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Abstract
More accurate predictions of the biological properties of chemical compounds would guide the 

selection and design of new compounds in drug discovery and help to address the enormous cost 

and low success-rate of pharmaceutical R&D. However this domain presents a significant challenge 

for AI methods due to the sparsity of compound data and the noise inherent in results from 

biological experiments. In this paper, we demonstrate how data imputation using deep learning 

provides substantial improvements over quantitative structure-activity relationship (QSAR) machine 

learning models that are widely applied in drug discovery. We present the largest-to-date successful 

application of deep-learning imputation to datasets which are comparable in size to the corporate 

data repository of a pharmaceutical company (678,994 compounds by 1166 endpoints). We 

demonstrate this improvement for three areas of practical application linked to distinct use cases;  i) 

target activity data compiled from a range of drug discovery projects, ii) a high value and 

heterogeneous dataset covering complex absorption, distribution, metabolism and elimination 

properties and, iii) high throughput screening data, testing the algorithm’s limits on early-stage noisy

and very sparse data. Achieving median coefficients of determination, R2 , of 0.69, 0.36 and 0.43 

respectively across these applications, the deep learning imputation method offers an unambiguous 

improvement over random forest QSAR methods, which achieve median R2 values of 0.28, 0.19 and 

0.23 respectively. We also demonstrate that robust estimates of the uncertainties in the predicted 

values correlate strongly with the accuracies in prediction, enabling greater confidence in decision-

making based on the imputed values. 

Introduction
The combination of deep learning and statistical imputation methods is seeing rapidly-growing 

success in a wide range of scientific domains including high-value materials discovery [1], [2], the 
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development of new chemicals for industrial applications [3], [4], battery development [5], and most

importantly for the context of this work small molecules drug discovery [6]–[11]. This success can be 

attributed to the predictive power of the deep learning methodology combined with the flexibility 

and practical advantages of the imputation framework, which can handle sparse datasets, and use 

existing, partial assay data to enhance the quality of predictions for missing values in the dataset [8]. 

Sparse datasets are common in experimental scientific domains, where it is extremely rare that all 

possible experiments are run on all possible subjects, often due to the cost and time associated with 

collecting experimental data [6], [8]. 

In this paper, we will focus on applications of deep learning imputation to the discovery of new 

drugs. This is a particularly attractive field for the application of artificial intelligence methods of 

many kinds [12], due to the high costs, long timescales and valuable output of pharmaceutical 

research and development. The average cost of a novel drug that succeeds in clinical trials and 

reaches the market is $2.6B [13]. This cost is driven by the high failure rate in the R&D process; only 

4% of drug discovery projects result in a marketed drug, and only 12% of candidate drugs that enter 

expensive and time-consuming clinical trials reach the market [14]. However, the value of an 

efficacious drug to a patient whose disease is cured or ameliorated may be incalculable, and the 

associated financial benefit to a pharmaceutical company can be commensurately large; a 

‘blockbuster’ drug will achieve sales measured in billions of dollars per year.

The low success rate of pharmaceutical R&D is, in large part, due to the complexity of the process 

and the ultimate goal. Drug discovery begins with a biological target implicated in a disease process. 

This is typically a protein involved in a biological pathway which, if inhibited or stimulated, will treat 

the disease; for example, inhibiting an essential protein in bacteria, thereby killing the organism, can 

result in an antibiotic, while stimulating the dopamine receptor in the brain can treat the symptoms 

of Parkinson’s disease. Once a suitable target has been identified, the objective of a drug discovery 

project is to identify a therapeutic that will achieve the desired effect on the target when dosed to a 

patient, while avoiding serious side effects. This process often begins by finding initial ‘hits’ that 

show activity against the target in an in vitro assay, which is followed by an iterative optimization 

process in which new chemical compounds are synthesized and tested to identify a candidate drug 

suitable for clinical trials. The design of a high-quality clinical candidate is a complex process, 

requiring multi-parameter optimization (MPO) of target activity and many other characteristics 

required in an efficacious and safe drug, often summarised as absorption, distribution, metabolism, 

elimination and toxicity (ADMET) properties. As compounds progress through the drug discovery 

process, more complex and expensive experiments are used to assess their likelihoods of success as 

a drug before a candidate is chosen for clinical trials in humans, subject to approval by the regulatory

authorities. The drug discovery process, from selection of a target to nomination of a clinical 

candidate, takes an average 5.5 years, and the complete R&D process through to launch of a new 

drug takes 13.5 years on average [14].

