30	

ethanol resistance evolution differs substantially not only between our three 31	

resistant populations, but also between two crosses involving the same 32	

European population.  We then apply population genetic scans for local 33	

adaptation within our quantitative trait locus regions, and we find potential 34	

contributions of genes with annotated roles in spindle localization, 35	

membrane composition, sterol and alcohol metabolism, and other 36	

processes.  We also apply simulation-based analyses that confirm the 37	

variable genetic basis of ethanol resistance and hint at a moderately 38	

polygenic architecture. However, these simulations indicate that larger-39	

scale studies will be needed to more clearly quantify the genetic 40	

architecture of adaptive evolution, and to firmly connect trait evolution to 41	

specific causative loci.     42	



Introduction 43	

 The genetic basis of adaptive trait evolution is an area of great interest to 44	

biologists and has raised several key questions. There are two questions that are of 45	

particular interest to this study. For example, how polygenic is trait evolution 46	

(Wellenreuther & Hansson 2016)? Is there genetic predictability between populations 47	

(Stern & Orgogozo 2008)? And do favored variants tend to reach fixation, or stop rising 48	

because selective pressures change or traits reach their new optima (Thornton 2019)?   49	

Early theory suggested that adaptive trait evolution is the result of many genes 50	

with small effect (Fisher 1930), or mutations with intermediate effect size (Kimura 1983). 51	

A more recent hypothesis proposes that depending on where a population is relative to 52	

the phenotypic optimum will dictate whether few mutations with large effect or many 53	

small effect mutations will be favored (Orr 1998). This model argues that when an 54	

organism first encounters a novel environment, genes of large effect size would be most 55	

abundant and as the population moves closer to an optimal phenotype the effect size 56	

would decrease, with an overall geometric distribution of effect sizes predicted. 57	

Alternatively, migration-selection balance may favor larger effect sizes underlying local 58	

adaptation (Yeaman & Whitlock 2011), whereas an important role for previously-59	

deleterious standing variation may lead to a greater role for smaller effects instead 60	

(Dittmar et al. 2016).  61	

Studies have shown that there can be genetic predictability underlying parallel 62	

trait evolution. The same genes with large-effect have been found to cause armor loss in 63	

different Alaskan populations of three-spine stickleback (Cresko et al. 2004). However, the 64	

same genes may not always be responsible for the adaptive change. Dark pigmentation 65	

found in African populations of D. melanogaster may be due in part to the result of 66	



population specific genes (Bastide et al. 2016). Differences in coat color found in 67	

populations of pocket mice also are the result of different genetic changes (Nachman et al. 68	

2003).   69	

D. melanogaster originated in woodland environments of southern-central Africa 70	

and then expanded throughout Africa beginning ~13,000 years ago (Sprengelmeyer et al. 71	

2020). The species appears to have crossed the Sahara relatively soon after their 72	

expansion started and may have only reached Europe ~1,800 years ago. During the 73	

migration out of their ancestral habitat, populations of D. melanogaster encountered many 74	

novel environmental habitats, which included equatorial tropical rainforest, northern 75	

temperate grassland, and high altitude alpine regions. Each of these different ecosystems 76	

provides unique selection pressures that may have forced local populations to acquire 77	

novel traits in order to survive.  For example, increased ultra-violet radiation found at 78	

higher altitudes might have caused populations to evolve darker cuticle pigmentation 79	

(Bastide et al. 2014). And populations at high latitude and altitude have independently 80	

evolved elevated cold tolerance (Pool et al. 2017). 81	

Ethanol resistance is another trait that has evolved in D. melanogaster. When 82	

compared to its sister species D. simulans, D. melanogaster are more ethanol resistant 83	

(McKenzie and Parsons 1972). Within D. melanogaster, ethanol resistance has shown a 84	

positive correlation with latitude (David & Bocquet 1975 and Cohan & Graf 1985) with 85	

populations living in breweries and wine cellars of France and Spain being the most 86	

resistant (McKenzie & Parsons 1974 and Mercot et al. 1994). Female flies lay their eggs 87	

on ethanol-producing fermenting fruit and having a higher ethanol resistance may 88	

provide more available resources. There is evidence that D. melanogaster prefers to lay their 89	



eggs on medium that contains alcohol (McKenzie and Parsons 1972), which can be a 90	

defense against parasitoids (Milan et al. 2012; Kacsoh et al. 2013).  91	

 Alcohol metabolism in D. melanogaster involves ethanol being converted to 92	

acetaldehyde by ADH (Greer et al. 1993). ADH and ALDH convert acetaldehyde to 93	

acetate. Acetate can be turned into acetyl-CoA, which can be used in the production of 94	

fatty acids, the citric acid cycle, and other pathways. Differences at the Adh gene are 95	

correlated with improved alcohol resistance (David and Bocquet 1976), with the “fast” 96	

allele having a higher resistance compared to the “slow” allele. David et al. (1975) found a 97	

latitudinal gradient and populations at higher latitudes tend to be more resistant and also 98	

have a higher Adhfast frequency. However, D. funebris, D. littoralis and D. mercatorum all 99	

display ethanol resistance but low ADH activity, whereas in spite of high ADH activity, 100	

