Data accessibility
Data used in this study will be made publicly available in Figshare upon
acceptance.
5. References
Angelier, F., Weimerskirch, H., Barbraud, C., & Chastel, O. (2019). Is
telomere length a molecular marker of individual quality? Insights from
a long-lived bird. Functional Ecology , 33 (6), 1076–1087.
doi: 10.1111/1365-2435.13307
Arbeev, K. G., Verhulst, S., Steenstrup, T., Kark, J. D., Bagley, O.,
Kooperberg, C., … Aviv, A. (2020). Association of Leukocyte
Telomere Length With Mortality Among Adult Participants in 3
Longitudinal Studies. JAMA Network Open , 3 (2),
e200023–e200023. doi: 10.1001/jamanetworkopen.2020.0023
Asghar, M., Hasselquist, D., Hansson, B., Zehtindjiev, P., Westerdahl,
H., & Bensch, S. (2015). Hidden costs of infection: Chronic malaria
accelerates telomere degradation and senescence in wild birds.Science , 347 (6220), 436–438. doi: 10.1126/science.1261121
Asghar, M., Palinauskas, V., Zaghdoudi-Allan, N., Valkiūnas, G., Mukhin,
A., Platonova, E., … Hasselquist, D. (2016). Parallel telomere
shortening in multiple body tissues owing to malaria infection.Proceedings of the Royal Society B: Biological Sciences ,283 (1836), 20161184. doi: 10.1098/rspb.2016.1184
Atema, E., Mulder, E., Dugdale, H. L., Briga, M., van Noordwijk, A. J.,
& Verhulst, S. (2015). Heritability of telomere length in the Zebra
Finch. Journal of Ornithology , 156 (4), 1113–1123. doi:
10.1007/s10336-015-1212-7
Atema, E., Mulder, E., Noordwijk, A. J. van, & Verhulst, S. (2019).
Ultralong telomeres shorten with age in nestling great tits but are
static in adults and mask attrition of short telomeres. Molecular
Ecology Resources , 19 (3), 648–658. doi: 10.1111/1755-0998.12996
Auer, S. K., Bassar, R. D., Salin, K., & Metcalfe, N. B. (2016).
Repeatability of metabolic rate is lower for animals living under field
versus laboratory conditions. Journal of Experimental Biology ,219 (5), 631–634. doi: 10.1242/jeb.133678
Aviv, A., Hunt, S. C., Lin, J., Cao, X., Kimura, M., & Blackburn, E.
(2011). Impartial comparative analysis of measurement of leukocyte
telomere length/DNA content by Southern blots and qPCR. Nucleic
Acids Research , 39 (20), e134–e134. doi: 10.1093/nar/gkr634
Aviv, A., & Shay, J. W. (2018). Reflections on telomere dynamics and
ageing-related diseases in humans. Philosophical Transactions of
the Royal Society B: Biological Sciences , 373 (1741), 20160436.
doi: 10.1098/rstb.2016.0436
Baird, D. M. (2005). New developments in telomere length analysis.Experimental Gerontology , 40 (5), 363–368. doi:
10.1016/j.exger.2005.02.008
Barrett, E. L. B., Burke, T. A., Hammers, M., Komdeur, J., &
Richardson, D. S. (2013). Telomere length and dynamics predict mortality
in a wild longitudinal study. Molecular Ecology , 22 (1),
249–259. doi: 10.1111/mec.12110
Bateson, M., Brilot, B. O., Gillespie, R., Monaghan, P., & Nettle, D.
(2015). Developmental telomere attrition predicts impulsive
decision-making in adult starlings. Proceedings of the Royal
Society of London B: Biological Sciences , 282 (1799), 20142140.
doi: 10.1098/rspb.2014.2140
Bauch, C., Becker, P. H., & Verhulst, S. (2013). Telomere length
reflects phenotypic quality and costs of reproduction in a long-lived
seabird. Proc. R. Soc. B , 280 (1752), 20122540. doi:
10.1098/rspb.2012.2540
Bauch, C., Boonekamp, J. J., Korsten, P., Mulder, E., & Verhulst, S.
(2020). High heritability of telomere length, but low evolvability, and
no significant heritability of telomere shortening in wild jackdaws.BioRxiv , 2020.12.16.423128. doi: 10.1101/2020.12.16.423128
Beaulieu, M., Benoit, L., Abaga, S., Kappeler, P. M., & Charpentier, M.
J. E. (2017). Mind the cell: Seasonal variation in telomere length
mirrors changes in leucocyte profile. Molecular Ecology ,26 (20), 5603–5613. doi: https://doi.org/10.1111/mec.14329
Beaulieu, M., Reichert, S., Le Maho, Y., Ancel, A., & Criscuolo, F.
(2011). Oxidative status and telomere length in a long-lived bird facing
a costly reproductive event. Functional Ecology , 25 (3),
577–585. doi: 10.1111/j.1365-2435.2010.01825.x
Benetos, A., Verhulst, S., Labat, C., Lai, T.-P., Girerd, N., Toupance,
S., … Aviv, A. (2019). Telomere length tracking in children and
their parents: Implications for adult onset diseases. The FASEB
Journal , 33 (12), 14248–14253. doi: 10.1096/fj.201901275R
Bichet, C., Bouwhuis, S., Bauch, C., Verhulst, S., Becker, P. H., &
Vedder, O. (2020). Telomere length is repeatable, shortens with age and
reproductive success, and predicts remaining lifespan in a long-lived
seabird. Molecular Ecology , 29 (2), 429–441. doi:
10.1111/mec.15331
Bize, P., Criscuolo, F., Metcalfe, N. B., Nasir, L., & Monaghan, P.
