References:
  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020;70(1):7. htttps://doi.org/10.3322/caac.21590.
  2. Alberg AJ, Brock MV, Ford JG, Same, JM, Spivack SD. Epidemiology of lung cancer: diagnosis and management of lung cancer, 3rd ed.: American College of Chest Physicians evidence-based clinical practice guidelines. 2013 May;143(5 Suppl):e1S-e29S. htttps://doi.org/10.1378/chest.12-2345.
  3. Sun S, Schiller JH, Gazdar AF. Lung cancer in never smokers–a different disease. Nat Rev Cancer 2007 Oct;7(10):778-90. https://doi.org/10.1038/nrc2190.
  4. Vineis P, Airoldi L, Veglia P, Olgiati L, Pastorelli R, Autrup H, et al. Environmental tobacco smoke and risk of respiratory cancer and chronic obstructive pulmonary disease in former smokers and never smokers in the EPIC prospective study. BMJ 2005 Feb 5;330(7486):277. https://doi.org/10.1136/bmj.38327.648472.82.
  5. Hackshaw AK, Law MR, Wald NJ. The accumulated evidence on lung cancer and environmental tobacco smoke. BMJ 1997 Oct 18;315(7114):980-8. https://doi.org/10.1136/bmj.315.7114.980.
  6. National Lung Screening Trial Research Team: Aberle DR, Berg CD, Black WC, Church TR, Fagerstrom RM, Galen B, et al. The National Lung Screening Trial: overview and study design. Radiology 2011;258:243-53. https://doi.org/10.1148/radiol.10091808.
  7. National Lung Screening Trial Research Team: Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011;365:395-409. https://doi.org/10.1056/NEJMoa1102873.
  8. National Lung Screening Trial Research Team. Church TR, Black WC, Aberle DR, Berg CD, Clingan KL, Duanv F, et al. Results of initial low-dose computed tomographic screening for lung cancer. N Engl J Med 2013 May 23;368(21):1980-91. https://doi.org/10.1056/NEJMoa1209120.
  9. Kris MG, Johnson BE, Berry LD, Kwiatkowski DJ, Iafrate AJ, Wistuba II, et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 2014;311:1998-2006. https://doi.org/10.1001/jama.2014.3741.
  10. Travis WD, Brambilla E, Nicholson AG, Ytabe Y, Austin JHM, Beasley MB, et al. WHO classification of tumours of the lung, pleura, thymus and heart. 4th ed. Geneva: World Health Organization; 2015.
  11. Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, et al. Tracking the evolution of non–small-cell lung cancer. N Engl J Med 2017 Jun 1;376(22):2109-21. https://doi.org/10.1056/NEJMoa1616288.
  12. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis, K, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008 Oct 23;455(7216):1069-75. https://doi.org/10.1038/nature07423.
  13. Heist RS, Sequist LV, Engelman JA. Genetic changes in squamous cell lung cancer: a review. J Thorac Oncol 2012;7(5):924-33. https://doi.org/10.1097/JTO.0b013e31824cc334.
  14. Pao W, Wang TY, Riely GJ, Miller VA, Pan Q, Ladanyi M, et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib.PLoS Med 2005 Jan;2(1):e17. htttps://doi.org/10.1371/journal.pmed.0020017.
  15. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014 Jul 31;511(7511):543-50. https://doi.org/10.1038/nature13385.
  16. Pillai RN, Behera M, Berry LD, Rossi MR, Kris MG, Johnson BE, et al. HER2 mutations in lung adenocarcinomas: A report from the Lung Cancer Mutation Consortium. Cancer. 2017 Nov 1; 123(21): 4099–105. https://doi.org/10.1002/cncr.30869.
  17. Connell CM, Doherty GJ. Activating HER2 mutations as emerging targets in multiple solid cancers. ESMO Open.2017;2(5):e000279. https://doi.org/10.1136/esmoopen- 2017-000279.
  18. Stephens P, Hunter C, Bignell G, Edkins S, Davies H, Teague J, et al. Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 2004;431(7008):525-6. https://doi.org/10.1038/431525b.
  19. Wang SE, Narasanna A, Perez-Torres M, Xiang B, Wu FY, Yang S, et al. HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. Cancer Cell 2006;10(1):25-38. https://doi.org/10.1016/j.ccr.2006.05.023.