D. ercepeae are classified as being sensitive to alcohol (Mercot et al. 1994). It has been 101	

hypothesized that the Adhfast  and  Adhslow  polymorphism has been maintained by a 102	

temperature dependent balancing selection (Van Delden et al. 1978). However, Siddiq 103	

and Thorton (2019) found Adhfast protein is neither less stable nor active at high 104	

temperatures, and will increase ethanol resistance along with survivorship at all 105	

temperatures. Further, when they analyzed a population genomic data set, there was not 106	

a signature of balancing selection in the Adh gene. 107	

Changes at ALDH can also increase ethanol resistance (Fry and Saweikis 2006). 108	

Fry et al. (2008) also showed that there is an amino acid difference between more resistant 109	

populations found in higher latitudes and less resistant flies found in lower latitudes. It has 110	

also been found that European flies can have higher ALDH enzyme activity compared to 111	

less resistant African flies even without the amino acid polymorphism (Fry 2014). 112	

Chakraborty and Fry (2016) found that polymorphisms in ALDH are maintained by 113	



environmental conditions. Transgenic experiments confirmed there is an increase in 114	

lifetime fitness on ethanol-supplemented medium specifically.  115	

Although ADH and ALDH play an important role, they are not the only genes 116	

involved in ethanol resistance.  Other genes linked to ethanol resistance encompass a 117	

wide range of functions such as lipid membrane physiology (Montooth et al. 2006), ion 118	

channels (Cowmeadow et al. 2005), central nervous system (Chandler et al. 1998), zinc 119	

retention (Zhao et al. 2009), and feeding behavior and behavioral responses to ethanol  120	

(Fochler et al. 2017). Signor and Nuzhdin (2018) found that many genes display plasticity 121	

in expression and splicing in response to ethanol exposure. Other studies that focused on 122	

changes in gene expression (Morozova et al. 2006) or histone modification (Ghezzi et al. 123	

2013) have also found that numerous genes respond to ethanol exposure.  124	

Many of these studies investigate lab strains or compare single populations 125	

between regions of contrasting ethanol resistance. The goal of this study is to understand 126	

the genetic architecture of ethanol resistance, an adaptive trait in D. melanogaster. To 127	

investigate we use wild populations from their ancestral range (Zambia), along with 128	

multiple populations that display elevated ethanol resistance: from high altitude sub-129	

Saharan Africa (Ethiopia and South Africa) and from high latitude (France). Each of these 130	

populations has also evolved elevated cold tolerance, and in light of the species’ expansion 131	

history, these trait changes are thought to arisen independently in the Ethiopia, France, 132	

and South Africa populations (Pool et al. 2017). To detect QTLs that are involved in this 133	

adaptive trait evolution, we performed bulk segregant analysis (Pool 2016). We used 134	

population genetic statistics, Gene Ontology enrichment and genotype-phenotype 135	

association testing to find evidence of local adaptation and candidate genes.  We also 136	



performed simulations to explore the parameters involved in the genetic architecture of 137	

this adaptive trait change.  138	

    139	

Material and Methods 140	

Experimental Populations 141	

All flies used in the experimental had been inbred for 8 generations from wild-142	

caught isofemale lines (Lack et al. 2015). The sub-Saharan African populations came 143	

from Fiche, Ethiopia (EF, 9.81° N, 38.63° E, alt. 3070 m), Dullstroom, South Africa (SD, 144	

25.42° S, 30.10° E, alt. 2000 m), and Siavonga, Zambia (ZI, 16.54° S, 28.72° E, alt. 530 145	

m). The French samples are from Lyon, France (FR, 45.77° N, 4.86° E, alt. 175 m). Flies 146	

were all raised at 20° C on medium prepared in batches of 4.5 L water, 500 mL 147	

cornmeal, 500 mL molasses, 200 mL yeast, 54 g agar, 20 mL propionic acid, and 45 mL 148	

tegosept 10% (in 95% ethanol).  149	

 150	

Ethanol Resistance  151	

To test for population differences in ethanol resistance, we measured mobility 152	

over a 6-hour period. To help reduce any adverse effects due to inbreeding each line was 153	

outcrossed with to a unique inbred line from the same population. The number of flies 154	

and pairs of lines used was: FR: 5 lines, N=50, EF: 5 lines, N=46, SD: 3 lines, N=30 and 155	

ZI: 4 lines, N=40. We then placed 3-5-day-old outcrossed female flies into 50ml falcon 156	

tubes with a single tissue placed in the bottom that was saturated with 1.5ml of 3% 157	

sucrose (molasses) solution that contained 8% ethanol (Fry 2014). We visually scored flies 158	

that did not move after the vial was flicked as “immobile”.  159	

 160	



Bulk Segregant Analysis 161	

To ascertain areas of local adaptation responsible for higher ethanol resistance, 162	

bulk segregant analysis was performed to detect quantitative trait loci (QTL) (Pool 2016). 163	

Population cages were started from reciprocal crosses between eight inbred parental 164	

individuals of low resistant (Zambia) and one each of the more resistant African 165	

populations (Ethiopia and South Africa) lines and strains from two French populations 166	

(Supplemental Material, S1). From each reciprocal cross, 125 F1 offspring of each sex 167	

were used to establish the second generation. These mapping populations for the rest of 168	

the (non-overlapping) generations were maintained at ~1200 individuals.  The flies were 169	

housed in 28 x 14 x 15 cm plastic cages that contain 14 vials with a medium that contains 170	

molasses, corn meal, yeast, agar, and antimicrobial agents at ~20° C. Adult flies were 171	

allowed to lay eggs on the food for one week before being removed. The food vials were 172	

replaced when adult flies in the cage were 7-10 day old. At the 15th generation, 600 3-5-173	

day-old female flies from each population cage were exposed to the 8% ethanol mobility 174	

assay described above. The flies were placed into two pools, 10% least resistant (N=60) 175	

and 10% most resistant (N=60).  176	

 177	

Genome Preparation  178	

We sequenced the genomes of pooled samples (N=30 individuals) for the parental 179	

lines and two such pools for each of the low and high resistant groups (N=60 total for 180	

each extreme). Genomic DNA was obtained using a chloroform extraction and ethanol 181	

precipitation protocol. The DNA was fragmented with a Bioruptor sonicator 182	

(Diagenode), and paired-end libraries with ~300 bp inserts prepared using NEBNext 183	