(2009). Telomere dynamics rather than age predict life expectancy in the
wild. Proceedings of the Royal Society of London B: Biological
Sciences , 276 (1662), 1679–1683. doi: 10.1098/rspb.2008.1817
Blackburn, E. H. (1991). Structure and function of telomeres.Nature , 350 (6319), 569–573. doi: 10.1038/350569a0
Blévin, P., Angelier, F., Tartu, S., Bustamante, P., Herzke, D., Moe,
B., … Chastel, O. (2017). Perfluorinated substances and telomeres
in an Arctic seabird: Cross-sectional and longitudinal approaches.Environmental Pollution , 230 , 360–367. doi:
10.1016/j.envpol.2017.06.060
Bonier, F., & Martin, P. R. (2016). How can we estimate natural
selection on endocrine traits? Lessons from evolutionary biology.Proceedings of the Royal Society B: Biological Sciences ,283 (1843), 20161887. doi: 10.1098/rspb.2016.1887
Boonekamp, J. J., Bauch, C., Mulder, E., & Verhulst, S. (2017). Does
oxidative stress shorten telomeres? Biology Letters ,13 (5), 20170164. doi: 10.1098/rsbl.2017.0164
Boonekamp, J. J., Mulder, G. A., Salomons, H. M., Dijkstra, C., &
Verhulst, S. (2014). Nestling telomere shortening, but not telomere
length, reflects developmental stress and predicts survival in wild
birds. Proceedings of the Royal Society of London B: Biological
Sciences , 281 (1785), 20133287. doi: 10.1098/rspb.2013.3287
Boonekamp, J. J., Simons, M. J. P., Hemerik, L., & Verhulst, S. (2013).
Telomere length behaves as biomarker of somatic redundancy rather than
biological age. Aging Cell , 12 (2), 330–332. doi:
10.1111/acel.12050
Briga, M., & Verhulst, S. (2017). Individual variation in metabolic
reaction norms over ambient temperature causes low correlation between
basal and standard metabolic rate. Journal of Experimental
Biology , 220 (18), 3280–3289. doi: 10.1242/jeb.160069
Bürkner, P.-C. (2017). brms: An R Package for Bayesian Multilevel Models
Using Stan. Journal of Statistical Software , 80 (1), 1–28.
doi: 10.18637/jss.v080.i01
Campisi, J. (2005). Senescent Cells, Tumor Suppression, and Organismal
Aging: Good Citizens, Bad Neighbors. Cell , 120 (4),
513–522. doi: 10.1016/j.cell.2005.02.003
Casagrande, S., & Hau, M. (2019). Telomere attrition: Metabolic
regulation and signalling function? Biology Letters ,15 (3), 20180885. doi: 10.1098/rsbl.2018.0885
Cerchiara, J. A., Risques, R. A., Prunkard, D., Smith, J. R., Kane, O.
J., & Boersma, P. D. (2017). Magellanic penguin telomeres do not
shorten with age with increased reproductive effort, investment, and
basal corticosterone. Ecology and Evolution , 7 (15),
5682–5691. doi: https://doi.org/10.1002/ece3.3128
Chatelain, M., Drobniak, S. M., & Szulkin, M. (2020). The association
between stressors and telomeres in non-human vertebrates: A
meta-analysis. Ecology Letters , 23 (2), 381–398. doi:
10.1111/ele.13426
Criscuolo, F., Fowler, M. F., Fuhrer, V. A., Zahn, S., & Williams, T.
D. (2018). Telomere length, individual quality and fitness in female
European starlings (Sturnus vulgaris) during breeding. BioRxiv ,
416438. doi: 10.1101/416438
Dagnall, C. L., Hicks, B., Teshome, K., Hutchinson, A. A., Gadalla, S.
M., Khincha, P. P., … Savage, S. A. (2017). Effect of
pre-analytic variables on the reproducibility of qPCR relative telomere
length measurement. PLOS ONE , 12 (9), e0184098. doi:
10.1371/journal.pone.0184098
Dantzer, B., & Fletcher, Q. E. (2015). Telomeres shorten more slowly in
slow-aging wild animals than in fast-aging ones. Experimental
Gerontology , 71 , 38–47. doi: 10.1016/j.exger.2015.08.012
de Villemereuil, P., & Nakagawa, S. (2014). General Quantitative
Genetic Methods for Comparative Biology. In Modern Phylogenetic
Comparative Methods and their Application in Evolutionary Biology (pp.
287–303). doi: 10.1007/978-3-662-43550-2
Dohm, M. R. (2002). Repeatability estimates do not always set an upper
limit to heritability. Functional Ecology , 16 (2),
273–280. doi: https://doi.org/10.1046/j.1365-2435.2002.00621.x
Dorado-Correa, A. M., Zollinger, S. A., Heidinger, B., & Brumm, H.
(2018). Timing matters: Traffic noise accelerates telomere loss rate
differently across developmental stages. Frontiers in Zoology ,15 (1). Scopus. doi: 10.1186/s12983-018-0275-8
Douma, J. C., & Weedon, J. T. (2019). Analysing continuous proportions
in ecology and evolution: A practical introduction to beta and Dirichlet
regression. Methods in Ecology and Evolution , 10 (9),
1412–1430. doi: 10.1111/2041-210X.13234
Duval, S., & Tweedie, R. (2000). Trim and Fill: A Simple
Funnel-Plot–Based Method of Testing and Adjusting for Publication Bias
in Meta-Analysis. Biometrics , 56 (2), 455–463. doi:
https://doi.org/10.1111/j.0006-341X.2000.00455.x
Eastwood, J. R., Hall, M. L., Teunissen, N., Kingma, S. A., Hidalgo
Aranzamendi, N., Fan, M., … Peters, A. (2019). Early-life
telomere length predicts lifespan and lifetime reproductive success in a
wild bird. Molecular Ecology , 28 (5), 1127–1137. doi:
10.1111/mec.15002
Eastwood, J. R., Mulder, E., Verhulst, S., & Peters, A. (2018).
