References
1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected
with 2019 novel coronavirus in Wuhan, China. Lancet .
2020;395(10223):497-506.
2. Dhama K, Khan S, Tiwari R, et al. Coronavirus disease 2019-COVID-19.Clinical Microbiol Rev . 2020;33(4):e00028-20.
3. Price-Haywood EG, Burton J, Fort D, Seoane L. Hospitalization and
mortality among black patients and white patients with COVID-19.New Engl J Med . 2020;382(28):2634-2543.
4. Kashyap S, Gombar S, Yadlowsky S, et al. Measure what matters: counts
of hospitalized patients are a better metric for health system capacity
planning for a reopening. J Am Med Inform Assoc .
2020;27(7):1026-1131.
5. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of
coronavirus disease (COVID-19) outbreak. J
Autoimmun .2020;109:102433.
6. Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19
Cytokine Storm; What We Know So Far. Front Immunol. 2020;11:1446.
7. Liu F, Li L, Xu MD, et al. Prognostic value of interleukin-6,
C-reactive protein, and procalcitonin in patients with COVID-19. J
Clin Virol .2020;127:104370.
8. Laing AG, Lorenc A, del Barrio IDM, et al. A dynamic COVID-19 immune
signature includes associations with poor prognosis. Nature
Medicine .2020;26:1623-1635.
9. Laguna-Goya R, Utrero-Rico A, Talayero P, et al. IL-6 based mortality
risk model for hospitalized patients with COVID-19. J Allergy Clin
Immunol . 2020;146(4):799-807.
10. Calabrese F, Pezzuto F, Fortarezza F, et al. Pulmonary pathology and
COVID-19. Virchows Arch. 2020;477(3):359-372.
11. Tabary M, Khanmohammadi S, Araghi F, et al. Pathologic features of
COVID-19: a concise review. Pathol Research &
Practice .2020;216:153097.
12. Spivak JL. Myeloproliferative neoplasms. New Engl J Med.2017;376(22):2168-2181.
13. Ramanathan G, Hoover BM, Fleischman AG. Impact of host, lifestyle,
ad environmentl factors in the pathogenesis of MPN. Cancers .
2020;12(8):2038.
14. Mesa RA, Su Y, Woolfson A, et al. Development of a symptom
assessment in patients with myelofibrosis: qualitative study findings.Health Qual Life Outcomes . 2019; 17(1):61.
15. Jain T, Mesa RA, Palmer JM. Allogeneic stem cell transplantation in
myelofibrosis. Biol Blood Marrow Transplant .
2017;23(9):1429-1436.
16. Hasselbalch HC. Chronic inflammation as a promoter of mutagenesis in
esstential thrombocythemia, polycythemia vera and myelofibrosis.Leuk Res . 2013;37(2):214-220.
17. Bagca BG, Avcic B. The potential of JAK/STAT pathway inhibition by
ruxolitinib in the treatment of COVID-19. Cytokine and Growth
Factor Reviews . 2020;54:51-61.
18. Luo W, Li YX, Jiang LJ, Chen Q, Wang T, Ye DW. Targeting JAK-STAT
Signaling to Control Cytokine Release Syndrome in COVID-19. Trends
Pharmacol Sci. 2020;41(8):531-543.
19. Seif F, Khoshmirsafa M, Aazami H, Mohsenzadegan M, Sedighi G, Bahar
M. The role of JAK-STAT signaling pathway and its regulators in the fate
of T helper cells. Cell communication and signaling : CCS.2017;15(1):23.
20. Horvath CM. The Jak-STAT pathway stimulated by interferon gamma.Sci STKE. 2004;2004(260):tr8.
21. Chen E, Mullally A. How does JAK2 V617F contribute to the
pathogenesis of myeloproliferative neoplasms? Hematol Am Soc
Hematol Educ Program . 2014;2014(1):268-276.
22. Bewersdorf JP, Jaszczur SM, Afifi S, Zhao JC, Zeidan AM. Beyond
Ruxolitinib: Fedratinib and Other Emergent Treatment Options for
Myelofibrosis. Cancer Manag Res. 2019;11:10777-10790.
23. Abedin S, Hamadani . Experimental pharmaceuticals for steroid
refractory acute graft-versus-host disease. J Exp Pharmacol .
2020;12:549-557.
24. Wang A, Singh K, Ibrahim W, et al. The promise of JAK inhibition for
treatment of sarcoidosis and other inflammatory disorders with
macrophage activation: a review of the literature. Yale J Biol
Med . 2020;93(1):187-195.
25. Mullally A, Hood J, Harrison C, Mesa R. Fedratinib in myelofibrosis.Blood Advances. 2020;4(8):1792-1800.
26. Schwartz DM, Bonelli M, Gadina M, O’Shea JJ. Type I/II cytokines,
JAKs, and new strategies for treating autoimmune diseases. Nat Rev
Rheumatol. 2016;12(1):25-36.
