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A commentary 

 

I read with interest the review by Tarvonen et al. entitled "Increased variability of fetal heart rate 

during labour: a review of preclinical and clinical studies".1 

 

The authors seek to clarify how physiologists and obstetricians use heart rate variability (HRV) 

terminology differently. This gap in mutual understanding has been one of the key reasons why 

fetal heart rate (FHR) monitoring intrapartum has failed so far to reduce the rate of fetal brain 

injury.2 I suggest that this gap can only be closed if the mathematical understanding of the HRV 

is incorporated into the multidisciplinary bridge we are building. 

 

Despite a thorough literature review, I missed this key component in the article. Consequently, 

the very notion of the HRV is not captured in the review. Rather, the article perpetuates the 

stereotypical misunderstanding of HRV as a simplistic “up or down” metric.   

 

While the term “variability” does elicit an intuitive notion of increases and decreases, the 

underlying complexity has turned out to be far richer. In the following account, I attempt to 

explain this mathematical complexity. I focus on its relevance to the goal of preventing perinatal 

brain injury using intrapartum FHR monitoring.  

 

HRV is multidimensional 

 

Descriptions of HRV pattern in terms of “ups” and “downs” discard most predictive information.3 

The mathematical properties of HRV - when assessed over, say, five minute intervals - are 

changing over time as a function of behavioral states and other endogenous and exogenous 

factors, i.e., these patterns are dynamic. In addition to this time component, complex patterns of 

HRV emerge from measuring its properties over five signal-analytical domains, i.e., there are 

five complementary ways to express aspects of HRV: statistical, complexity/entropy, scale 

invariance/fractality, spectral power in certain frequency bands/energy, and geometric.4 

Observing these dynamic changes over the five signal-analytical domains results in multi-

dimensional patterns. We observe many instances of fetal physiological behavior where these 

patterns appear to form a unique signature of a given behavior, e.g., systemic or organ-specific 

response to an inflammatory stimulus or the memory of chronic hypoxia.5  

 

HRV is amenable to feature engineering 

 

A related reason for the persistent failure of FHR monitoring intrapartum to live up to 

expectations is the limited or absent ‘feature engineering’ (automatic extraction of the five 

domains described above) of HRV. In addition to capturing the multi-dimensional properties of 

HRV, feature engineering makes allowances for the noisy, low sampling rate nature of the 

signal, to ensure that these properties are captured with the highest possible fidelity.6,7 The 

limitations of the low sampling rate of beat-to-beat variability typically resulting from an 

ultrasound-based FHR computation are discussed elsewhere.6 
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’Feature engineering’ is standard data science/machine learning term. In the present context, it 

means identifying and reproducibly extracting certain mathematical properties of the input 

signal, such as HRV’s dynamic multi-dimensional patterns, and using these properties in a 

model to predict a clinical outcome of interest. A hands-on example of such an approach has 

been open-sourced recently.4  

 

Among the HRV feature engineering approaches, there are promising developments in the 

detection of accelerative and decelerative FHR patterns using computerized HRV analyses.8 

Their clinical potential needs to be studied. 

 

The difficulty in defining an individual FHR baseline may be overcome by the recent 

developments in HRV analysis which rely on individualized anomaly detection.9 In such an 

approach, the computer algorithm learns to distinguish the individual baseline, e.g., FHR on 

admission to labour, from a later ensuing anomaly, e.g., during the second stage. The obvious 

caveat is the possibility of anomalies as early as on admission. That is the reason why a more 

comprehensive solution to this challenge is sought within the framework of “whole-pregnancy” 

FHR monitoring, i.e., by including antepartum FHR information into the analytical framework.7 

 

It is chastening to realise that according to a recent NHS report, 70% of intrapartum brain 

injuries could be prevented if only someone had responded to abnormalities in labour – 

consistent vigilance appears to be humanly impossible.10 A feature engineering approach to 

fetal HRV monitoring obviates the reliance on the human eye and can highlight patterns below 

the common human threshold of detection, e.g., beyond the sinusoidal patterns or variability 

below 5 bpm. In addition to an explicitly defined mathematical approach to feature engineering 

as outlined above, “black-box” deep learning approaches have been tested on intrapartum FHR 

and cardiotocography data.11 These techniques rely on computer pattern recognition, an 

artificial intelligence approach used broadly in medical research and in other domains, e.g., to 

enable self-driving cars. It entails teaching the computers to “see” the cardiotocography patterns 

that humans could see if they could watch it at all times.11 This approach is in its infancy but the 

importance of feature engineering on FHR/HRV was emphasized in the recent 3rd and 4th 

workshops on Signal Processing and Monitoring in Labor (SPaM).7  

 

HRV and prediction of health outcomes 

 

What we aim to predict or detect using HRV must be clearly defined before undertaking 

preclinical and clinical studies. In addition to the relevant studies on the prediction of 

hypotension mentioned by Tarvonen et al.,9 other outcomes that are possible to predict or 

detect should be considered. These outcomes include the fetal inflammatory response 

syndromes (FIRS) or memory of past inflammation (predisposing to ‘second hit’ vulnerabilities, 

as is relevant for Zika virus infection), and of hypoxia (e.g., later manifesting as fetal growth 

restriction).5,12  
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Conclusions 

 

When attempting to explain HRV, it may help to think of the ripples on the surface of an ocean. 

It is difficult to see them all at once and all the time or to grasp how the pattern originated. HRV 

comprises complex, but not random, patterns of interference and communication. A suite of 

mathematical tools that also account for uterine activity, maternal temperature, fetal movements 

and behavioral states, to name some factors that influence HRV, could decode HRV to detect 

and predict salient clinical events. AI and well-informed feature engineering are poised to enable 

development of clinical decision support tools for managing labor. Validation and adoption of 

such tools could reduce the incidence and severity of perinatal brain injury.  
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