Increasing the accuracy and precision of relative telomere length
estimates by RT qPCR. Molecular Ecology Resources , 18 (1),
68–78. doi: https://doi.org/10.1111/1755-0998.12711
Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in
meta-analysis detected by a simple, graphical test. BMJ ,315 (7109), 629–634. doi: 10.1136/bmj.315.7109.629
Fairlie, J., Holland, R., Pilkington, J. G., Pemberton, J. M.,
Harrington, L., & Nussey, D. H. (2016). Lifelong leukocyte telomere
dynamics and survival in a free-living mammal. Aging Cell ,15 (1), 140–148. doi: 10.1111/acel.12417
Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to
quantitative genetics. Oliver & Boyd, Edinburgh & London. Retrieved
from https://www.cabdirect.org/cabdirect/abstract/19601603365
Fasching, C. L. (2018). Telomere length measurement as a clinical
biomarker of aging and disease. Critical Reviews in Clinical
Laboratory Sciences , 55 (7), 443–465. doi:
10.1080/10408363.2018.1504274
Ferrari, S. L. P., & Cribari-Neto, F. (2004). Beta regression for
modelling rates and proportions. Journal of Applied Statistics ,31 (7), 799–815. doi: 10.1080/0266476042000214501
Fitzpatrick, L. J., Olsson, M., Parsley, L. M., Pauliny, A., While, G.
M., & Wapstra, E. (2019). Tail loss and telomeres: Consequences of
large-scale tissue regeneration in a terrestrial ectotherm.Biology Letters , 15 (7), 20190151. doi:
10.1098/rsbl.2019.0151
Foote, C. G., Gault, E. A., Nasir, L., & Monaghan, P. (2011). Telomere
dynamics in relation to early growth conditions in the wild in the
lesser black-backed gull. Journal of Zoology , 283 (3),
203–209. doi: 10.1111/j.1469-7998.2010.00774.x
Foote, C., Vleck, D., & Vleck, C. M. (2013). Extent and variability of
interstitial telomeric sequences and their effects on estimates of
telomere length. Molecular Ecology Resources , 13 (3),
417–428. doi: 10.1111/1755-0998.12079
Fragueira, R., Verhulst, S., & Beaulieu, M. (2019). Morph- and
sex-specific effects of challenging conditions on maintenance parameters
in the Gouldian finch. Journal of Experimental Biology ,222 (7). doi: 10.1242/jeb.196030
Freckleton, R. P., Harvey, P. H., & Pagel, M. (2002). Phylogenetic
analysis and comparative data: A test and review of evidence.American Naturalist , 160 (6), 712–726. doi: 10.1086/343873
Geiger, S., Vaillant, M. L., Lebard, T., Reichert, S., Stier, A., Maho,
Y. L., & Criscuolo, F. (2012). Catching-up but telomere loss:
Half-opening the black box of growth and ageing trade-off in wild king
penguin chicks. Molecular Ecology , 21 (6), 1500–1510. doi:
https://doi.org/10.1111/j.1365-294X.2011.05331.x
Goerg, G. M. (2011). Lambert W random variables-a new family of
generalized skewed distributions with applications to risk estimation.Annals of Applied Statistics , 5 (3), 2197–2230. doi:
10.1214/11-AOAS457
Gomes, N. M. V., Shay, J. W., & Wright, W. E. (2010). Telomere biology
in Metazoa. FEBS Letters , 584 (17), 3741–3751. doi:
10.1016/j.febslet.2010.07.031
Grafen, A. (1989). The phylogenetic regression. Philosophical
Transactions of the Royal Society of London. Series B, Biological
Sciences , 326 (1233), 119–157. doi: 10.1098/rstb.1989.0106
Graham, J. L., Bauer, C. M., Heidinger, B. J., Ketterson, E. D., &
Greives, T. J. (2019). Early-breeding females experience greater
telomere loss. Molecular Ecology , 28 (1), 114–126. doi:
10.1111/mec.14952
Grunst, M. L., Raap, T., Grunst, A. S., Pinxten, R., & Eens, M. (2019).
Artificial light at night does not affect telomere shortening in a
developing free-living songbird: A field experiment: Artificial light at
night and telomere dynamics. Science of The Total Environment ,662 , 266–275. doi: 10.1016/j.scitotenv.2018.12.469
Hadfield, J. D., & Nakagawa, S. (2010). General quantitative genetic
methods for comparative biology: Phylogenies, taxonomies and multi-trait
models for continuous and categorical characters. Journal of
Evolutionary Biology , 23 (3), 494–508. doi:
10.1111/j.1420-9101.2009.01915.x
Hall, M. E., Nasir, L., Daunt, F., Gault, E. A., Croxall, J. P.,
Wanless, S., & Monaghan, P. (2004). Telomere loss in relation to age
and early environment in long-lived birds. Proceedings of the
Royal Society of London B: Biological Sciences , 271 (1548),
1571–1576. doi: 10.1098/rspb.2004.2768
Hartig, F. (2019). DHARMa: Residual diagnostics for hierarchical
(multi-level/mixed) regression models. URL:
https://CRAN.R-project.org/package=DHARMa .