  20. Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 2016;16:275-87. https://doi.org/10.1038/nrc.2016.36.
  21. Rimm DL, Han G, Taube JM, Yi ES, Bridge JA, Flieder DB, et al. A prospective, multi-institutional, pathologist-based assessment of 4 immunohistochemistry assays for PD-L1 expression in non-small cell lung cancer. 2017 Aug 1;3(8):1051-1058. https://doi.org/10.1001/jamaoncol.2017.0013.
  22. Novello S, Barlesi F, Califano R, Cufer T, Ekman S, GiajLevra M, et al. Metastatic non-small-cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2016;27:Suppl 5:v1-v27. https://doi.org/10.1093/annonc/mdw326.
  23. National Comprehensive Cancer Network (NCCN). NCNN clinical practice guidelines in oncology: non-small cell lung cancer, version 3. Fort Washington, PA: National Comprehensive Cancer Network; 2016.
  24. Dearden S, Stevens J, Wu YL, Blowers D. Mutation incidence and coincidence in non small-cell lung cancer: meta-analyses by ethnicity and histology (mutMap). Ann Oncol 2013;24:2371-76. https://doi.org/10.1093/annonc/mdt205.
  25. Shigematsu H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba II, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst 2005;97:339-46. https://doi.org/10.1093/jnci/dji055.
  26. Lemmon MA, Schlessinger J, Ferguson KM. The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring HarbPerspect Biol 2014 Apr 1;6(4):a020768. https://doi.org/10.1101/cshperspect.a020768..
  27. Mok TS, Wu, Y-L, Thongprasert S, Yang C-H, Chu D-T, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009; 361:947-957, https://doi.org/10.1056/NEJMoa0810699.
  28. Fukuoka M, Wu Y-L, Thongprasert S, Sunpaweravong P, Leong S-S, Sriuranpong V, et al. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J Clin Oncol 2011;29(12):2866-74. https://doi.org/10.1200/JCO.2010.33.4235.
  29. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 2010 Jun 24;362(25):2380-8. https://doi.org/10.1056/NEJMoa0909530.
  30. Zhou C, Wu Y-L, Chen G, Feng J, Liu X-Q, Wang C, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol 2011 Aug;12(8):735-42. https://doi.org/10.1016/S1470-2045(11)70184-X.
  31. Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012;13(3):239-46. https://doi.org/10.1016/S1470-2045(11)70393-X.
  32. Lee CK, Wu YL, Ding PN, Lord SJ, Inoue A, Zhou C, et al. Impact of specific epidermal growth factor receptor (EGFR) mutations and clinical characteristics on outcomes after treatment with EGFR tyrosine kinase inhibitors versus chemotherapy in EGFR-mutant lung cancer: a meta-analysis. J Clin Oncol 2015;33:1958-65. https://doi.org/10.1200/JCO.2014.58.1736.
  33. Paz-Ares L, Tan E-H, O’Byrne K, Zhang L, Hirsh V, Boyer M, et al. Afatinib versus gefitinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: overall survival data from the phase IIb LUX-Lung 7 trial. Ann Oncol 2017 Feb; 28(2): 270–277. https://doi.org/10.1093/annonc/mdw611.
  34. Wu YL, Cheng Y, Zhou X, Lee KH, Nakagawa K, Niho S, et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label, phase 3 trial. Lancet Oncol 2017 Nov;18(11):1454-66. https://doi.org/10.1016/S1470-2045(17)30608-3.
  35. Kobayashi S, Boggon TJ, Dayaram T, Jänne PA, Kocher O, Meyerson M, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 2005 Feb 24;352(8):786-92. https://doi.org/10.1056/NEJMoa044238.
  36. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 2011 Mar 23;3(75):75ra26. https://doi.org/10.1126/scitranslmed.3002003.
  37. Jänne PA, Yang JC-H, Kim D-W, Planchard D, Ohe Y, Ramalingam, SS, et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med 2015 Apr 30;372(18):1689-99. https://doi.org/10.1056/NEJMoa1411817.
  38. Mok TS, Wu Y-L, Ahn M-J, Garassino MC, Kim HR, Ramalingam SS, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med 2017 Feb 16;376(7):629-40. https://doi.org/10.1056/NEJMoa1612674.
  39. Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, et al. Osimertinib in untreated EGFR-mutated advanced non-small cell lung cancer. N Engl J Med 2018;378:113-25. https://doi.org/10.1056/NEJMoa1713137.
