References
Alla, S.K., Clark, J.F. & Beyette, F.R. (2009). Signal processing system to extract serum bilirubin concentration from diffuse reflectance spectrum of human skin. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society . IEEE, pp. 1290–1293.
Arnold, J.W. (1964). Blood circulation in insect wings. Mem. Entomol. Soc. Canada , 96, 5–60.
Ashton, K.G. (2002). Patterns of within-species body size variation of birds: strong evidence for Bergmann’s rule. Glob. Ecol. Biogeogr. , 11, 505–523.
Benjamini, Y. & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B , 57, 289–300.
van der Bijl, W., Zeuss, D., Chazot, N., Tunström, K., Wahlberg, N., Wiklund, C., et al. (2020). Butterfly dichromatism primarily evolved via Darwin’s, not Wallace’s, model. Evol. Lett. , 4, 545–555.
Bladon, A.J., Lewis, M., Bladon, E.K., Buckton, S.J., Corbett, S., Ewing, S.R., et al. (2020). How butterflies keep their cool: Physical and ecological traits influence thermoregulatory ability and population trends. J. Anim. Ecol. , 89, 2440–2450.
Bogert, C.M. (1949). Thermoregulation in reptiles, a factor in evolution. Evolution , 3, 195–211.
Burtt Jr, E.H. & Ichida, J.M. (2004). Gloger’s rule, feather-degrading bacteria, and color variation among song sparrows. Condor , 106, 681–686.
Chaplin, G. (2004). Geographic distribution of environmental factors influencing human skin coloration. Am. J. Phys. Anthropol. , 125, 292–302.
Cheng, W., Xing, S., Chen, Y., Lin, R., Bonebrake, T.C. & NAKAMURA, A. (2018). Dark butterflies camouflaged from predation in dark tropical forest understories. Ecol. Entomol. , 43, 304–309.
Chown, S.L. & Gaston, K.J. (2010). Body size variation in insects: a macroecological perspective. Biol. Rev. , 85, 139–169.
Clavel, J., Escarguel, G. & Merceron, G. (2015). mvMORPH: an R package for fitting multivariate evolutionary models to morphometric data.Methods Ecol. Evol. , 6, 1311–1319.
Clench, H.K. (1966). Behavioral thermoregulation in butterflies.Ecology , 47, 1021–1034.
Coffin, D. (2008). DCRAW: Decoding raw digital photos in linux.
Cuthill, I.C., Allen, W.L., Arbuckle, K., Caspers, B., Chaplin, G., Hauber, M.E., et al. (2017). The biology of color.Science , 357, eaan0221.
Delhey, K. (2017). Gloger’s rule. Curr. Biol. , 27, R689–R691.
Delhey, K. (2018). Darker where cold and wet: Australian birds follow their own version of Gloger’s rule. Ecography , 41, 673–683.
Delhey, K. (2019). A review of Gloger’s rule, an ecogeographical rule of colour: definitions, interpretations and evidence. Biol. Rev. , 94, 1294–1316.
Delhey, K., Dale, J., Valcu, M. & Kempenaers, B. (2019). Reconciling ecogeographical rules: rainfall and temperature predict global colour variation in the largest bird radiation. Ecol. Lett. , 22, 726–736.
Ducrest, A.-L., Keller, L. & Roulin, A. (2008). Pleiotropy in the melanocortin system, coloration and behavioural syndromes. Trends Ecol. Evol. , 23, 502–510.
Fick, S.E. & Hijmans, R.J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. , 37, 4302–4315.
Freckleton, R.P. (2009). The seven deadly sins of comparative analysis.J. Evol. Biol. , 22, 1367–1375.
Friedman, N.R. & Remeš, V. (2017). Ecogeographical gradients in plumage coloration among Australasian songbird clades. Glob. Ecol. Biogeogr. , 26, 261–274.
Galván, I., Rodríguez‐Martínez, S. & Carrascal, L.M. (2018). Dark pigmentation limits thermal niche position in birds. Funct. Ecol. , 32, 1531–1540.
Gaston, K.J., Chown, S.L. & Evans, K.L. (2008). Ecogeographical rules: elements of a synthesis. J. Biogeogr. , 35, 483–500.
Gilchrist, G.W. (1990). The Consequences of sexual dimorphism in body size for butterfly flight and thermoregulation. Funct. Ecol. , 4, 475–487.
Hegna, R.H., Nokelainen, O., Hegna, J.R. & Mappes, J. (2013). To quiver or to shiver: increased melanization benefits thermoregulation, but reduces warning signal efficacy in the wood tiger moth. Proc. R. Soc. B Biol. Sci. , 280, 20122812.