Hau, M., Haussmann, M. F., Greives, T. J., Matlack, C., Costantini, D.,
Quetting, M., … Partecke, J. (2015). Repeated stressors in
adulthood increase the rate of biological ageing. Frontiers in
Zoology , 12 , 4. doi: 10.1186/s12983-015-0095-z
Haussmann, M. F., Winkler, D. W., Huntington, C. E., Nisbet, I. C. T.,
& Vleck, C. M. (2007). Telomerase activity is maintained throughout the
lifespan of long-lived birds. Experimental Gerontology ,42 (7), 610–618. doi: 10.1016/j.exger.2007.03.004
Heidinger, B. J., Blount, J. D., Boner, W., Griffiths, K., Metcalfe, N.
B., & Monaghan, P. (2012). Telomere length in early life predicts
lifespan. Proceedings of the National Academy of Sciences ,109 (5), 1743–1748. doi: 10.1073/pnas.1113306109
Heidinger, B. J., Herborn, K. A., Granroth-Wilding, H. M. V., Boner, W.,
Burthe, S., Newell, M., … Monaghan, P. (2016). Parental age
influences offspring telomere loss. Functional Ecology ,30 (9), 1531–1538. doi: 10.1111/1365-2435.12630
Herborn, K. A., Heidinger, B. J., Boner, W., Noguera, J. C., Adam, A.,
Daunt, F., & Monaghan, P. (2014). Stress exposure in early post-natal
life reduces telomere length: An experimental demonstration in a
long-lived seabird. Proc. R. Soc. B , 281 (1782), 20133151.
doi: 10.1098/rspb.2013.3151
Hinchliff, C. E., Smith, S. A., Allman, J. F., Burleigh, J. G.,
Chaudhary, R., Coghill, L. M., … Cranston, K. A. (2015).
Synthesis of phylogeny and taxonomy into a comprehensive tree of life.Proceedings of the National Academy of Sciences of the United
States of America , 112 (41), 12764–12769. doi:
10.1073/pnas.1423041112
Holtmann, B., Lagisz, M., & Nakagawa, S. (2017). Metabolic rates, and
not hormone levels, are a likely mediator of between-individual
differences in behaviour: A meta-analysis. Functional Ecology ,31 (3), 685–696. doi: https://doi.org/10.1111/1365-2435.12779
Hothorn, T., Van De Wiel, M. A., Hornik, K., & Zeileis, A. (2008).
Implementing a class of permutation tests: The coin package.Journal of Statistical Software , 28 (8), 1–23. doi:
10.18637/jss.v028.i08
Karell, P., Bensch, S., Ahola, K., & Asghar, M. (2017). Pale and dark
morphs of tawny owls show different patterns of telomere dynamics in
relation to disease status. Proc. R. Soc. B , 284 (1859),
20171127. doi: 10.1098/rspb.2017.1127
Kärkkäinen, T., Teerikorpi, P., Panda, B., Helle, S., Stier, A., &
Laaksonen, T. (2019). Impact of continuous predator threat on telomere
dynamics in parent and nestling pied flycatchers. Oecologia ,191 (4), 757–766. doi: 10.1007/s00442-019-04529-3
Kärkkäinen, T., Teerikorpi, P., Schuett, W., Stier, A., & Laaksonen, T.
(2021). Interplays between pre- and post-natal environments affect
early-life mortality, body mass and telomere dynamics in the wild.Journal of Experimental Biology , 224 (1). doi:
10.1242/jeb.231290
Lardy, S., Gasparini, J., Corbel, H., Frantz, A., Perret, S., Zahn, S.,
… Jacquin, L. (2017). Telomere erosion varies with sex and age at
immune challenge but not with maternal antibodies in pigeons.Journal of Experimental Zoology Part A: Ecological and Integrative
Physiology , 327 (9), 562–569. doi:
https://doi.org/10.1002/jez.2142
Levy, M. Z., Allsopp, R. C., Futcher, A. B., Greider, C. W., & Harley,
C. B. (1992). Telomere end-replication problem and cell aging.Journal of Molecular Biology , 225 (4), 951–960. doi:
10.1016/0022-2836(92)90096-3
López-Arrabé, J., Monaghan, P., Cantarero, A., Boner, W.,
Pérez-Rodríguez, L., & Moreno, J. (2018). Sex-specific Associations
between Telomere Dynamics and Oxidative Status in Adult and Nestling
Pied Flycatchers. Physiological and Biochemical Zoology . doi:
10.1086/697294
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer,
G. (2013). The Hallmarks of Aging. Cell , 153 (6),
1194–1217. doi: 10.1016/j.cell.2013.05.039
Ludlow, A. T., Zimmerman, J. B., Witkowski, S., Hearn, J. W., Hatfield,
B. D., & Roth, S. M. (2008). Relationship between Physical Activity
Level, Telomere Length, and Telomerase Activity. Medicine and
Science in Sports and Exercise , 40 (10), 1764–1771. doi:
10.1249/MSS.0b013e31817c92aa
Lynch, M., & Walsh, B. (1997). Genetics and analysis of quantitative
traits. Genetics and Analysis of Quantitative Traits. Retrieved
from https://www.cabdirect.org/cabdirect/abstract/19980108045
Martens, D. S., Van Der Stukken, C., Derom, C., Thiery, E., Bijnens, E.