Clearly, the abilities to make accurate predictions of the best compounds to synthesize and which to 

progress to more expensive studies, based on initial experimental results, has the potential to 

dramatically improve the cost, time and success rate of drug discovery. These objectives are 

challenging due to the nature of the data available with which to build predictive models. Datasets 

are typically much smaller and sparser than those seen in traditional machine learning applications, 

such as image recognition and language processing. It is rare for a compound to have been 

measured in all relevant experiments, and no experiments are run on all potential compounds of 

interest. In a typical pharmaceutical company’s database, less than 1% of the possible experimental 

data points across all compounds of interest will have been measured. In addition to sparsity issues, 



drug discovery data contain a high degree of experimental noise due to the variability inherent in 

biological assays [7]. Even when sources of experimental variability are minimized, the results for a 

given compound in an experimental assay will often vary by 0.5 log units [15].

A wide range of machine learning methods has been applied to predict compound activities and 

ADMET properties [16]. These quantitative structure-activity relationship (QSAR) models relate 

features calculated from chemical structures (often referred to as ‘descriptors’) to one or more 

target activities or ADMET properties. A comparison of deep learning imputation with the broader 

field of machine learning in the context of drug discovery is given by Irwin et al. [7]. A successful 

implementation is the Alchemite method [1]–[5], which has outperformed other data imputation 

techniques both in terms of accuracy and modelling performance [8] as well as flexibility of 

implementation and robustness to the challenges associated with practical drug discovery 

applications [7]. 

Alchemite demonstrated qualitative benefits over a variety of other machine learning methods, 

including random forests [17], deep neural networks [18], matrix factorization [19], [20] and 

purpose-made drug discovery imputation routines [21], [22] on two benchmark drug discovery 

datasets [6]. These homogeneous datasets –  purely comprised of target activities – were also 

designed to mimic the challenging extrapolation expected in drug discovery applications, where the 

training set is ‘known chemistry’, and the test set requires extrapolation into ‘new chemistry’ that 

has not yet been seen by the models [22]. This application also saw the ability for uncertainty 

estimates given by Alchemite to allow substantial enhancements to the predictive quality of models: 

By exploiting the bespoke uncertainty estimate for each prediction and focusing in on the most 

confident predictions, the effective accuracy of models exceeded a coefficient of determination (R2) 
of 0.9, compared to the headline figure of 0.44 on the entire dataset [6], [8]. This focusing effect is 

impossible for methods which do not provide a robust error bar for each individual prediction [8], 

and would not yield a benefit where the error bars are of low quality. 

The Alchemite method proved more robust than a suite of standard machine learning methods 

when applied to a real and active drug discovery project [7]. This application demonstrated that – in 

addition to coping with noise and sparsity –  Alchemite could address temporal evolution within 

datasets and included a mixture of heterogeneous endpoints in a single model. These endpoints can 

either be unrelated, in which case they are treated separately, or related through complex functions 

of multiple experimental measurements. These benefits of deep imputation were retained on the 

small-scale datasets typical of a drug discovery project, in contrast with many deep learning methods

that rely on large-scale data sets to gain value over simpler machine learning methods in this field. 

The method also successfully assisted in finding a novel, active anti-malarial compound when 

combined with generative methods [8]–[10], [23]. This application relied on so-called ‘virtual’ 

models [8], which depend only on calculated molecular descriptors, allowing virtual screening of the 

generated compounds, which had not yet been synthesized or tested experimentally. The use of 

Alchemite’s robust uncertainty estimates in combination with probabilistic MPO techniques [24] 

enabled the confident selection of a compound for synthesis and experimental validation.