DNA Library Prep Reagent Set for Illumina (New England Biolabs no. E6000L). Each 184	



library’s concentration and quality was analysed with an Agilent 2100 Bioanalyzer 185	

(Agilent Technologies, Inc.). The prepared libraries were sequenced at UW-Madison 186	

Biotechnology Center on the Illumina HiSeq 2000 platform.  187	

 188	

Genome Alignment 189	

All the raw data that passed the Illumina filters were processed using a Perl-190	

scripted pipeline. Reads from each sequenced genome were mapped to the D. 191	

melanogaster reference genome (release 5.57) obtained from Flybase (www.flybase.org), with 192	

the default parameters in BWA ver. 0.6.2-r126 (Li and Durbin 2009). Using Stampy ver. 193	

1.0.21(Lunter and Goodson 2011) the BAM files were then remapped. With samtools ver. 194	

0.1.18 (Li et al. 2009) reads were filtered for a mapping quality of 20 and for proper pairs. 195	

The BAM files were further processed by removing unmapped reads and sorted by 196	

coordinate, and PCR duplicates were marked using Picard ver. 1.109 197	

(http://picard.sourceforge.net). To improve the alignment around indels we used GATK 198	

ver. 3.2 (McKenna et al. 2010). The average depth of coverage per genome was 199	

calculated for the parental lines and the low and high resistance lines (Table S1). 200	

 201	

Quantitative Trait Locus (QTL) Mapping 202	

The PoPoolation2 ver. 1.201 software package (Kofler et al. 2011) was used to 203	

create synchronised mpileup files for the aligned genomes. For each biallelic SNP an 204	

ancestry difference (ad ) was calculated (Bastide et al. 2016). This quantity was calculated 205	

as the proportion of ethanol resistant pooled sequence reads carrying the fixed allele in 206	

the high resistant parental line and absent in the low resistant parental line.  207	



Equation 1: ad = (fH – fL) / (pH – pL)  208	

Where pH is the frequency of parental high resistant allele, pL is the low resistant parental 209	

allele, fH is high resistant F12 offspring and fL is low resistant F12 offspring. The five 210	

chromosomal arms (X, 2L, 2R, 3L, and 3R) were divided into windows based on SNP 211	

density (Lack et al. 2015) which created 2728, 3131, 2357, 2956, and 2935 windows 212	

respectively each roughly 8.4-kb in size on average.  Across the five chromosomal arms 213	

only sites that had a frequency difference of ≥ 0.25 were used in the analysis. A 214	

simulation-based inference for BSA mapping (SIBSAM) was performed (Pool 2016) to 215	

identify significant QTL and calculate their confidence intervals and effect sizes. The 216	

custom scripts used for SIBSAM can be found at: 217	

http://github.com/JohnEPool/SIBSAM1. SIBSAM is able to evaluate both primary 218	

QTL peaks and flanking secondary QTL peaks, evaluating whether ragged peaks contain 219	

significant evidence for more than one QTL. Forward simulations incorporate 220	

recombination in multiple individuals for multiple generations, selection on phenotype in 221	

the final generation with additivity, plus environmental variance, and then the sampling 222	

of sequence reads to obtain ad.  223	

 224	

Genetic differentiation and Gene Ontology (GO) enrichment analysis 225	

To find evidence of local adaptation and produce a list of candidate genes found 226	

within the significant QTLs, window FST and maximum SNP FST per window (hereafter 227	

“SNP FST”),and the haplotype statistic χMD (Lange & Pool 2016) were analyzed.  Genomes 228	

from Zambia (n=197), South Africa (n=61), Ethiopia (n=68) and France (n=96) were 229	

used from the Drosophila Genome Nexus (Lack et al. 2015). The χMD compares length of 230	



identical haplotype blocks among individuals in one population versus another. The 231	

comparisons were made within each of the five chromosomal arms (X, 2L, 2R, 3L, and 232	

3R), which were divided into windows based on SNP density (Lack et al. 2015). The idea 233	

behind χMD is that in a recently selected population, longer stretches of identical 234	

haplotypes will not have had time for recombination or mutation to break up longer 235	

identical tracts. A chromosomal arm quantile outlier approach was used to focus on genes 236	

with an extreme population genetic signal.  Only windows that were in the top 2.5% 237	

quantile in any of the three statistics were classified as outliers. To form an outlier region, 238	

a maximum of two non-outlier windows were allowed between two outlier windows. 239	

Genes associated with outlier windows (overlapping them or the nearest gene in either 240	

direction) were retained for subsequent analysis. The outlier genes identified in significant 241	

QTL regions were used for window-based gene ontology (GO) enrichment analysis (as 242	

implemented in Pool et al. 2012) to identify functional categories that differ between low 243	

and high resistance populations. A P value was calculated based on the probability of 244	

observing a given number of outlier genes from a GO category. P values were obtained 245	

from permutation in which outlier region were randomly reassigned 10,000 times. 246	