  40. Ramalingam SS, Vansteenkiste J, Planchard D, Cho, BC, Gray JE, Ohe Y, et al.; FLAURA Investigators. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N Engl J Med 2020;382(1):41-50. https://doi.org/10.1056/NEJMoa1913662.
  41. Thress KS, Paweletz CP, Felip E, Cho BC, Stetson D, Dougherty B, et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med 2015 Jun; 21(6):560–2. https://doi.org/10.1038/nm.3854.
  42. Niederst MJ, Hu H, Mulvey HE, Lockerman EL, Garcia AR, Piotrowska Z, et al. The allelic context of the C797S mutation acquired upon treatment with third-generation EGFR inhibitors impacts sensitivity to subsequent treatment strategies. Clin Cancer Res 2015 Sep 1;21(17):3924–33. https://doi.org/10.1158/1078-0432.CCR-15-0560.
  43. Jia Y, Yun C-H, Park E, Ercan D, Manuia M, Juarez J, et al. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature 2016 Jun 2;534(7605):129-32. https://doi.org/10.1038/nature17960.
  44. Uchibori K, Inase N, Araki M, Kamada M, Sato S, Okuno Y, et al. Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer. Nat Commun 2017 Mar 13;8:14768. https://doi.org/10.1038/ncomms14768.
  45. Nakagawa K, Garon EB, Seto T, Nishio M, Aix SP, Chiu C-H, et al. RELAY: A multinational, double-blind, randomized Phase 3 study of erlotinib (ERL) in combination with ramucirumab (RAM) or placebo (PL) in previously untreated patients with epidermal growth factor receptor mutation-positive (EGFRm) metastatic non-small cell lung cancer (NSCLC). J Clin Oncol 2019;37(15 suppl):9000. https://ascopubs.org/doi/abs/10.1200/JCO.2019.37.15_suppl.9000.
  46. Rotow JK, Costa DB, Paweletz, CP, Awad MM, Marcoux P, Rangachari D, et al. Concurrent osimertinib plus gefitinib for first-line treatment of EGFR-mutated non-small cell lung cancer (NSCLC). J Clin Oncol 2020;38(15 suppl):9507. https://ascopubs.org/doi/abs/10.1200/JCO.2020.38.15_suppl.9507.
  47. Yu HA, Schoenfeld AJ, Makhnin A, Kim R, Rizvi H, Tsui D, et al. Effect of osimertinib and bevacizumab on PFS for patients with metastatic EGFR-mutant lung cancers. JAMA Oncol 2020 May 28;6(7):1-8. https://doi.org/10.1001/jamaoncol.2020.1260.
  48. Furuya N, Fukuhara T, Saito H, Watanabe K, Sugawara S, Iwasawa S, et al. Phase III study comparing bevacizumab plus erlotinib to erlotinib in patients with untreated NSCLC harboring activating EGFR mutations: NEJ026. J Clin Oncol 2018;36(15 suppl):9006. https://ascopubs.org/doi/abs/10.1200/JCO.2018.36.15_suppl.9006.
  49. Maemondo M, Fukuhara T, Saito H, Furuya N, Watanabe K, Sugawara S, et al. NEJ026: Final overall survival analysis of bevacizumab plus erlotinib treatment for NSCLC patients harboring activating EGFR-mutations. J Clin Oncol 2020;38(15 suppl):9506. https://ascopubs.org/doi/abs/10.1200/JCO.2020.38.15_suppl.9506.
  50. Shaw AT, Kim D-W, Nakagawa K, Seto T, Crinó L, Ahn M-J, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 2013;368:2385-94. https://doi.org/10.1056/NEJMoa1214886.
  51. Solomon BJ, Mok T, Kim D-W, Wu Y-L, Nakagawa K, Mekhail T, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med 2014;371(23):2167-77. https://doi.org/10.1056/NEJMoa1408440.
  52. Solomon BJ, Kim DW, Wu YL, Nakagawa K, Mekhail T, Felip E, et al. Final overall survival analysis from a study comparing first-line crizotinib versus chemotherapy in ALK-mutation-positive non-small-cell lung cancer. J Clin Oncol 2018;36(22):2251-8. https://doi.org/10.1200/JCO.2017.77.4794.