The above-reported successes have all, to date, been achieved on small- to moderately-sized data 

sets. For typical drug discovery projects, this would mean hundreds to a few thousand compounds 

(rows), and tens of experimental endpoints (columns) in the data matrix [7]. While the Alchemite 

method has fulfilled the criteria for a robust and practically useful methodology to tackle challenging

applications in the field of drug discovery [7], a key requirement is to prove the scalability of the 



method to large datasets [8], comparable in scale to data available to a moderate-to-large 

pharmaceutical company. Such a ‘large’ dataset would contain of order one million compounds and 

thousands of experimental endpoints.

Scalability has been the focus of other imputation methods, such as the MACAU matrix factorization 

method [19], which in order to achieve scalability to millions of compounds as desired, results in a 

linear model which will only capture a shallow degree of the correlation between endpoints [8]. In 

contrast to this, the Alchemite method presents a non-linear deep learning methodology, which has 

provably exploited multiple experimental correlations to predict complex and multi-factorial cell-

based properties. 

Application to large-scale databases of compound data will bring further benefits. Learning from 

inter-assay correlations across much larger numbers of compounds than would be explored in a 

single project will enable this information to be leveraged across multiple drug discovery projects 

and biological targets. This will improve the accuracy of predictions and may reveal unexpected 

historical correlations between experimental endpoints. Virtual models derived from such a ‘global’ 

model will improve the virtual screening of new compounds. Imputation of new activities for existing

compounds may reveal opportunities for repurposing compounds for different therapeutic 

objectives. These applications will unlock enormous value from the wealth of data stored in 

pharmaceutical companies’ data repositories, but whose full potential is, as yet, unrealized. 

Furthermore, achieving these objectives with a single multitarget model across all compounds and 

endpoints will reduce computational complexity and cost, versus building and updating models for 

individual projects on an ad-hoc basis.

In this work we show the first successful application of the Alchemite deep imputation methodology 

to a pharma-scale data set within a reasonable computational cost. This important step 

demonstrates that the method meets the requirements for implementation as an overarching 

modelling method to realize the benefits outlined above. To evaluate the algorithm’s ability to 

successfully handle different kinds of data on the large-scale dataset used in this work, we 

considered three relevant drug discovery applications:

 Project Activities: In a drug discovery project, compounds are assessed using assays to test for

activity against one or more biological targets. The Project Activities endpoints were used to

evaluate the ability  to prospectively predict the activities (measured as the concentration at

which half of the maximum inhibition is observed – IC50) of compounds against targets. The data

are aggregated across many drug discovery projects, and therefore there are 178 different target

columns.

 ADMET:  This  dataset  was  used  to  evaluate  the  ability  to  predict  a  broad  range  of  ADMET

endpoints,  including  compound solubility  and  cell  permeability,  the  extent  that  compounds

inhibit common drug-metabolizing enzymes, metabolic stability and toxicity endpoints.

 High-throughput Screening (HTS): At the inception of a drug discovery project, initial chemical

starting points may be identified by a broad and coarse sweep of a wide diversity of compounds

to identify those that show indications of  activity against  the target  in question.  These HTS

campaigns may test hundreds of thousands, or even millions, of compounds. To achieve this at

an acceptable cost and time, high-throughput assays are employed that are often noisier than

the later project activity assays. The majority of data points will also show little or no activity,

which creates a significant bias in the resulting data set. The objective of this application was to

assess the ability to predict HTS activities, despite the limitations in these data. In particular, we



wished to test the ability of Alchemite models to predict the activities of a full HTS screen (Assay

X) from the results of a much smaller pilot screen.

Methods
The deep imputation method used in this work, Alchemite, is based on the iterative application of a 

deep learning algorithm to the sparse experimental data to identify and leverage non-linear 

correlations between endpoints. It has been previously described in detail in Verpoort et al. [25] and 

its application to drug discovery data was described in references [6], [7]. Here we will provide a 

high-level summary of the method.

Two classes of model are used in this work:  

 Imputation: These models generate predictions for the test data points using sparse assay

data as input, in addition to molecular descriptors, and test an Alchemite model’s ability to

‘fill in the gaps’ in the experimental data for compounds that have been synthesized and

tested in some assays.