 247	

Genotype-Phenotype Association Testing 248	

Phenotypic data was collected on 51 France inbred strains with sequenced 249	

genomes from the Drosophila Genome Nexus genomic resource (Lack et al. 2016) 250	

following the ethanol assay described above. To capture the variation in ethanol 251	

resistance found in France population, the ethanol concentration used was 18%. 252	

Genotype-phenotype associations were analyzed with the R package rrBLUP version 3.1 253	

(Endelman 2011). Only regions within the QTL peaks of less than 2 Mb in length in the 254	



two France crosses were examined. Within in these peaks, only SNPs that had a called 255	

allele of greater than 25% and a minor allele frequency greater than 5% were analyzed. 256	

One thousand permutations of the phenotypic data were used to calculate the significant 257	

threshold.  258	

 259	

Simulations of Genetic Architecture and Association Testing Power 260	

We performed simulations to better understand the genetic architecture of this 261	

adaptive trait, using modified versions of SIBSAM scripts. These simulations involved 262	

three steps. First we calibrated the number and strengths of QTLs to match the empirical 263	

data from the two France/Zambia crosses. To do this, we analyzed a range of values for 264	

three different parameters: (1) The number of detected QTLs (10, 20, 30, 40, and 50); (2) 265	

Environmental variance, how much of the phenotypic trait is caused by factors other than 266	

genetic factors (0.5, 0.6, 0.7, 0.8, and 0.9); and (3) QTL strength. Here we used a gamma 267	

distribution (shape parameter 0.5, 1, 2, 4, and 8, and scale parameter fixed at 1 because it 268	

is not relevant in this relative context). We performed 10,000 simulation replicates for all 269	

parameter combinations for both France crosses.  270	

For these comparisons between empirical and simulated QTL mapping data, we 271	

used a simplified set of QTL criteria in order to avoid the computational infeasible 272	

requirement of running full SIBSAM inference to identify significant QTLs from each 273	

simulated replicate. Specifically, we defined QTLs as having ancestry difference greater 274	

than 0.16. The flanking secondary QTL peaks were defined as having a secondary 275	

deviation (the magnitude of ancestry difference recovery from a local valley; Pool 2016) 276	

greater than 0.16. These criteria were chosen to largely recapitulate the same QTLs 277	

found to be significant from the empirical data. 278	



We then looked at four summary statistics: the mean ancestry difference and its 279	

standard deviation across all windows, the mean QTL peak height, and the number of 280	

QTLs. We calculated the relative error sum of all the replicates for each combination 281	

using the empirical values: mean peak height 0.256, number of QTLs 18, mean ancestry 282	

difference 0.041, and standard deviation 0.083. The parameter combination with the 283	

lowest mean relative error sum was then used to perform the next step to calibrate the 284	

frequency of all QTLs. To analyze how well the top model performed, we performed 285	

bootstrapping among the 10,000 replicate simulations from both the top model and one 286	

of the other 125 parameter combinations, monitoring the proportion of 10,000 bootstrap 287	

replicates in which the top model still had a lower error.  288	

Next, we wanted to see which QTL frequency along with fixed parameters from 289	

the previous step would match the proportion of empirical QTL peaks overlapping 290	

between the two crosses. We ran 10,000 replicates of each of the different frequency 291	

values: 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, and 0.50 – where these values 292	

indicated the probability that a given QTL in one cross would also be present in the 293	

second cross. Each QTL was considered to overlap if its peak fell within a simplified 294	

“QTL region” from another cross (defined as the area in which a peak exceeds an 295	

ancestry difference or secondary deviation of 0.16). 296	

Finally we estimated association testing power for different scenarios involved with 297	

population and allele frequencies. We used sample sizes of 50, 100, 200, 500, and 1,000, 298	

and allele frequencies of 5%, 10%, 20%, 30%, 40%, and 50%. For each parameter 299	

combination, we created genotypes and phenotypes. Genotypes were assigned by first 300	

determining if the individual was either homozygous or heterozygous based on empirical 301	

residual heterozygosity levels of 35% in the France population (Lack et al. 2016). If an 302	



individual was homozygous then they had one draw of getting either the ancestral or 303	

derived allele and it was added twice. If an individual was heterozygous then they had 304	

two independent draws of getting either the ancestral or derived allele.  We translated the 305	

QTL frequency identified in the previous into allele frequency using the equation: 306	

Equation 2  0.65q + 0.35(q2 + 2q(1-q)), 307	

where 0.65 is the frequency of being homozygous and 0.35 is the frequency of being 308	

heterozygous and q is the frequency of the derived allele. Once the genotypes were 309	

established, the phenotypic trait values could be assigned. If the individual genotype at 310	

the locus was homozygous for the derived allele then the full QTL strength was added. If 311	

the genotype was heterozygous, then half the QTL strength was added and if the 312	

genotype was homozygous for the ancestral allele then nothing was added to the trait 313	

value. In light of the replicated phenotyping of individuals from each inbred line, no 314	

environmental variance. We performed 1,000 simulated genotype-phenotype association 315	

replicates for each parameter combination and recorded the proportion of total alleles 316	

that exceeded the empirical permutation -log(P) threshold of 6.17.  317	

 318	

Results 319	

Population Differences in Ethanol Resistance  320	

We performed a phenotypic assay of adult exposure to 8% ethanol vapor, using 321	

outbred flies from multiple independent within-population crosses from each of four 322	

population samples. This assay revealed variation in ethanol resistance among the 323	

populations studied (Figure 1). As expected, the France population (David et al. 1986) had 324	

the highest resistance with only 4% of the individuals immobile after six hours of 325	

exposure. The Zambia population from the ancestral range had the lowest resistance; 326	



after four hours nearly all the individuals were immobile and after six hours there was 327	