27. Campbell RA, Schwertz H, Holtz ED, et al. Human megakaryocytes
possess intrinsic antiviral immunity through regulated induction of
IFITM3. Blood. 2019;133(19):2013-2026.
28. Silver RT, Barel AC, Lascu E, et al. The effect of initial molecular
profile on response to recombinant interferon-alpha treatment in early
myelofibrosis. Cancer. 2017;123(14):2680-2687.
29. Silver RT, Vandris K, Goldman JJ. Recombinant interferon-alpha may
retard prgoression of early primary myelofibrosis: a preliminary report.Blood. 2011; 117(24):6669-6672.
30. Pizzi M, Silver RT, Barel A, Orazi A. Recombinant interferon-alpha
in myelofibrosis reduces bone marrow fibrosis, improves its morphology
and is associated with clinical response. Mod Pathol. 2015;
28(10):1315-1323.
31. Mikkelsen SU, Kjaer L, Bjørn ME, et al. Safety and efficacy of
combination therapy of interferon-α2 and ruxolitinib in polycythemia
vera and myelofibrosis. Cancer medicine. 2018;7(8):3571-3581.
32. Sørensen AL, Mikkelsen SU, Knudsen TA, et al. Ruxolitinib and
interferon-α2 combination therapy for patients with polycythemia vera or
myelofibrosis: a phase II study. Haematologica. 2019.
33. Heidel F, Hochhaus A. Holding CoVID in check through JAK? The
MPN-approved compound ruxolitinib as a potential strategy to treat
SARS-CoV-2 induced systemic hyperinflammation. Leukemia.2020;34(7):1723-1725.
34. Innes AJ, Cook LB, Marks S, et al. Ruxolitinib for
tocilizumab-refractory severe COVID-19 infection. Br J Haematol.2020.
35. Mesev EV, LeDesma RA, Ploss A. Decoding type I and III interferon
signalling during viral infection. Nature microbiology.2019;4(6):914-924.
36. Mead AJ, Milojkovic D, Knapper S, et al. Response to ruxolitinib in
patients with intermediate-1-, intermediate-2-, and high-risk
myelofibrosis: results of the UK ROBUST Trial. Br J Haematol.2015;170(1):29-39.
37. Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in
adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol.2020;146(1):110-118.
38. Merad M, Martin JC. Pathological inflammation in patients with
COVID-19: a key role for monocytes and macrophages. Nat Rev
Immunol. 2020;20(6):355-362.
39. Siu KL, Yuen KS, Castaño-Rodriguez C, et al. Severe acute
respiratory syndrome coronavirus ORF3a protein activates the NLRP3
inflammasome by promoting TRAF3-dependent ubiquitination of ASC.FASEB J. 2019;33(8):8865-8877.
40. Castaño-Rodriguez C, Honrubia JM, Gutiérrez-Álvarez J, et al. Role
of Severe Acute Respiratory Syndrome Coronavirus Viroporins E, 3a, and
8a in Replication and Pathogenesis. mBio. 2018;9(3):e02325-17.
41. Fung SY, Yuen KS, Ye ZW, Chan CP, Jin DY. A tug-of-war between
severe acute respiratory syndrome coronavirus 2 and host antiviral
defence: lessons from other pathogenic viruses. Emerging microbes
& infections. 2020;9(1):558-570.
42. Gordon DE, Jang GM, Boutiaddou M, et al. A SARS-CoV-2 protein
interaction map reveals targets for drug repurposing. Nature .
2020; 583:459-468.
43. Ning X, Wang Y, Jing M, et al. Apoptotic caspases suppress type I
interferon production via the cleavage of cGAS, MAVS, and IRF3.Molecular Cell . 2019;74:19-31.
44. Aittomäki S, Pesu M. Therapeutic targeting of the Jak/STAT pathway.Basic Clin Pharmacol Toxicol. 2014;114(1):18-23.
45. Giudice V, Pagliano P, Vatrella A, et al. Combination of Ruxolitinib
and Eculizumab for Treatment of Severe SARS-CoV-2-Related Acute
Respiratory Distress Syndrome: A Controlled Study. Front
Pharmacol. 2020;11:857.
46. La Rosée F, Bremer HC, Gehrke I, et al. The Janus kinase 1/2
inhibitor ruxolitinib in COVID-19 with severe systemic
hyperinflammation. Leukemia. 2020;34(7):1805-1815.
47. Cao Y, Wei J, Zou L, et al. Ruxolitinib in treatment of severe
coronavirus disease 2019 (COVID-19): A multicenter, single-blind,
randomized controlled trial. J Allergy Clin Immunol.2020;146(1):137-146.e133.
48. Jamilloux Y, Henry T, Belot A, et al. Should we stimulate or
suppress immune responses in COVID-19? Cytokine and anti-cytokine
interventions. Autoimmunity reviews. 2020;19(7):102567.