 Virtual: These models are built to expect only molecular descriptors as input. They test an

Alchemite model’s ability to make predictions based only on compound structure, i.e. for a

compound that has not yet been synthesized or tested.

To train an Imputation model, missing values in the sparse experimental data are first given 

provisional estimates of numbers drawn from a distribution approximating that of the existent 

experimental data for each endpoint.  For each of the N  endpoints, the other N−1 endpoints and 

the structural descriptors are used to build models of the experimental data in the endpoint, and 

this model is used to impute updated values for the initially missing data for each endpoint in 

parallel to obtain improved estimates for each missing value.  This procedure is then iterated, using 

the estimates from iteration I−1 to generate the I th set of estimates.  Once the estimates are 

sufficiently converged, or the desired number of iterations has been carried out (typically two or 

three iterations) the algorithm returns the latest set of estimates as the predictions for all missing 

values in the dataset.

The Virtual model is trained similarly, except that the model is constrained not to use experimental 

endpoints as inputs, mimicking the later application to virtual compounds.  This approach still 

leverages non-linear correlations between endpoints through the iterative procedure, enabling 

improvements in performance over methods that simplify focus on predicting one endpoint at a 

time.  Predictions can then be made taking as input the chemical descriptors of a compound and 

iteratively generating estimates for every endpoint, returning the latest set of consistent estimates. 

For both Imputation and Virtual models, the underlying modelling of each endpoint is performed 

using a proprietary ‘gradient’ kernel. In contrast to standard neural network sigmoid or rectifier 

activation functions, which can be envisaged as beginning with a large-length-scale approximation of

a function and gradually adding more fine detail, the gradient kernel begins with detailed local 

models and gradually stitches them together into a cohesive whole. This enables more accurate 

capture of effects like activity cliffs – where a response rapidly varies as a function of the inputs – 

and is generally on the order of a thousand times quicker to train due to the inherent 

parallelizability.  

One of the most important elements of the deep imputation model is the ability to quantify the 

uncertainty in predictions. This enables one to separate the most confident predictions from 



uncertain predictions, targeting future resources only on those compounds with the highest 

probability of success.  An ensemble of sub-models is used to quantify uncertainty for each endpoint

at each iteration. Each sub-model is trained on a bootstrap sample of the available data to provide 

accurate treatment of the variation within the data. 

One additional complexity of the drug discovery data used here is that multiple endpoints are 

frequently measured in the same experimental assay.  One endpoint from a given assay should 

therefore not be used as input to predict another endpoint from the same assay, as at test-time 

either both endpoints will have been measured for a given compound or neither will be available.  

To capture this, Alchemite includes generalized, asymmetric constraints on column dependencies. 

These can also be used to ensure assays that are typically run late in a program are not used as input

to predict assays run earlier for a given compound (whilst still allowing the early-stage assays to be 

used as input to predict the late-stage assays).

Comparison QSAR models
A random forest (RF) model was also constructed for each individual endpoint as representative 

examples of QSAR methods. These RF models were generated using the scikit-learn implementation 

of regression RF [26] and take compound descriptors as input only. 

A wider comparison of QSAR methods was previously undertaken for project data by Irwin et al. [7]. 

This included partial least squares,  RF, Gaussian process, and radial basis function models and found

RF models to be broadly representative of the accuracy of QSAR methods. Advanced (multitarget) 

methods such as deep neural networks and matrix factorization were compared to Alchemite by 

Whitehead et al. [6].  In all cases, Alchemite’s deep imputation method was found to outperform the

other approaches in each case significantly.

Metrics
All models were evaluated on an independent test set using two statistics: The coefficient of 

determination (R2), defined as

R2=1−∑
i

¿¿¿,

which takes values in the range ¿, where 1 indicates a perfect model, 0 indicates a model no better 

than random, and negative values indicate predictions that are worse than random; and the root 

mean square error (RMSE)

RMSE=√ 1N∑
i=1

N

¿¿¿,

where N  is a number of compounds in the set, y i
pred is  the predicted value and y i

obs is the 

experimentally observed value for data point i.  The RMSE is expressed in the same units as the 

observed property values. R2 values were calculated only for endpoints with greater than five data 

points to give sufficient statistical relevance.