100% immobility.  The two high altitude African populations, Ethiopia and South Africa, 328	

were not as resistant as the France population, but more resistant than Zambia. Both 329	

South Africa and Ethiopia had ~40% of the individuals immobile at 4 hours. However, 330	

South Africa had 100% immobility at 6 hours while Ethiopia had 72% immobility.   331	

 332	

Quantitative Trait Locus Mapping 333	

We performed QTL mapping using four different between-population crosses 334	

using individual inbred strains, each of which involved the low resistance Zambia 335	

population. Of the higher resistance parental strains, two were independent France 336	

strains, and one each were from the African high altitude populations, Ethiopia and 337	

South Africa. We allowed offspring of reciprocal crosses to interbreed without selection at 338	

a fairly large population size (N ≈ 1,200) until the 15th generation, at which time 600 339	

adult females were exposed to ethanol vapor and the top and bottom 10% of individuals 340	

were isolated and subject to pooled genomic sequencing (Figure 2; Materials and 341	

Methods). Primary and secondary QTL peaks, along with their estimated effect sizes and 342	

genomic confidence intervals, were then identified using SIBSAM (Pool 2016).   343	

The four mapping crosses revealed a total of 32 significant peaks (Figure 3; Table 344	

S2).  Whereas the Ethiopia cross had just three significant QTLs with estimated effect 345	

sizes between 15% and 20%, the South Africa cross had a total of 12 significant peaks, 346	

ten of which were on chromosome arm 2R and two on the X chromosome, and these 12 347	

QTLs had estimated effects sizes between 7% and 13%. Between the two France crosses 348	

there were 17 peaks, ten from the cross involving strain FR305N and seven for FR364N, 349	

which collectively ranged in estimated effect size from X% to 27%. Encouragingly, the 350	



highest peaks in each cross were estimated to have narrow genomic confidence intervals 351	

(Table S2).   352	

Overlap between QTL peaks may occur by chance or due to a shared genetic 353	

basis of ethanol resistance differences between crosses. Between the two France crosses, 354	

there were six regions where QTL peaks overlapped with genomic confidence intervals  355	

involving a total of 6 out of the 17 QTLs (Figure 4). In a few cases, overlapping QTLs 356	

were found between crosses from different populations. Ethiopia shared two distinct 357	

QTLs with each of the France crosses, while South Africa shared one QTL with 358	

FR364N. The two high altitude populations, Ethiopia and South Africa, did not share 359	

any peaks. Hence, while there is some unconfirmed potential for genetic parallelism 360	

between ethanol resistance in different D. melanogaster populations, most QTLs tend to be 361	

unique between a given pair of crosses – even when two crosses involve the same France 362	

and Zambia populations. While chance false positive and negative results may contribute 363	

to differences in QTL detection, distinct genetic paths to ethanol resistance in different 364	

populations, as well as genetic heterogeneity in the architecture of ethanol resistance 365	

within populations, may contribute to these results as well, as further explored below. 366	

 367	

Potential Targets of Local Adaptation Within QTL Regions 368	

Strong differences in genetic variation between the least resistant Zambia 369	

population and one of the more resistant Ethiopia, South Africa, and France populations 370	

may signify genes subject to local adaptation, and some of these signals could relate to the 371	

trait in question. Therefore, to identify possible candidate genes for ethanol resistance 372	

evolution within the significant QTLs, we used three population genetic statistics, window 373	

FST, maximum SNP FST within a window, and the haplotype statistic χMD. These statistics 374	



may have differing power to detect local adaptation depending on whether selective 375	

sweeps are complete or incomplete, or hard versus soft (Lange & Pool 2016). We used a 376	

quantile approach focusing on regions that had one of the three statistics with a quantile 377	

below 0.025 (Table S3). This analysis yielded both genes with known functions that may 378	

relate to our trait, and genes with no such known functions. While any of these genes 379	

might contribute to ethanol resistance evolution, we mention below a few plausible 380	

candidates.  381	

 Within the South Africa QTLs, peaks on chromosome arms X and 2R each have 382	

one outlier redox gene, Pp2C1 and Nox, respectively. Genes involved in regulating 383	

oxidative stress have previously been implicated in Drosophila ethanol resistance (Awofala 384	

et al. 2012). Of potential relevance in light of our aerosol ethanol assay, several genes 385	

involved in the development of chitin also have population genetic signals: ovo, mgl, and 386	

CG1367. Potential candidate genes found in Ethiopia QTLs include: Shab and Teh2 (ion 387	

channels), and m (cuticle development). Genes found in one of the two France crosses 388	

included some potentially involved in alcohol metabolism (CG5065, CG6650, CG8303, 389	

CG9521, CG13091, CG15601, CG43658, Pis), as well as ion channels (para, ppk, sh) and 390	

other genes involved in neurotransmission (be, CG33639). Diverse aspects of nervous 391	

system function have previously been linked to alcohol resistance (e.g. Morozova et al. 392	

2015; Park et al. 2017). 393	

 Between the two France crosses, shared candidate genes included: CG45065 394	

(alcohol metabolism), CG9503 (choline/aldehyde metabolism), bgm and pgdy (fatty acid 395	

metabolism), hiw (synapse organization), and eag (ion channel, response to ether). South 396	