M., & Nawrot, T. S. (2021). Newborn telomere length predicts later life
telomere length: Tracking telomere length from birth to child- and
adulthood. EBioMedicine , 63 , 103164. doi:
10.1016/j.ebiom.2020.103164
Martin-Ruiz, C. M., Baird, D., Roger, L., Boukamp, P., Krunic, D.,
Cawthon, R., … Von Zglinicki, T. (2015). Is Southern blotting
necessary to measure telomere length reproducibly? Authors’ Response to:
Commentary: The reliability of telomere length measurements.International Journal of Epidemiology , 44 (5), 1686–1687.
doi: 10.1093/ije/dyv169
Martin-Ruiz, C. M., Baird, D., Roger, L., Boukamp, P., Krunic, D.,
Cawthon, R., … von Zglinicki, T. (2015). Reproducibility of
telomere length assessment: An international collaborative study.International Journal of Epidemiology , 44 (5), 1673–1683.
doi: 10.1093/ije/dyu191
McLennan, D., Armstrong, J. D., Stewart, D. C., Mckelvey, S., Boner, W.,
Monaghan, P., & Metcalfe, N. B. (2017). Shorter juvenile telomere
length is associated with higher survival to spawning in migratory
Atlantic salmon. Functional Ecology , 31 (11), 2070–2079.
doi: 10.1111/1365-2435.12939
Michonneau, F., Brown, J. W., & Winter, D. J. (2016). rotl: An R
package to interact with the Open Tree of Life data. Methods in
Ecology and Evolution , 7 (12), 1476–1481. doi:
10.1111/2041-210X.12593
Mizutani, Y., Niizuma, Y., & Yoda, K. (2016). How Do Growth and Sibling
Competition Affect Telomere Dynamics in the First Month of Life of
Long-Lived Seabird? PLOS ONE , 11 (11), e0167261. doi:
10.1371/journal.pone.0167261
Mizutani, Y., Tomita, N., Niizuma, Y., & Yoda, K. (2013). Environmental
perturbations influence telomere dynamics in long-lived birds in their
natural habitat. Biology Letters , 9 (5), 20130511. doi:
10.1098/rsbl.2013.0511
Morinha, F., Magalhães, P., & Blanco, G. (2020a). Different qPCR master
mixes influence telomere primer binding within and between bird species.Journal of Avian Biology , 51 (2). doi:
https://doi.org/10.1111/jav.02352
Morinha, F., Magalhães, P., & Blanco, G. (2020b). Standard guidelines
for the publication of telomere qPCR results in evolutionary ecology.Molecular Ecology Resources , 20 (3), 635–648. doi:
https://doi.org/10.1111/1755-0998.13152
Muñoz-Lorente, M. A., Cano-Martin, A. C., & Blasco, M. A. (2019). Mice
with hyper-long telomeres show less metabolic aging and longer
lifespans. Nature Communications , 10 (1), 4723. doi:
10.1038/s41467-019-12664-x
Nakagawa, S., & Santos, E. S. A. (2012). Methodological issues and
advances in biological meta-analysis. Evolutionary Ecology ,26 (5), 1253–1274. doi: 10.1007/s10682-012-9555-5
Nakagawa, S., & Schielzeth, H. (2010). Repeatability for Gaussian and
non-Gaussian data: A practical guide for biologists. Biological
Reviews of the Cambridge Philosophical Society , 85 (4), 935–956.
doi: 10.1111/j.1469-185X.2010.00141.x
Näslund, J., Pauliny, A., Blomqvist, D., & Johnsson, J. I. (2015).
Telomere dynamics in wild brown trout: Effects of compensatory growth
and early growth investment. Oecologia , 177 (4),
1221–1230. doi: 10.1007/s00442-015-3263-0
Nespolo, R. F., & Franco, M. (2007). Whole-animal metabolic rate is a
repeatable trait: A meta-analysis. Journal of Experimental
Biology , 210 (11), 2000–2005. doi: 10.1242/jeb.02780
Nettle, D., Andrews, C., Reichert, S., Bedford, T., Gott, A., Parker,
C., … Bateson, M. (2016). Brood size moderates associations
between relative size, telomere length, and immune development in
European starling nestlings. Ecology and Evolution , 6 (22),
8138–8148. doi: 10.1002/ece3.2551
Nettle, D., Andrews, C., Reichert, S., Bedford, T., Kolenda, C., Parker,
C., … Bateson, M. (2017). Early-life adversity accelerates
cellular ageing and affects adult inflammation: Experimental evidence
from the European starling. Scientific Reports , 7 ,
srep40794. doi: 10.1038/srep40794
Nettle, D., Monaghan, P., Boner, W., Gillespie, R., & Bateson, M.
(2013). Bottom of the Heap: Having Heavier Competitors Accelerates
Early-Life Telomere Loss in the European Starling, Sturnus vulgaris.PLOS ONE , 8 (12), e83617. doi: 10.1371/journal.pone.0083617
Nettle, D., Monaghan, P., Gillespie, R., Brilot, B., Bedford, T., &
Bateson, M. (2015). An experimental demonstration that early-life
competitive disadvantage accelerates telomere loss. Proceedings of
the Royal Society of London B: Biological Sciences , 282 (1798),
20141610. doi: 10.1098/rspb.2014.1610
Nettle, D., Seeker, L., Nussey, D., Froy, H., & Bateson, M. (2019).
Consequences of measurement error in qPCR telomere data: A simulation
study. PLOS ONE , 14 (5), e0216118. doi:
10.1371/journal.pone.0216118
Nieuwenhuis, R., te Grotenhuis, M., & Pelzer, B. (2012). Influence.ME:
tools for detecting influential data in mixed effects models., 4(2),
38-47. R Journal , 4 (2), 38–47.
Noguera, J. C., Metcalfe, N. B., Boner, W., & Monaghan, P. (2015).