Dataset
All modelling data are proprietary and were provided by Takeda Pharmaceutical Company Ltd. Prior 

to modelling all qualified and out-of-range data were removed. The remaining data were 

transformed into units more amenable for machine learning (e.g. log transformations were applied 

to columns which varied many orders of magnitude). To maintain full modelling rigour, the dataset 



was split into training, validation and independent test sets. The full training data set contained 

678,994 compounds and 1166 experimental endpoints; the breakdown across the three applications

described above is shown in Table 1.

The blind test set contained a total of 17,660 data points across endpoints for each application, as 

described in Table 2.

The independent, blind test sets were prepared by Takeda and withheld during the model building 

and internal validation process. Predictions for the blind test sets were provided to Takeda before 

the experimentally observed values were revealed. The test sets were generated by Takeda in the 

following ways:

 Project  Activities: The  test  data  points  were  selected  temporally,  i.e.  the  most  recently

measured data points were withheld, to test the models’ abilities to predict the activities of the

most recently synthesized compounds and assay results.

 ADMET:  The test data points were selected randomly to test the models’  abilities to predict

ADMET properties for  a  wide diversity  of  compounds.  This  selection method gives  an even

coverage of each type of endpoint and value according to their prevalence in the overall dataset.

 HTS: A small proportion of the test data points were selected randomly. However, the majority

were derived from a single assay (Assay X), for which the results of a pilot screen were provided

in the training set, but the results from the remaining compounds in the full screening collection

were withheld.

Compound Descriptors
Molecular descriptors were calculated with the StarDrop™ Auto-Modeller™ module. These 

descriptors can be computed from the atom and bond graph structure of any compound, including 

virtual compounds, and therefore all descriptors are present for each compound in the dataset. The 

set of descriptors comprises common whole-molecule properties, including calculated lipophilicity, 

molecular weight, topological polar surface area, and McGowan’s volume, as well as counts of

300 chemical substructures defined as SMARTS patterns [27], which are essentially 

regular expressions for chemical subgraph pattern queries.

Results
Here we show the results of the Alchemite models compared with RF models for each endpoint in 

the independent test set. Because the data for each application represent a large number of 

endpoints, as shown in Table 1, we show a profile of endpoint results, ordering the R2 values 

ordered from highest to lowest for each method (See Figure 1 for example). Alchemite also provides 

uncertainty estimates for each prediction and we also present a comparison of the uncertainty 

estimates with the observed errors for the independent test. 



Project Activities Test Results
Figure 1 shows the profile over Project Activity endpoints for the independent test data. This plot 

includes curves showing the performance of Alchemite Imputation and Virtual models relative to the

RF models. The median R2 for the Alchemite Imputation model is 0.69, compared to 0.28 for RF 

models. The median R2 for the Alchemite Virtual model is 0.55 which is also substantially higher 

than the RF models, showing that the multitarget deep learning with sparse experimental data trains

a very high-quality virtual model. 

Each of the points in the profile shown in Figure 1 is an R2 value for predictions of a different 

endpoint. In the case of the Project Activity endpoints, these are all measurements of activity against

a target. Scatter plots and uncertainty analysis are given for a  focused example in the 

supplementary information better to show how these predictions can be used in practice, while 

inspecting the quality of the models and the uncertainty predictions.

ADMET Test Results
The results for the independent test set for the ADMET endpoints are shown in Figure 2, and a we 

can see a similar trend to the above example. The best model is the Alchemite Imputation model 

with a median R2 of 0.36, close behind is the Alchemite Virtual model with a median R2 of 0.32 and 

finally, RF models achieve a median R2 of 0.19. 