  53. Dagogo-Jack I, Shaw AT. Crizotinib resistance: implications for therapeutic strategies. Ann Oncol 2016;27(Suppl 3):iii42-iii50. https://doi.org/10.1093/annonc/mdw305.
  54. Shaw AT, Kim D-W, Mehra R, Tan DSW, Felip E, Chow LQM, et al. Ceritinib in ALK -rearranged non-small-cell lung cancer. N Engl J Med 2014 Mar 27;370(13):1189-97. https://doi.org/10.1056/NEJMoa1311107.
  55. Shaw AT, Gandhi L, Gadgeel S, Riely GJ, Cetnar J, West H, et al. Alectinib in ALK-positive, crizotinib-resistant, non-small-cell lung cancer: a single-group, multicentre, phase 2 trial. Lancet Oncol 2016;17:234-42. https://doi.org/10.1016/S1470-2045(15)00488-X.
  56. Kim DW, Tiseo M, Ahn M-J, Reckamp KL, Holmskov Hansen K, Kim S-W, et al. Brigatinib in patients with crizotinib-refractory anaplastic lymphoma kinase-positive non-small-cell lung cancer: a randomized, multicenter phase II trial. J Clin Oncol 2017;35:2490-8. https://doi.org/10.1200/JCO.2016.71.5904.
  57. Soria JC, Tan DSW, Chiari R, Wu Y-L, Paz-Ares L, Wolf J, et al. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study. Lancet 2017;389(10072):917–29. https://doi.org/10.1016/S0140-6736(17)30123-X.
  58. Hida T, Nokihara H, Kondo M, Kim YH, Azuma K, Seto T, et al. Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial. Lancet 2017;390:29–39. https://doi.org/10.1016/S0140-6736(17)30565-2.
  59. Peters S, Camidge R, Shaw AT, Gadgeel S, Ahn JS, Kim D-W. et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med 2017;377:829–38. https://doi.org/10.1056/NEJMoa1704795.
  60. Camidge DR, Dziadziuszko R, Peters S, Balas B, Müller B, Shaw AT, et al. Updated efficacy and safety data and impact of the EML4-ALK fusion variant on the efficacy of alectinib in untreated ALK-positive advanced non–small cell lung cancer in the global phase III ALEX study. J Thorac Oncol 2019 July;14(7):1233-43. https://doi.org/10.1016/j.jtho.2019.03.007.
  61. Camidge DR, Kim HR, Ahn M-J, Yang J C-H, Han J-Y, Lee J-S, et al. Brigatinib versus crizotinib in ALK-positive non–small-cell lung cancer. N Engl J Med 2018;379(21):2027-39. https://doi.org/10.1056/NEJMoa1810171.
  62. Solomon BJ, Besse B, Bauer TM, Felip E, Soo RA, Camidge DR, et al. Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. Lancet Oncol 2018;19(12):1654-1667. https://doi.org/10.1016/S1470-2045(18)30649-1.
  63. Shaw AT, Ou S-HI, Bang Y-J, Camidge DR, Solomon BJ, Saligia R, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med 2014;371(21):1963–71. https://doi.org/10.1056/NEJMoa1406766.
  64. Lim SM, Kim HR, Lee J-S, Lee KH, Lee Y-G, Min YJ, et al. Open-label, multicenter, phase II study of ceritinib in patients with non–small-cell lung cancer harboring ROS1 rearrangement. J Clin Oncol 2017;35(23):2613-2618. https://doi.org/10.1200/JCO.2016.71.3701.
  65. Shaw AT, Felip E, Bauer TM, Besse B, Navarro A, Postel-Vinay S, et al. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol 2017;18(12):1590-9. https://doi.org/10.1016/S1470-2045(17)30680-0.
  66. Drilon A, Ou SI, Cho BC, Kim D-W, Lee J, Lin JJ, et al. Repotrectinib (TPX-0005) is a next-generation ROS1/TRK/ALK inhibitor that potently inhibits ROS1/TRK/ALK solvent-front mutations. Cancer Discov 2018 Oct;8(10):1227-36. https://doi.org/10.1158/2159-8290.CD-18-0484.