Sex-dependent effects of nutrition on telomere dynamics in zebra finches
(Taeniopygia guttata). Biology Letters , 11 (2), 20140938.
doi: 10.1098/rsbl.2014.0938
Noguera, J. C. (2017). Interacting effects of early dietary conditions
and reproductive effort on the oxidative costs of reproduction.PeerJ , 5 , e3094. doi: 10.7717/peerj.3094
Olsson, M., Wapstra, E., & Friesen, C. (2018). Ectothermic telomeres:
It’s time they came in from the cold. Philosophical Transactions
of the Royal Society B: Biological Sciences , 373 (1741). Scopus.
doi: 10.1098/rstb.2016.0449
Olsson, M., Friesen, C. R., Rollings, N., Sudyka, J., Lindsay, W.,
Whittington, C. M., & Wilson, M. (2018). Long-term effects of
superoxide and DNA repair on lizard telomeres. Molecular Ecology ,27 (24), 5154–5164. doi: 10.1111/mec.14913
Olsson, M., Pauliny, A., Wapstra, E., & Blomqvist, D. (2010). Proximate
determinants of telomere length in sand lizards (Lacerta agilis).Biology Letters , 6 (5), 651–653. doi:
10.1098/rsbl.2010.0126
Paradis, E., & Schliep, K. (2019). Ape 5.0: An environment for modern
phylogenetics and evolutionary analyses in R. Bioinformatics ,35 (3), 526–528. doi: 10.1093/bioinformatics/bty633
Parolini, M., Possenti, C. D., Romano, A., Caprioli, M., Rubolini, D.,
& Saino, N. 2019. Perinatal variation and covariation of oxidative
status and telomere length in yellow-legged gull chicks. Current
Zoology . doi: 10.1093/cz/zoy084
Parolini, M., Romano, A., Khoriauli, L., Nergadze, S. G., Caprioli, M.,
Rubolini, D., … Giulotto, E. (2015). Early-Life Telomere Dynamics
Differ between the Sexes and Predict Growth in the Barn Swallow (Hirundo
rustica). PLOS ONE , 10 (11), e0142530. doi:
10.1371/journal.pone.0142530
Pauliny, A., Devlin, R. H., Johnsson, J. I., & Blomqvist, D. (2015).
Rapid growth accelerates telomere attrition in a transgenic fish.BMC Evolutionary Biology , 15 (1), 159. doi:
10.1186/s12862-015-0436-8
Pepper, G. V., Bateson, M., & Nettle, D. (2018). Telomeres as
integrative markers of exposure to stress and adversity: A systematic
review and meta-analysis. BioRxiv , 320150. doi: 10.1101/320150
Pérez-Rodríguez, L., Redondo, T., Ruiz-Mata, R., Camacho, C.,
Moreno-Rueda, G., & Potti, J. (2019). Vitamin E Supplementation—But
Not Induced Oxidative Stress—Influences Telomere Dynamics During Early
Development in Wild Passerines. Frontiers in Ecology and
Evolution , 7 . doi: 10.3389/fevo.2019.00173
Pick, J. L., Nakagawa, S., & Noble, D. W. A. (2019). Reproducible,
flexible and high-throughput data extraction from primary literature:
The metaDigitise r package. Methods in Ecology and Evolution ,10 (3), 426–431. doi: https://doi.org/10.1111/2041-210X.13118
R Core Team. (2020). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL:
https://www.R-project.org/ .
Reichert, S., Rojas, E. R., Zahn, S., Robin, J.-P., Criscuolo, F., &
Massemin, S. (2015). Maternal telomere length inheritance in the king
penguin. Heredity , 114 (1), 10–16. doi:
10.1038/hdy.2014.60
Reichert, S., Bize, P., Arrivé, M., Zahn, S., Massemin, S., &
Criscuolo, F. (2014). Experimental increase in telomere length leads to
faster feather regeneration. Experimental Gerontology , 52 ,
36–38. doi: 10.1016/j.exger.2014.01.019
Reichert, S., Criscuolo, F., Zahn, S., Arrive, M., Bize, P., &
Massemin, S. (2015). Immediate and delayed effects of growth conditions
on ageing parameters in nestling zebra finches. Journal of
Experimental Biology , 218 (3), 491–499. doi: 10.1242/jeb.109942
Reichert, S., Froy, H., Boner, W., Burg, T. M., Daunt, F., Gillespie,
R., … Monaghan, P. (2017). Telomere length measurement by qPCR in
birds is affected by storage method of blood samples. Oecologia ,
1–10. doi: 10.1007/s00442-017-3887-3
Reichert, S., & Stier, A. (2017). Does oxidative stress shorten
telomeres in vivo? A review. Biology Letters , 13 (12),
20170463. doi: 10.1098/rsbl.2017.0463
Reichert, S., Stier, A., Zahn, S., Arrivé, M., Bize, P., Massemin, S.,
& Criscuolo, F. (2014). Increased brood size leads to persistent eroded
telomeres. Frontiers in Ecology and Evolution , 2 . doi:
10.3389/fevo.2014.00009
Rollings, N., Friesen, C. R., Sudyka, J., Whittington, C., Giraudeau,
M., Wilson, M., & Olsson, M. (2017). Telomere dynamics in a lizard with
morph-specific reproductive investment and self-maintenance.Ecology and Evolution , 7 (14), 5163–5169. doi:
https://doi.org/10.1002/ece3.2712
Ropio, J., Chebly, A., Ferrer, J., Prochazkova‐Carlotti, M., Idrissi,
Y., Azzi‐Martin, L., … Chevret, E. (2020). Reliable blood cancer
cells’ telomere length evaluation by qPCR. Cancer Medicine ,9 (9), 3153–3162. doi: https://doi.org/10.1002/cam4.2816
Salmón, P., Nilsson, J. F., Watson, H., Bensch, S., & Isaksson, C.