The ADMET endpoints represent a wide variety of different data types, and it is interesting to 

compare the profile of results for different classes of ADMET endpoints. In particular, Figure 3 shows

the accuracy profiles for pIC50 and pEC50 (the negative base-10 logarithm of the concentration in 

Molar units which exhibits 50% of the maximum effect) endpoints respectively. From these plots, 

one can see that the Alchemite models have a much larger advantage over RF for the pEC50 

endpoints than for pIC50 endpoints. The Alchemite Imputation model outperforms the Alchemite 

Virtual model for the pEC50 endpoints, whereas the two models are roughly equivalent for pIC50 

endpoints. This result is consistent with those seen in smaller project datasets, where Alchemite 

tends to show the greatest benefit for complex, multi-mechanistic endpoints [7]. While a pIC50 

measurement relates to the inhibition of a single target protein, pEC50 measurements result from 

more complex assays that may be influenced by multiple factors; for example, the activity of a 

compound in a cell will relate not only to its activity against a target protein, but also permeability 

through the cell membrane, solubility in the buffer solution and binding to other proteins in the 

cellular matrix. This demonstrates one of Alchemite’s advantages, namely the ability to learn directly

from relationships between experimental endpoints, which may capture these other factors, to 

make better predictions.

HTS Test Results

Figure 4 shows the profile of R2 results over the HTS endpoints in the independent test set. In this 

case, the Alchemite Virtual model is essentially equivalent to the RF models, whereas the Alchemite 

Imputation results are an improvement. The median R2 for RF is 0.23, similar to the Alchemite 

Virtual model with a median R2 of 0.27, but lower than the Alchemite Imputation model, which 

achieved an R2 of 0.43. This shows that there is additional information in the correlations between 

endpoints and in the structure of the training data that can be exploited by using Imputation on HTS 

data. 

One objective of the HTS test was to assess the ability of the Alchemite models to predict activities 

for the full screening deck for Assay X, based on the pilot screen data for this assay. However, none 



of the models considered in this study showed sufficient predictive power for this endpoint, and the

R2 values were close to zero (Alchemite Imputation 0.07, Alchemite Virtual 0.12, RF -0.17). There are

several possible explanations for this:

 The  overlap  in  compounds  with  data  measured  in  Assay  X  and  other  endpoints  in  the

training set is lower than is typical for other endpoints in the training set. The maximum

overlap corresponds to only 10% of the compounds for Assay X.

 The  distribution of  percentage  inhibition data  is  challenging  to  model.  For  Assay  X,  the

distribution is shown in Figure 5. The large majority of the measured values are distributed

around 0%, plus or minus 10% and only a very small proportion of compounds are measured

to have significant activities, as we would expect from HTS. Furthermore, the noise in the

measured values for inactive compounds may be affecting the ability of the accuracy metric

to distinguish good from poor models and guide the model optimization. It may be possible

to transform the percentage inhibition data to reduce the impact of this noise.

In order to test the impact of the bias in the distribution of observed values, a new version of the 

model was built in which the active data were oversampled by duplicating the active compounds 15 

times relative to the inactives. This did not improve the accuracy of the resulting model.  This 

indicates that the problem is less likely to be due to sampling bias and suggests that the algorithms 

may be attempting to model the noise in the data rather than the signal.

Taking Uncertainties in Predictions into Account
To test the accuracy of the uncertainty estimates produced by Alchemite, we can plot the root-

mean-square error (RMSE) in prediction versus the most confidently predicted fraction of the test 

set, i.e. smaller fractions correspond to the predictions with the smallest error bars (according to the

algorithm). If the uncertainties are conveying useful information, we would expect the most 

confidently predicted fractions of the test set to show better accuracy, i.e. a lower RMSE.

The quality of uncertainty predictions, averaged across all 178 Project Activity endpoints, as a 

function of the most confidently predicted fraction of the dataset, is shown in Figure 6. All of the 

Project Activity endpoints are in the same units (pIC50, the negative base-10 logarithm of the 

concentration in Molar units which exhibits 50% of the maximum target inhibition), and this average 

is well-defined. For comparison, the uncertainties in the RF predictions were calculated as the 

standard deviation of predictions from the ensemble of decision trees. Figure 6 shows that the error 

bars produced by all three methods, on average, provide some useful information in identifying 

more accurate predictions. However, the benefit from RF error bars is much smaller than that of the 

Alchemite uncertainty estimates. The decrease in RMSE correlates much more strongly with the 

error bars for both the Virtual and Imputation Alchemite models. In addition, the absolute RMSE is 

much higher, on average, for RF predictions. The Alchemite Virtual model has a lower RMSE, and the

Imputation model has the best RMSE. An example of a similar analysis for an individual Project 

Activity endpoint is provided in the supplementary information in Figures S1 and S2.