  67. Katayama R, Kobayashi Y, Friboulet L, Lockerman EL, Koike S, Shaw AT, et al. Cabozantinib overcomes crizotinib resistance in ROS1 fusion-positive cancer. Clin Cancer Res 2015 Jan 1; 21(1):166-74. https://doi.org/10.1158/1078-0432.CCR-14-1385
  68. Planchard D, Besse B, Groen HJM, Souquet P-J, Quoiz E, Baik CS, et al. Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol 2016;17(7):984-993. https://doi.org/10.1016/S1470-2045(16)30146-2.
  69. Hyman DM, Puzanov I, Subbiah V, Faris JE, Chau I, Blay J-Y, et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med 2015;373:726-36. https://doi.org/10.1056/NEJMoa1502309.
  70. Frampton GM, Ali SM, Rosenzweig M, Chmielecki J, Lu X, Bauer TM, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov 2015;5(8):850–9. https://doi.org/10.1158/2159-8290.CD-15-0285.
  71. Wolf J, Setons T, Han J-Y, Reguart N, Garon EB, Groen HJM, et al. Capmatinib (INC280) in METΔex14-mutated advanced non-small cell lung cancer (NSCLC): efficacy data from the phase II GEOMETRY mono-1 study. J Clin Oncol. 2019;37(suppl 15):9004. https://ascopubs.org/doi/abs/10.1200/JCO.2019.37.15_suppl.9004.
  72. Paik PK, Felip E, Veillon R, Sakai H, Cortot AB, Garassino MC, et al. Tepotinib in non–small-cell lung cancer with MET exon 14 skipping mutations. NEJM May 29, 2020 (online ahead of print). https://doi.org/10.1056/NEJMoa2004407.
  73. Kohno T, Ichikawa H, Totoki, Y, Yasuda K, HiramotoM,Nammo T, et al. KIF5B-RET fusions in lung adenocarcinoma. Nat Med 2012;18:375–7. https://doi.org/10.1038/nm.2644.
  74. Drilon A, Rekhtman N, Arcila M, Wang L, Ni A, Albano M, et al. Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single-centre, phase 2, single-arm trial. Lancet Oncol 2016;17:1653-60. https://doi.org/10.1016/S1470-2045(16)30562-9.
  75. Lee S-H, Lee J-K, Ahn M-J, Kim D-W, Keam B, Kim TM, et al. Vandetanib in pretreated patients with advanced non-small cell lung cancer-harboring RET rearrangement: a phase II clinical trial. Ann Oncol. 2017;28(2):292-7. https://doi.org/10.1093/annonc/mdw559.
  76. Drillon A, Oxnard G, Wirth L, Besse B, Gautschi O, Tan SWD, et al. PL02.08: Registrational Results of LIBRETTO-001: A Phase 1/2 Trial of LOXO-292 in Patients with RET Fusion-Positive Lung Cancers. J Thorac Oncol 2019 Oct 01;14(10 suppl):S6-S7. https://www.jto.org/article/S1556-0864(19)30742-7/pdf.
  77. Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med. 2018;378(8):731-9. https://doi.org/10.1056/NEJMoa1714448.
  78. Mazières J, Peters S, Lepage B, Cortot AB, Barlesi F, Beau-Faller M, et al. Lung cancer that harbors an HER2 mutation: epidemiologic characteristics and therapeutic perspectives. J Clin Oncol 2013;31(16):1997–2003. https://doi.org/10.1200/JCO.2012.45.6095.
  79. Li BT, Shen R, Buonocore D, Olah ZT, Ginsberg MS, Ulaner GA, et al. Ado-trastuzumab emtansine for patients with HER2-mutant lung cancers: results from a phase II basket trial. J Clin Oncol 2018;36(24):2532-2537. https://doi.org/10.1200/JCO.2018.77.9777.
  80. Yoneda K, Imanishi N, Ichiki Y, Tanaka F. Immune checkpoint inhibitors (ICIs) in non-small cell lung cancer (NSCLC). J UOEH 2018;40(2):173–89. https://doi.org/10.7888/juoeh.40.173.
  81. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol Oct 2005;25(21):9543-53. https://doi.org/10.1128/MCB.25.21.9543-9553.2005.
  82. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csószi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016 Nov 10;375(19):1823-33. https://doi.org/10.1056/NEJMoa1606774.
  83. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csószi T, Fülöp A, et al. Updated analysis of KEYNOTE-024: Pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J Clin Oncol 2019;37(7):537-46. https://doi.org/10.1200/JCO.18.00149.