Africa and FR364N had two candidate genes of interest; CG32698 (carbonate 397	



dehydratase) and CG1986 (lipase). Lipid levels are known to influence ethanol resistance 398	

(Lieber and Savolainen 1984, Geer et al. 1991). 399	

 400	
Gene Ontology (GO) Enrichment   401	

 As a hypothesis-generating exercise, we conducted a GO enrichment analysis on 402	

the set of genes both located within a QTL region from any of our crosses and also 403	

associated with a population genetic outlier region for that same resistant population. 404	

Alcohol metabolism genes were enriched in this analysis (P = 0.00356; Table S4).  The 405	

categories showing the strongest enrichment (P values below 0.001) corresponded to 406	

functions previously linked to ethanol response: spindle localization (Hass et al. 2019), 407	

sterol biosynthesis (Stanley et al. 2010; Mo et al. 2019), and microvillus membrane 408	

(Bjorkman et al. 1994). Other enriched categories related to the perception of sound and 409	

light, cuticle development, response to hypoxia, histone H4 acetylation (Ghezzi et al. 410	

2013), and zinc transport (Zhao et al. 2009).  411	

 412	

Genotype-Phenotype Association Testing 413	

We collected phenotype data from 51 France inbred lines with previously 414	

sequenced genomes (Lack et al. 2016) in order to perform genotype-phenotype association 415	

testing. This sample size would not be adequate for genome-wide association testing, and 416	

so we restricted our focus to France QTL regions of less than 2 Mb in length. We 417	

performed this analysis either on all SNPs within these QTLs (120,243 SNPs), or focusing 418	

more specifically on SNPs within population genetic outliers windows (9,480 SNPs).  419	

Genome-wide significance, assessed via permutations, was not reached by any SNP in 420	

either analysis (Table S5). From the more inclusive analysis, the highest marker had a –421	



log P value of 4.43, whereas the permutation significance threshold was 6.17. From the 422	

population genetic outlier analysis, the highest marker had a –log P value of 3.56 with 423	

permutation significance threshold of 4.44.  424	

 425	

Simulation-Driven Investigation of Genetic Architecture and Association Testing Power 426	

We then considered which genetic architectures our QTL mapping data might 427	

provide evidence for, and whether they might account for our negative association testing 428	

results. Although full model inference of adaptive evolution at the genetic level is beyond 429	

the scope of the present study, we conducted an exploratory simulation analysis in three 430	

stages, focusing on the two France crosses. 431	

First, we wanted to assess the number and strength of QTLs that our mapping 432	

data were most consistent with. Our simulations used a modified version of SIBSAM, 433	

which simulates the full mapping experiment (including recombination, phenotypic 434	

selection, and sequencing read sampling). We varied the number of QTLs present in each 435	

cross, their distribution of effect sizes as a function of the gamma distribution shape 436	

parameter, and the proportion of trait variation contributed by environmental/random 437	

effects rather than these QTLs. And we quantified properties of QTL peaks and genome-438	

wide ancestry in the simulated data and compared it with our empirical observations 439	

using mean relative error.  The parameter combination with the lowest average mean 440	

relative error was 10 QTLs per cross, a gamma shape parameter of 4, and 70% 441	

environmental variation (Figure 5; Table S6). An otherwise identical parameter 442	

combination with a gamma shape parameter of 8 matched the empirical data almost 443	

equally as well, and so we chose an intermediate shape parameter of 6 in further analyses. 444	

Parameter combinations involving a wide range of QTL numbers and gamma shape 445	



values were non-significantly worse than the above combination, indicating that larger 446	

data sets will be needed to make formal inferences about the genetic architecture of 447	

adaptive evolution (Table S6).  448	

Second, we assessed whether the degree of QTL overlap between the two France 449	

crosses provides information about the frequency of ethanol resistance alleles in this 450	

population. The QTL frequency that resulted in the average overlap of peaks that best 451	

matched the empirical data was 5% (Table S7), which resulted in ~54% overlap 452	

compared to the empirical ~44%. However, only the highest frequency values (90% and 453	

above) had confidence intervals that marginally excluded the empirical frequency, 454	

suggesting that larger data sets will be needed to gain further resolution about the 455	

frequencies of adaptive variants, and underscoring the exploratory nature of our 456	

simulations. 457	

 We therefore investigated a wide range of frequencies (5% to 50%) in assessing the 458	

power of our association testing analysis. The power analysis revealed that there is little 459	

power to detect causative SNPs that segregate at lower frequencies. Small to moderate 460	

population sizes (n=50, 100, and 200) had low power to detect SNPs at any frequency 461	

(Figure 6). It was not until QTL frequency reached 50% that there was a greater than 462	