We can also explore the ability of Alchemite to focus on the most confident predicted values in the 

more heterogeneous ADMET endpoints. Unlike the Project Activity endpoints, the mixed units across

the ADMET endpoints mean that the error analysis cannot be summarised in a single graph for the 

full data set in analogy to Figure 6. We consider some illustrative examples of individual endpoints in

Figures 7 and 8, with additional uncertainty quantification plots shown in figures S3 and S4 of the 

supplementary information. Figure 7 reflects the performance of Alchemite permeability models – 



the logarithm of the basolateral to apical permeability in a cell line (Papp B to A) – by comparing the 

most confident 50% of predictions with all predictions for both the Imputation (left) and Virtual 

(right) models. The most confident predictions are more closely clustered to the identity line, and 

the clear outliers have been dropped. 

Figure 8, plots the predictions for an unrelated pEC50 endpoint and shows that, while the predictions 

for this endpoint follow the observed values quite well, there is more scatter in the predictions, and 

some points have large uncertainty estimates. That is to say, predictions for this endpoint are 

accurate, but not precise. If more precision is required, we can again focus in on the most confident 

predictions. In this instance, we show the most confident 25% of predictions according to the 

Alchemite error bars, and these predictions are clustered around the identity line in a tighter 

grouping than the baseline model.

We can see that the correlation between the most confident and accurate results is also strong for 

these models, even when the baseline R2 is not high. This importantly allows the models to be 

useful even in situations where they would be otherwise discarded due to a poor correlation for the 

full test set. The correlations of RMSE with the confidence in predictions data for these endpoints 

are shown Figures S3 and S4 in the supplementary information and show a similar result to that of 

Figure 6. These confirm the benefits of quantifying uncertainty for diverse endpoints.

Computational Resources

Depending on hyperparameters, it takes 8-16 hours to train this model on an AWS EC2 m5.4xlarge 

instance, (64 GiB of Memory, 16 vCPUs).  A larger cost is incurred for hyperparameter optimisation, 

for which thetime can be estimated as T hyp≈1.3×N fold N samplesT base, where T base is the base training

time for a dataset, N samples is the number of hyperparameter optimisation samples required for 

convergence (usually 20-50), and N fold  is the number of cross-validation folds. However, following an

initial hyperparameter optimisation the model can be updated with new data in the time taken for 

training, unless there is a significant change in the overall structure of the data set. Furthermore, the

hyperparameter optimisation process can be further parallelised over the cross-validation folds to 

reduce the overall time by a factor of N fold .

Conclusions
Some general conclusions can be drawn across all applications. Alchemite Imputation models 

consistently outperform RF models, and generally outperform Alchemite Virtual models. This 

highlights a benefit of deep learning imputation, which can learn directly from the relationships 

between experimental endpoints and gain valuable information, even from very limited 

experimental data, to more accurately fill in missing experimental values. In all applications, the 

Alchemite Virtual model performed better than or equivalently to RF. The Alchemite algorithm is 

competitively fast when compared to other deepe learning methods and was applied to a pharma-

scale data set within a reasonable computational cost. 

We've demonstrated that the Alchemite uncertainty estimates correlate strongly with the accuracy 

of the corresponding predictions, unlike those derived from random forest ensemble-based 

uncertainties. This result is particularly exciting because generating robust and objectively useful 

uncertainty estimates from neural networks remains a major challenge [28]. Valid uncertainty 

estimates are essential to the effective use of models; understanding where a result is likely to be 

sufficiently accurate enables high-quality compounds to be identified with confidence while avoiding



missed opportunities by incorrectly discarding a potentially good compound due to an uncertain 

prediction [15].