49. Cevik M, Tate M, Lloyd O, et al. SARS-CoV-2, SARS-CoV, and MERS-CoV
viral load dynamics, duration of viral shedding and inectiousness: a
systematic review and meta-analysis. Lancet Microbe. 2020; Epub
Nov 19.
50. Rhee C, Kanjilal S, Baker M, Klompas M. Duration of SARS-CoV-2
infectivity: when is it safe to discontinue isolation? Clin Infect
Dis . 2020;Epub Aug 25.
51. Bullard J, Dust K, Funk D, et al. Predicting infectious SARS-CoV-2
from diagnostic samples. Clin Infect Dis . 2020;Epub May 22.
52. Avanzato VA, Matson MJ, Seifert SN, et al. Case study: prolonged
infectious SARS-CoV-2 shedding from an asymptomatic immunocompromised
individual with cancer. Cell . 2020;Epub Nov 4.
53. Rodriguez-Grande C, Adan-Jimenez J, Catalan P, et al. Inference of
active viral replication in cases with sustained positive RT-PCRs from
SARS-CoV-2. J Clin Microbiol . 2020;Epub Nov 25.
54. O’Shea JJ, Plenge R. JAKs and STATs in immune regulation and immune
mediated disease. Immunity . 2012;36(4):542-550.
55. Yeleswaram S, Smith P, Burn T, et al. Inhibition of cytokine
signaling by ruxolitinib and implications for COVID-19 treatment.Clin Immunol. 2020;218:108517.
56. Prakash K, Richman D A case report of disseminated histoplasmosis
and concurrent cryptococcal meningitis in a patient treated with
ruxolitinib. BMC Infect Dis . 2019;19:287.
57. Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T Cell
Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and
Unexposed Individuals. Cell. 2020;181(7):1489-1501.e1415.
58. Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced Host
Response to SARS-CoV-2 Drives Development of COVID-19. Cell.2020;181(5):1036-1045.e1039.
59. Bohn JP, Gastl G, Steurer M. Long term treatment of hairy cell
leukemia with interferon-alpha: still a viable therapeutic option.Memo . 2016;9:63-65.
60. Hasselbalch HC, Holmstrom MO. Perspectives on interferon-alpha in
the treatment of polycythemia vera and related myeloprolifeative
neoplasms: miinimal residual disease and cure? Semin Immunopath .
2019;41(1):5-19.
61. Yacoub A, Mascarenhas J, Kosiorek H, et al. Pegylated interferon
alpha-2a for polycythemia vera or essential thrombocythemia resistant or
intolerant to hydroxyurea. Blood . 2019;134(18):1498-1509.
62. Wang N, Zhan Y, Zhu L, e al. Retrospective multicenter cohort study
shows early interferon therapy is associated with favora ble clinical
responses in COVID-19 patients. Cell Host Microbe.2020;28(3):456-464.
63. Zhou Q, Chen V, Shannon CP, et al. Interferon-alpha2b treatment for
COVID-19. Front Immunol. 2020;11:1061.
64. Hung IFH, Lung KC, Tso EYK, et al. Triple combination of interferon
beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients
admitted to hospital with COVID-19: an open-label, randomised, phase 2
trial. Lancet . 2020;395(10238): 1695-1704.
65. Zheng F, Zhou Y, Zhou Z, et al. SARS-CoV-2 clearance in COVID-19
patients with Novaferon treatment: a randomized, open-label,
parallel-group trial. Int J Infect Dis . 2020;99:84-91.
66. Davoudi-Monfared E, Rahmani H, Hhalill H, et al. A randomized
clinical trial of the efficacy and safety of interferon beta-1a in
treatment of severe COVID-19. Antimicrob Agents Chemother.2020;64(9):e01061.
67. Pereda R, Gonzalez D, Rivero HB, et al. Therapeutic effetiveness of
interferon-alpha2b against COVID-19: the Cuban experience. J
Interferon Cytokine Res . 2020;40(9):438-442.
68. Fu W, Liu Y, Liu L, et al. An open-label, randomized trial of the
combination of IFN-kappa plus TFF2 with standard care in the treatment
of patients with moderate COVID-19. EClinicalMedicine . 2020;
27:100547.
69. Guarda G, Braun M, Staehli F, et al. Type I interferon inhibits
interleukin-1 production and inflammasome activation. Immunity.2011;34(2):213-223.
70. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine
Storm’ in COVID-19. J Infect. 2020;80(6):607-613.
71. Pairo-Castineira E, Clohisey S, Klaric L, et al. Genetic mechanism
of critical illness in Covid-19. Nature . 2020; Epub Dec 11.
72. Zheng Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN
immunity in patients with life-threatening COVID-19. Science .
2020;370(6515):eabd4570.
73. Bastard P, Rosen LB, Zheng Q, et al. Autoantibodies against type I
IFN in patients with life-threatening COVID-19. Science .
2020;370(6515):eabd4585.
Table 1. RT-PCR Cq values during Hospitalization*