Heinrich, B. (1974). Thermoregulation in endothermic insects.Science , 185, 747–756.
Hernández, C.E., Rodríguez-Serrano, E., Avaria-Llautureo, J., Inostroza-Michael, O., Morales-Pallero, B., Boric-Bargetto, D., et al. (2013). Using phylogenetic information and the comparative method to evaluate hypotheses in macroecology. Methods Ecol. Evol. , 4, 401–415.
Kammer, A.E. & Bracchi, J. (1973). Role of the wings in the absorption of radiant energy by a butterfly. Comp. Biochem. Physiol. Part A Physiol. , 45, 1057–1063.
Kapan, D.D. (2001). Three-butterfly system provides a field test of mullerian mimicry. Nature , 409, 338–340.
Kingsolver, J.G. (1985). Thermal ecology of Pieris butterflies (Lepidoptera: Pieridae): a new mechanism of behavioral thermoregulation.Oecologia , 66, 540–545.
Kingsolver, J.G. (1987). Evolution and coadaptation of thermoregulatory behavior and wing pigmentation pattern in pierid butterflies.Evolution , 41, 472–490.
Kingsolver, J.G. (1988). Thermoregulation, flight, and the evolution of wing pattern in pierid butterflies: the topography of adaptive landscapes. Am. Zool. , 28, 899–912.
Konishi, S. & Kitagawa, G. (1996). Generalised information criteria in model selection. Biometrika , 83, 875–890.
Lande, R. (1980). Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution , 292–305.
Medina, I., Newton, E., Kearney, M.R., Mulder, R.A., Porter, W.P. & Stuart-Fox, D. (2018). Reflection of near-infrared light confers thermal protection in birds. Nat. Commun. , 9, 3610.
Munro, J.T., Medina, I., Walker, K., Moussalli, A., Kearney, M.R., Dyer, A.G., et al. (2019). Climate is a strong predictor of near-infrared reflectance but a poor predictor of colour in butterflies.Proc. R. Soc. B Biol. Sci. , 286, 20190234.
R Core Team. (2017). R A Language and Environment for Statistical Computing.
Rawlins, J.E. (1980). Thermoregulation by the black swallowtail butterfly, Papilio polyxenes (Lepidoptera: Papilionidae).Ecology , 61, 345–357.
Revell, L.J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. , 3, 217–223.
Ruxton, G.D., William, A.L., Sherratt, T.N. & Speed, M.P. (2018).Avoiding attack: the evolutionary ecology of crypsis, warning signals, and mimicry . 2nd edn. Oxford University Press, New York.
Schweiger, O., Harpke, A., Wiemers, M. & Settele, J. (2014). CLIMBER: Climatic niche characteristics of the butterflies in Europe.Zookeys , 65–84.
Shanks, K., Senthilarasu, S., ffrench-Constant, R.H. & Mallick, T.K. (2015). White butterflies as solar photovoltaic concentrators.Sci. Rep. , 5, 12267.
Silberglied, R.E. (1984). Visual communication and sexual selection among butterflies. In: The Biology of Butterflies (eds. Vane-Wright, R.I. & Ackery, P.R.). Academic Press, pp. 207–223.
Stuart-Fox, D., Newton, E. & Clusella-Trullas, S. (2017). Thermal consequences of colour and near-infrared reflectance. Philos. Trans. R. Soc. B Biol. Sci. , 372, 20160345.
Trullas, S.C., van Wyk, J.H. & Spotila, J.R. (2007). Thermal melanism in ectotherms. J. Therm. Biol. , 32, 235–245.
Tsai, C.-C., Childers, R.A., Nan Shi, N., Ren, C., Pelaez, J.N., Bernard, G.D., et al. (2020). Physical and behavioral adaptations to prevent overheating of the living wings of butterflies. Nat. Commun. , 11, 551.
Wasserthal, L.T. (1983). Haemolymph flows in the wings of pierid butterflies visualized by vital staining (Insecta, Lepidoptera).Zoomorphology , 103, 177–192.
Wiemers, M., Chazot, N., Wheat, C.W., Schweiger, O. & Wahlberg, N. (2020). A complete time-calibrated multi-gene phylogeny of the European butterflies. Zookeys , 938, 97.
Xing, S., Bonebrake, T.C., Tang, C.C., Pickett, E.J., Cheng, W., Greenspan, S.E., et al. (2016). Cool habitats support darker and bigger butterflies in Australian tropical forests. Ecol. Evol. , 6, 8062–8074.
Zink, R.M. & Remsen Jr, J. V. (1986). Evolutionary processes and patterns of geographic variation in birds. Curr. Ornithol. , 4, 1–69.