There were endpoints which could not be modelled by any method for all applications (i.e. the 

rightmost points in Figures 1-4). Without heavy preprocessing, all large data sets will have such 

endpoints, especially on the repository-wide scale. We should not expect to be able to model all 

endpoints, particularly when the data are noisy or where few data points are available. However, it 

is notable that the inclusion of noisy and uncorrelated endpoints in the data set did not have a 

detrimental effect on the performance of the Alchemite models for the majority of endpoints. This 

contrasts with other multitarget modelling approaches that benefit where there are strong 

correlations between endpoints, but suffer a detrimental effect from the introduction of 

uncorrelated endpoints into the data set [29].

There are also some more specific conclusions we can draw for each of the three individual 

applications:

Project Activities Conclusions: For the Project Activity endpoints, all of the Alchemite models 

significantly outperform RF, showing the method is very effective on activity type endpoints. The 

results from the independent test were consistent with those from the internal validation; this is 

remarkable because the test set selected by Takeda Pharmaceuticals was temporally based, 

representing the most relevant and recent compounds in the corresponding project endpoints. 

Therefore, the results indicate the consistency and utility one could expect when deploying 

Alchemite models in real projects.

As expected, the Alchemite Imputation model slightly outperforms the Virtual model because the 

former model has access to more information, in the form of sparse experimental data. This shows 

that the cross-correlations between experimental endpoints offer significant practical utility, and it is

sensible to exploit this where possible.

HTS Conclusions: The Alchemite Imputation model outperforms the Alchemite Virtual and RF 

models on HTS data, which represent some of the most challenging and noisy data. However, the 

prediction of the full screening collection for ‘Assay X’ based on an initial pilot screen was not 

possible with any of the models. One approach to addressing this may be to apply a classification 

method, but this is beyond the scope of this study.

ADMET Conclusions: For ADMET endpoints, both Alchemite Imputation and Virtual models 

outperform RF on the full data set, and the Imputation model achieves higher accuracies than the 

Virtual model. Individual ADMET endpoints are less likely to correlate, as the different endpoints are 

often quite distinct, and therefore we see a smaller improvement of the Alchemite Imputation 

model over the Alchemite Virtual model and RF. However, more complex experimental endpoints 

often depend on multiple factors that may be captured by endpoints derived from simpler assays, 

and, in these cases, we see a more substantial improvement of the Alchemite models over 

conventional QSAR methods such as RF. This represents a sizeable potential value because the 

simpler assays are typically lower cost and higher throughput than the more complex, cell-based 

assays and hence are often used earlier in a drug discovery project. Imputation can better leverage 

the results from these earlier assays to more accurately select the best compounds for more 

expensive, downstream studies. 

We note that endpoints derived from the same experimental assay are not used as input to predict 

one another in this study. However, in this study, we have taken a very conservative approach to 



constrain the dependencies between assay endpoints; for example, endpoints that are not 

necessarily measured together, such as solubility measurements at different pH values, have also 

been constrained not to impute one another. This does not need to be the case; solubilities 

measured at different pH values could be defined as independent inputs, allowing solubilities at one 

pH value to be used to predict solubilities measured at different pH values. We would expect the use

of such related, but independent endpoints to further improve the accuracy of the Alchemite 

models. Such a use could, for example, enable accurate prediction of solubilities at multiple pH 

values to be made based on a single measurement, further reducing the experimental resources 

required.

Supplementary Information: 

There is supplementary information detailing further specific examples of the benefits of uncertainty

estimation.
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Table 1: The breakdown of the training data in terms of the three applications (Project Activities, HTS, ADMET) and the 
number of endpoints, compounds and data points, along with a measure of sparsity.

Application Number of 

Endpoints

Number of 

Compounds

Total Number of 

Data Points

Sparsity 

(% filled)

Project 

Activities

178 4,501 36,274 4.5

HTS 748 662,635 17,951,700 3.6

ADMET 240 30,495 117,097 1.6

Table 2: A summary of the number of test points for each dataset (Project Activities, HTS, ADMET) and the selection 
strategy.

Application Number of

Test 

Points

Selection Strategy

Project Activities 1167 Temporal, i.e. most recently measured data points

HTS 10396 7858 from a single HTS screen (Assay X), else random

ADMET 6097 Random
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