(2017). Selective disappearance of great tits with short telomeres in
urban areas. Proceedings of the Royal Society B: Biological
Sciences , 284 (1862), 20171349. doi: 10.1098/rspb.2017.1349
Salomons, H. M., Mulder, G. A., van de Zande, L., Haussmann, M. F.,
Linskens, M. H. K., & Verhulst, S. (2009). Telomere Shortening and
Survival in Free-Living Corvids. Proceedings: Biological
Sciences , 276 (1670), 3157–3165.
Schoenemann, K. L., & Bonier, F. (2018). Repeatability of
glucocorticoid hormones in vertebrates: A meta-analysis. PeerJ ,6 , e4398. doi: 10.7717/peerj.4398
Schultner, J., Moe, B., Chastel, O., Bech, C., & Kitaysky, A. S.
(2014). Migration and stress during reproduction govern telomere
dynamics in a seabird. Biology Letters , 10 (1), 20130889.
doi: 10.1098/rsbl.2013.0889
Sebastiano, M., Eens, M., Angelier, F., Pineau, K., Chastel, O., &
Costantini, D. (2017). Corticosterone, inflammation, immune status and
telomere length in frigatebird nestlings facing a severe herpesvirus
infection. Conservation Physiology , 5 (cow073). doi:
10.1093/conphys/cow073
Seeker, L. A., Holland, R., Underwood, S., Fairlie, J., Psifidi, A.,
Ilska, J. J., … Nussey, D. H. (2016). Method Specific Calibration
Corrects for DNA Extraction Method Effects on Relative Telomere Length
Measurements by Quantitative PCR. PLOS ONE , 11 (10),
e0164046. doi: 10.1371/journal.pone.0164046
Simide, R., Angelier, F., Gaillard, S., & Stier, A. (2016). Age and
Heat Stress as Determinants of Telomere Length in a Long-Lived Fish, the
Siberian Sturgeon. Physiological and Biochemical Zoology ,89 (5), 441–447. doi: 10.1086/687378
Simons, M. J. P. (2015). Questioning causal involvement of telomeres in
aging. Ageing Research Reviews , 24 (Part B), 191–196. doi:
10.1016/j.arr.2015.08.002
Spurgin, L. G., Bebbington, K., Fairfield, E. A., Hammers, M., Komdeur,
J., Burke, T., … Richardson, D. S. (2018). Spatio-temporal
variation in lifelong telomere dynamics in a long-term ecological study.Journal of Animal Ecology , 87 (1), 187–198. doi:
10.1111/1365-2656.12741
Stier, A., Delestrade, A., Bize, P., Zahn, S., Criscuolo, F., &
Massemin, S. (2016). Investigating how telomere dynamics, growth and
life history covary along an elevation gradient in two passerine
species. Journal of Avian Biology , 47 (1), 134–140. doi:
10.1111/jav.00714
Stier, A., Massemin, S., Zahn, S., Tissier, M. L., & Criscuolo, F.
(2015). Starting with a handicap: Effects of asynchronous hatching on
growth rate, oxidative stress and telomere dynamics in free-living great
tits. Oecologia , 179 (4), 999–1010. doi:
10.1007/s00442-015-3429-9
Stier, A., Metcalfe, N. B., & Monaghan, P. (2020). Pace and stability
of embryonic development affect telomere dynamics: An experimental study
in a precocial bird model. Proceedings of the Royal Society B:
Biological Sciences , 287 (1933), 20201378. doi:
10.1098/rspb.2020.1378
Stier, A., Reichert, S., Criscuolo, F., & Bize, P. (2015). Red blood
cells open promising avenues for longitudinal studies of ageing in
laboratory, non-model and wild animals. Experimental Gerontology ,71 (Supplement C), 118–134. doi: 10.1016/j.exger.2015.09.001
Stoffel, M. A., Nakagawa, S., & Schielzeth, H. (2017). RptR:
repeatability estimation and variance decomposition by generalized
linear mixed-effects models. Methods in Ecology and Evolution ,8 (11), 1639–1644. doi: 10.1111/2041-210X.12797
Sudyka, J., Arct, A., Drobniak, S., Dubiec, A., Gustafsson, L., &
Cichoń, M. (2014). Experimentally increased reproductive effort alters
telomere length in the blue tit (Cyanistes caeruleus). Journal of
Evolutionary Biology , 27 (10), 2258–2264. doi:
https://doi.org/10.1111/jeb.12479
Sudyka, J., Casasole, G., Rutkowska, J., & Cichoń, M. (2016). Elevated
reproduction does not affect telomere dynamics and oxidative stress.Behavioral Ecology and Sociobiology , 70 (12), 2223–2233.
doi: 10.1007/s00265-016-2226-8
Sudyka, J., Podmokła, E., Drobniak, S. M., Dubiec, A., Arct, A.,
Gustafsson, L., & Cichoń, M. (2019). Sex-specific effects of parasites
on telomere dynamics in a short-lived passerine—The blue tit.Die Naturwissenschaften , 106 (1). doi:
10.1007/s00114-019-1601-5
Tacutu, R., Thornton, D., Johnson, E., Budovsky, A., Barardo, Di.,
Craig, T., … De Magalhães, J. P. (2018). Human Ageing Genomic
Resources: New and updated databases. Nucleic Acids Research ,46 (D1), D1083–D1090. doi: 10.1093/nar/gkx1042
Taff, C. C., Schoenle, L. A., & Vitousek, M. N. (2018). The
repeatability of glucocorticoids: A review and meta-analysis.General and Comparative Endocrinology , 260 , 136–145. doi:
10.1016/j.ygcen.2018.01.011
Taff, C. C. & Freeman‐Gallant, C. R. (2017). Sexual signals reflect
telomere dynamics in a wild bird. Ecology and Evolution ,7 (10), 3436–3442. doi: https://doi.org/10.1002/ece3.2948
Tissier, M. L., Williams, T. D., & Criscuolo, F. (2014). Maternal
Effects Underlie Ageing Costs of Growth in the Zebra Finch (Taeniopygia
guttata). PLOS ONE , 9 (5), e97705. doi:
10.1371/journal.pone.0097705
Tolios, A., Teupser, D., & Holdt, L. M. (2015). Preanalytical
Conditions and DNA Isolation Methods Affect Telomere Length
Quantification in Whole Blood. PLOS ONE , 10 (12), e0143889.