10% detection power.  Even when there was a large number of individuals used, e.g. 463	

n=1000, only ~0.9% of the causative SNPs at a 5% QTL frequency met the empirical 464	

threshold. Only once QTL frequency reached 30% was there greater than 50% detection 465	

rate. However, the detection power did improve when the lower outlier region threshold 466	

was used. The small population sizes had a greater than 10% detection power when QTL 467	

frequency reached 30%. The detection power at 5% QTL frequency for large population 468	

size of 1000 improved to ~3% and had a greater than 50% detection rate when QTL 469	



frequency reached 20%. Hence, significantly larger sample sizes would be needed to 470	

identify variants underlying polymorphic architectures of adaptive evolution, unless the 471	

number of tested variants could be further reduced. 472	

 473	

Testing for pleiotropy between ethanol and cold resistance 474	

 Cold resistance has evolved in these same three populations for which we detected 475	

elevated ethanol resistance (France and high altitude Ethiopia and South Africa; Pool et 476	

al. 2017). These observations raise the question of whether cold and ethanol resistance 477	

are genetically correlated (pleiotropically connected), or if instead their geographic co-478	

occurrence is due to ecological correlation (greater exposure to ethanol in cold 479	

environments). Cold resistance, in the sense of mobility after long-term cold exposure, 480	

was previously estimated for a panel of France inbred lines. For 37 of those same lines, we 481	

had also collected ethanol resistance data for the genotype-phenotype analysis described 482	

above. In testing for a correlation between these two sets of trait measurements, we found 483	

a mild positive correlation (r = 0.225; one-tailed P = 0.0897). While some strains did show 484	

high cold resistance but low ethanol resistance, there appeared to be a lack of strains 485	

showing high ethanol resistance but low cold resistance (Figure 7). This analysis provides 486	

a tentative hint that pleiotropy may indeed exist between the cold resistance and ethanol 487	

resistance that have evolved recurrently within D. melanogaster. However, larger-scale 488	

experiments will be needed to confirm this result, and linkage (e.g. mediated by inversions) 489	

might also contribute to such a trait correlation. 490	

  491	



Discussion  492	

We have shown that there is a range of ethanol resistance found in wild 493	

populations of D. melanogaster. The Zambia population, which inhabits the species’ 494	

ancestral range (Sprengelmeyer et al. 2020), is the least resistant with the recently 495	

diverged populations becoming more resistant. In agreement with other studies (David 496	

and Bocquet 1975) we found the higher latitude France population to be highly resistant. 497	

Interestingly, none of the France QTL peaks contain Adh (Cohen and Graf 1985) or Aldh 498	

(Fry et al. 2008), both implicated in the latitudinal cline of increased ethanol resistance. 499	

We have also reported for the first time that populations at higher altitudes have 500	

increased ethanol resistance.  501	

The France population and the high altitude Ethiopia and South Africa 502	

populations have all evolved increased cold tolerance (Pool et al. 2017). The geographic 503	

cooccurrence between resistance to cold and ethanol might be due to either genetic 504	

correlation (i.e. pleiotropy) or else ecological correlation. Above, we found initial evidence 505	

that pleiotropy may exist between these evolved traits in the France population. There is 506	

also prior evidence suggesting that genes that are involved with ethanol resistance may 507	

have a pleiotropic effect with cold resistance: increased lipid concentration in membranes 508	

can increase cold resistance and make the cell more stable, which in turn also increases 509	

ethanol resistance (Montooth et al. 2006). However, ecological correlation may still play a 510	

role in the geographic co-occurrence of these traits. Flies in colder environments might 511	

encounter greater concentrations of ethanol, leading to selection for ethanol resistance 512	

variants that may be independent of those conferring cold adaptation. In warmer 513	

environments, both ethanol and water vapor evaporate more rapidly. There, fruit may 514	

desiccate before it would accumulate enough ethanol, and ethanol that is produced may 515	



dissipate more quickly. In colder environments, fruit may retain moisture for a longer 516	

period of time, allowing ethanol to build up through microbial fermentation, and this 517	

ethanol. However, it is worth noting that altitude also serves to increase evaporation rates. 518	

Future genetic and physiological studies are needed to more clearly discern the potential 519	

genetic and ecological correlations that may underlie the geographic co-occurrence of 520	

these traits. 521	

 The BSA performed on the four different crosses revealed 32 significant QTLs 522	

with the largest estimated effect size for each cross between 12% and 27%. These data 523	

taken together suggests that ethanol resistance is moderately polygenic with moderate to 524	

large effect QTLs present (whereas smaller QTLs may elude our detection power; Pool 525	

2016). We found that there are no QTLs overlapping between all three high resistant 526	

populations. However, each of the high altitude populations shares QTLs with the France 527	

strains, whereas the two high altitude populations, South Africa and Ethiopia, do not 528	

have any QTLs in common with each other.  529	

In interpreting the observed levels of QTL overlap between populations, it is 530	

important to keep in mind that even between two crosses from the same resistant 531	

population (France), QTL overlap was modest. Of the seventeen significant QTL peaks 532	

between the two France crosses, they shared only six QTLs (and even some of these could 533	

reflect random overlap in light of the QTL sizes). For example, the strongest QTL in 534	

either France cross with an estimated effect size of 27% from FR305N on chromosome 535	

arm 3L, is completely missing in FR364N. Our experiment should have very high power 536	

to detect a QTL with an effect size this large if it existed in a second cross (Pool 2016). 537	

Those results suggest a genetically heterogenous architecture of ethanol resistance 538	

evolution not only between populations but within a resistant population. Notably, very 539	



similar patterns, both within and between populations, were also observed in similar 540	

experiments focused on the evolution of melanism within this species (Bastide et al. 2016). 541	

The implication that causative variants have not been fixed has multiple potential 542	

explanations, including ongoing adaptation, balancing selection, or that a trait has 543	

reached a new optimum value or exceeded a new threshold value. Persistent variability in 544	

the genetic basis of an adaptive trait might be expected when populations start with 545	

abundant standing genetic variation, as might be expected for D. melanogaster. 546	