  84. Zhou Y, Lin Z, Zhang X, Chen C, Zhao H, Hong S, et al. First-line treatment for patients with advanced non-small cell lung carcinoma and high PD-L1 expression: pembrolizumab or pembrolizumab plus chemotherapy. J Immunother Cancer 2019;7:120. https://doi.org/10.1186/s40425-019-0600-6
  85. Langer CJ, Gadgeel SM, Borghaei H, Papadimitrakopoulou VA, Patnaik A, Powell SF, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol 2016 Nov;17(11):1497-1508. https://doi.org/10.1016/S1470-2045(16)30498-3.
  86. Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med 2018 May 31;378(22):2078-92. https://doi.org/10.1056/NEJMoa1801005.
  87. Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gümüs M, Mazières J, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med 2018;379:2040-51. https://doi.org/10.1056/NEJMoa1810865.
  88. Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med 2018;378:2288-301. https://doi.org/10.1056/NEJMoa1716948.
  89. West H, McCleod M, Hussein M, Morabito A, RIttmeyer A, Conter HJ, et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 2019 Jul; 20(7):924-37. https://doi.org/10.1016/S1470-2045(19)30167-6.
  90. Papadimitrakopoulou VA, Cobo M, Bordoni R, Longeras PD, Szalai Z, Urson G, et al. OA05.07 IMpower132: PFS and safety results with 1L atezolizumab + carboplatin/cisplatin + pemetrexed in stage IV non-squamous NSCLC. J Thorac Oncol 2018;13S:OA05.07.
  91. Jotte RM, Cappuzzo F, Vynnychenko I, Stroyakovskiy D, Rodriguez Abreu D, Hussein MA, et al. IMpower131: Primary PFS and safety analysis of a randomized phase III study of atezolizumab + carboplatin + paclitaxel or nab-paclitaxel vs carboplatin + nab-paclitaxel as 1L therapy in advanced squamous NSCLC. J Clin Oncol 2018;36(18 suppl):LBA9000. https://ascopubs.org/doi/abs/10.1200/JCO.2018.36.18_suppl.LBA9000.
  92. Chambers CA, Sullivan TJ, Allison JP. Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity 1997;7(6):885-95. https://doi.org/10.1016/s1074-7613(00)80406-9.
  93. Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med 2017 Jun 22;376(25):2415-26. https://doi.org/10.1056/NEJMoa1613493.
  94. Hellmann MD, Paz-Ares L, Bernabe Caro R, Zurawski B, Kim S-W, CarcerenyCostsa E, et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N Engl J Med 2019;381:2020-31. https://doi.org/10.1056/NEJMoa1910231.
  95. Reck M, Ciuleanu TE, Cobo Dols M, et al. Nivolumab (NIVO) + ipilimumab (IPI) + 2 cycles of platinum-doublet chemotherapy (chemo) vs 4 cycles chemo as first-line (1L) treatment (tx) for stage IV/recurrent non-small cell lung cancer (NSCLC): CheckMate 9LA. J Clin Oncol 2020;38(15 suppl): 9501. https://ascopubs.org/doi/abs/10.1200/JCO.2020.38.15_suppl.9501.
  96. Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123-35. https://doi.org/10.1056/NEJMoa1504627
  97. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 2015;373(17):1627-39. https://doi.org/10.1056/NEJMoa1507643.
  98. Barlesi F, Garon EB, Kim DW, Felip E, Han J-Y, Kim J-H, et al. Health-related quality of life in KEYNOTE-010: a phase 2/3 study of pembrolizumab versus docetaxel in patients with previously treated advanced, PD-L1-expressing NSCLC. J Thorac Oncol 2019 May;14(5):793-801. https://doi.org/10.1016/j.jtho.2019.01.016.
  99. Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentrerandomised controlled trial [published correction appears in Lancet 2017;389(10077):e5]. Lancet 2017;389(10066):255-65. https://doi.org/10.1016/S0140-6736(16)32517-X.
  100. Spigel D, de Marinis F, Giaccone G, Reinmuth N, Vergnenegre A, Barrios CH, et al. LBA78 - IMpower110: Interim overall survival (OS) analysis of a phase III study of atezolizumab (atezo) vs platinum-based chemotherapy (chemo) as first-line (1L) treatment (tx) in PD-L1–selected NSCLC, Ann Oncol 2019;30(suppl 5):v915. https://doi.org/10.1093/annonc/mdz293.