doi: 10.1371/journal.pone.0143889
Tricola, G., Simons, M. J. P., Atema, E., Boughton, R. K., Brown, J. L.,
Dearborn Donald C., … Haussmann Mark F. (2018). The rate of
telomere loss is related to maximum lifespan in birds.Philosophical Transactions of the Royal Society B: Biological
Sciences , 373 (1741), 20160445. doi: 10.1098/rstb.2016.0445
Ujvari, B., Biro, P. A., Charters, J. E., Brown, G., Heasman, K.,
Beckmann, C., & Madsen, T. (2017). Curvilinear telomere length dynamics
in a squamate reptile. Functional Ecology , 31 (3),
753–759. doi: https://doi.org/10.1111/1365-2435.12764
Ujvari, B., & Madsen, T. (2009). Short Telomeres in Hatchling Snakes:
Erythrocyte Telomere Dynamics and Longevity in Tropical Pythons.PLOS ONE , 4 (10), e7493. doi: 10.1371/journal.pone.0007493
van Lieshout, S. H. J., Bretman, A., Newman, C., Buesching, C. D.,
Macdonald, D. W., & Dugdale, H. L. (2019). Individual variation in
early-life telomere length and survival in a wild mammal.Molecular Ecology , 28 (18), 4152–4165. doi:
10.1111/mec.15212
van Lieshout, S. H. J., Froy, H., Schroeder, J., Burke, T., Simons, M.
J. P., & Dugdale, H. L. (2020). Slicing: A sustainable approach to
structuring samples for analysis in long-term studies. Methods in
Ecology and Evolution , 11 (3), 418–430. doi:
https://doi.org/10.1111/2041-210X.13352
Vedder, O., Verhulst, S., Zuidersma, E., & Bouwhuis, S. (2018).
Embryonic growth rate affects telomere attrition: An experiment in a
wild bird. Journal of Experimental Biology , jeb.181586. doi:
10.1242/jeb.181586
Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model
evaluation using leave-one-out cross-validation and WAIC.Statistics and Computing , 27 (5), 1413–1432. doi:
10.1007/s11222-016-9696-4
Verhulst, S., Susser, E., Factor-Litvak, P. R., Simons, M., Benetos, A.,
Steenstrup, T., … Aviv, A. (2016). Response to: Reliability and
validity of telomere length measurements. International Journal of
Epidemiology , 45 (4), 1298–1301. doi: 10.1093/ije/dyw194
Verhulst, S., Susser, E., Factor-Litvak, P. R., Simons, M. J., Benetos,
A., Steenstrup, T., … Aviv, A. (2015). Commentary: The
reliability of telomere length measurements. International Journal
of Epidemiology , 44 (5), 1683–1686. doi: 10.1093/ije/dyv166
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor
package. Journal of Statistical Software , 36 (3), 1–48.
von Zglinicki, T. (2002). Oxidative stress shortens telomeres.Trends in Biochemical Sciences , 27 (7), 339–344. doi:
10.1016/S0968-0004(02)02110-2
Watson, H., Bolton, M., & Monaghan, P. (2015). Variation in early-life
telomere dynamics in a long-lived bird: Links to environmental
conditions and survival. Journal of Experimental Biology ,218 (5), 668–674. doi: 10.1242/jeb.104265
Wilbourn, R. V., Moatt, J. P., Froy, H., Walling, C. A., Nussey, D. H.,
& Boonekamp, J. J. (2018). The relationship between telomere length and
mortality risk in non-model vertebrate systems: A meta-analysis.Phil. Trans. R. Soc. B , 373 (1741), 20160447. doi:
10.1098/rstb.2016.0447
Wood, E. M., & Young, A. J. (2019). Telomere attrition predicts reduced
survival in a wild social bird, but short telomeres do not.Molecular Ecology , 28 (16), 3669–3680. doi:
https://doi.org/10.1111/mec.15181
Young, A. J. (2018). The role of telomeres in the mechanisms and
evolution of life-history trade-offs and ageing. Phil. Trans. R.
Soc. B , 373 (1741), 20160452. doi: 10.1098/rstb.2016.0452
Young, R. C., Kitaysky, A. S., Haussmann, M. F., Descamps, S., Orben, R.
A., Elliott, K. H., & Gaston, A. J. (2013). Age, Sex, and Telomere
Dynamics in a Long-Lived Seabird with Male-Biased Parental Care.PLOS ONE , 8 (9), e74931. doi: 10.1371/journal.pone.0074931
Young, R. C., Welcker, J., Barger, C. P., Hatch, S. A., Merkling, T.,
Kitaiskaia, E. V., … Kitaysky, A. S. (2017). Effects of
developmental conditions on growth, stress and telomeres in black-legged
kittiwake chicks. Molecular Ecology , 26 (13), 3572–3584.
doi: https://doi.org/10.1111/mec.14121
Table 1. All the studies, and effect size groups derived from
those studies with associated R values included in the
meta-analysis.