Still, our simulation results clearly show that larger experiments will be needed to 547	

gain quantitative resolution on key parameters that describe the genetic architecture of 548	

adaptive evolution. Studies with larger numbers of QTL mapping crosses may allow 549	

clearer estimation of the number of QTLs per cross, the distribution of QTL effect sizes, 550	

and the frequencies of causative variants in an evolved population. The utility of 551	

genotype-phenotype association testing will depend on either much larger population 552	

samples of sequenced inbred line genomes becoming available, or else further progress in 553	

restricting the number of SNPs to be tested. Candidate SNPs might be further limited by 554	

more precise QTL mapping (more generations, more individuals), functional genomic 555	

data, or complementary population genomic analysis such as genotype-environment 556	

association.   557	
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 779	

Figure 1. Population differences in resistance to concentrated ethanol vapor. The 780	

percentage of flies that was mobile after being exposed to 8% ethanol is shown across a 6 781	

hour interval. Ethiopia (EF) n=46, Zambia (ZI) n=39, France (FR) n=50, South Africa 782	

(SD) n=30.  783	

  784	

0

0.2

0.4

0.6

0.8

1
Pr

op
or

tio
n 

of
 M

ob
ile

 Fl
ie

s

Hours of Exposure

France

Ethiopia

S. Africa

Zambia

0 2 4 6



 785	
 786	
Figure 2.  The bulk QTL mapping experimental design is illustrated, as further 787	

described in the Materials and Methods.  788	
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 789	

Figure 3. Significant QTL peaks for France, Ethiopia, and South Africa crosses. A point 790	

for each ~8 kb window corresponds to the average difference in the frequency of the 791	

resistant parental strain’s allele between the high and low resistance F15 pools (i.e. 792	

“ancestry difference”, y-axis). Significant QTLs are denoted with an arrow. The South 793	

Africa cross includes a total of 10 significant QTLs on chromosome arm 2R. The 794	

significance threshold for primary peaks is approximately 0.16.  795	
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 796	

 797	

Figure 4. The locations of significant QTLs on the five euchromatic chromosome arms 798	

of D. melanogaster. The colors indicate ethanol resistance mapping crosses involving 799	

Ethiopia, South Africa, and France 305 and 364. The width of each box indicates the 800	

90% C.I. of each QTL. Intervals that are less than 10 kb in width are marked with 801	

triangles. Dotted gray lines indicate Mb increments.  802	
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 805	

Figure 5. Heat map depicting mean relative error between empirical data (from France 806	

crosses) and selected simulated data sets, based on the QTL mapping summary statistics 807	

compared. These plots each fix one of the three parameters with its value from the best-808	

matching parameter combination:  (A) environmental variance of 0.7, (B) gamma shape 809	

parameter of 6, and (C) 10 QTLs per cross. 810	
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0.5 1 2 4 8
0.5 4.98 4.71 4.56 4.44 4.38
0.6 3.89 3.60 3.45 3.35 3.30
0.7 2.68 2.43 2.31 2.27 2.28
0.8 2.61 2.50 2.49 2.53 2.56
0.9 6.86 8.13 6.83 9.23 8.41

10 20 30 40 50
0.5 4.44 4.68 4.91 5.08 5.18
0.6 3.35 3.53 3.73 3.84 3.93
0.7 2.27 2.48 2.63 2.72 2.79
0.8 2.53 2.67 2.75 2.79 2.82
0.9 9.23 7.13 5.69 8.80 7.61

10 20 30 40 50
0.5 2.68 2.40 2.43 2.48 2.55
1 2.43 2.40 2.49 2.59 2.66
2 2.31 2.43 2.58 2.67 2.74
4 2.27 2.48 2.63 2.72 2.79
8 2.28 2.51 2.66 2.76 2.82
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Figure 6. Heat map depicting power to detect genotype-phenotype associations after 814	

multiple testing correction, as a function of the frequency of causative variants and the 815	

sample size of individuals/strains, based on simulations (within a gamma shape parameter 816	

of 6 for the distribution of effect sizes) and the P value thresholds identified from the 817	

empirical analysis. (A) corresponds to the scenario in which full QTL regions were tested, 818	

while (B) corresponds to the scenario in which only population genetic outlier windows 819	

within QTL regions were tested. The mean population-wide numbers of loci that each 820	

simulation scenario required are also indicated. 821	
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5% 10% 20% 30% 40% 50%
50 0.0% 0.0% 0.0% 0.0% 0.1% 0.2%

100 0.0% 0.0% 0.2% 0.5% 1.4% 2.4%
200 0.0% 0.2% 1.5% 4.4% 8.5% 13.2%
500 0.1% 2.5% 14.1% 27.0% 38.9% 46.9%

1000 0.9% 12.7% 39.4% 57.6% 69.4% 75.7%
    Loci: 150.5 76.5 39.5 27.1 21.0 17.6

5% 10% 20% 30% 40% 50%
50 0.0% 0.1% 0.2% 0.5% 1.1% 1.6%

100 0.1% 0.3% 1.2% 2.7% 5.3% 7.8%
200 0.1% 1.1% 5.6% 12.1% 19.1% 25.6%
500 0.8% 8.0% 27.3% 43.4% 54.9% 62.7%

1000 3.2% 26.1% 57.3% 73.0% 81.7% 85.8%
    Loci: 150.5 76.5 39.5 27.1 21.0 17.6
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 824	

Figure 7. A mild positive correlation between ethanol resistance and cold resistance 825	

among 37 independent France inbred lines (r = 0.225; P = 0.0897), illustrating a potential 826	

signal of pleiotropy between these traits. 827	
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