REFERENCES
ACIA (2005). Arctic Climate Impact Assessment. ACIA Overview report.
Cambridge University Press, Cambridge, UK. 1020 pp.
Aitken, S. N., Yeaman, s., Holliday, J. A., Wang, T., & Curtis-McLane,
S. (2008). Adaptation, migration or extirpation: climate change outcomes
for tree populations. Evolutionary Applications , 1 ,
95–111.
Arias, N. S., Scholz, F. G., Goldstein, G., & Bucci, S. J. (2017) The
cost of avoiding freezing in stems: trade-off between xylem resistance
to cavitation and supercooling capacity in woody plants. Tree
Physiology , 37 , 1251–1262.
Armstrong, J. J., Takebayashi, N., & Wolf, D. E. (2020) Cold tolerance
in the genus Arabidopsis . American Journal of Botany ,107 , 489–497.
Armstrong, J. J., Takebayashi, N., Sformo, T., & Wolf, D. E. (2015).
Cold tolerance in Arabidopsis kamchatica . American Journal
of Botany , 102 , 439–448.
Ashraf, M., & Foolad, M. (2007) Roles of glycine betaine and proline in
improving plant abiotic stress resistance. Environmental and
Experimental Botany , 59 , 206–216.
Auld, J., Everingham, S. E., Hemmings, F. A., & Moles, A. T. (2022).
Alpine plants are on the move: Quantifying distribution shifts of
Australian alpine plants through time. Diversity and
Distributions , 28 , 943–955.
Bokhorst, S., Bjerke, J. W., Tommervik, H., Callaghan, T. V., &
Phoenix, G. K. (2009). Winter warming events damage sub-Arctic
vegetation: consistent evidence from an experimental manipulation and a
natural event. Journal of Ecology , 97 , 1408–1415.
Bruch, A. A., Utescher, T., & Mosbrugger, V. (2011). Precipitation
patterns in the Miocene of Central Europe and the development of
continentality. Palaeogeography, Palaeoclimatology,
Palaeoecology , 304 , 3–4.
Brule-Babel, A. L., & Fowler, D. B. (1989). Use of controlled
environments for winter cereal cold hardiness evaluation: controlled
freeze tests and tissue water content as prediction tests.Canadian Journal of Plant Science , 69 , 355–366.
Cieślak, E., Korbecka, G., & Ronikier, M. (2007). Genetic structure of
the critically endangered endemic Cochlearia polonica(Brassicaceae): efficiency of the last-chance transplantation.Botanical Journal of the Linnean Society , 155 , 527–532.
Cieślak, E., Kaźmierczakowa, R., & Ronikier, M. (2010).Cochlearia polonica Fröhl. (Brassicaceae), a narrow endemic
species of southern Poland: history of conservation efforts, overview of
current population resources and genetic structure of populations.Acta Societatis Botanicorum Poloniae , 79 , 255–261.
Davey, M. P., Woodward, I., Quick, P. (2008) Intraspecific variation in
cold-temperature metabolic phenotypes of Arabidopsis lyrata ssp.petraea . Metabolomics , 5 , 138-149.
Davey, M. P., Palmer, B. G., Armitage, E., Vergeer, P., Kunin, W. E.,
Woodward, F. I., & Quick, W. P. (2018). Natural variation in tolerance
to sub-zero temperatures among populations of Arabidopsis lyratassp. petraea . BMC Plant Biology , 18 , 1–10.
Descamps, S., Aars, J., Fuglei, E., Kovacs, K. M., Lydrsen, C., Pavlova,
O., Pedersen, Å. Ø., Ravolainen, V., & Strøm, H. (2017). Climate change
impacts on wildlife in a High Arctic archipelago—Svalbard, Norway.Global Change Biology , 23 , 490–502.
Ernakovich, J. G., Hopping, K. A., Berdanier, A. B., Simpson, R. T.,
Kachergis, E. J., Steltzer, H., & Wallenstein, M. D. (2014). Predicted
responses of arctic and alpine ecosystems to altered seasonality under
climate change. Global Change Biology , 20 , 3256–3269.
Franks, S. J., Weber, J. J., & Aitken, S. N. (2014). Evolutionary and
plastic responses to climate change in terrestrial plant populations.Evolutionary Applications , 7 , 123–139.
Gilmour, S. J., Hajela, R. K., & Thomashow, M. F. (1988). Cold
acclimation in Arabidopsis thaliana . Plant Physiology ,87 , 745–750.
Hannah, M. A., Wiese, D., Freund, S., Fiehn, O., Heyer, A. G., &
Hinccha, D. K. (2006). Natural genetic variation of freezing tolerance
in Arabidopsis . Plant Physiology , 142 , 98–112.
Hatsugai, N., & Katagiri, F. (2018). Quantification of plant cell death
by electrolyte leakage assay. Bio-protocol , 8 , e2758.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis,
A. (2005) Very high resolution interpolated climate surfaces for global
land areas. International Journal of Climatology , 25 ,
1965–1978.
Hincha, D. K., & Zuther, E. (2014). Introduction: plant cold
acclimation and freezing tolerance. In: Hincha, D., Zuther, E. (eds)
Plant Cold Acclimation. Methods in Molecular Biology, vol 1166. Humana
Press, New York, NY. https://doi.org/10.1007/978-1-4939-0844-8_1
Hohmann, N., & Koch, M. A. (2017) An Arabidopsis introgression
zone studied at high spatio-temporal resolution: interglacial and
multiple genetic contact exemplified using whole nuclear and plastid
genomes. BMC Genomics , 18 , e810.
Hohmann, N., Schmickl, R., Chiang, T.-Y., Lucanova, M., Kolar, F.,
Marhold, K., & Koch, M. A. (2014) Taming the wild: resolving the gene
pools of non-model Arabidopsis lineages. BMC Evolutionary
Biology , 14 , e224.
IPCC (2022). Climate Change 2022: Impacts, Adaptation, and
Vulnerability. Contribution of Working Group II to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change (eds.: H.-O.
Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A.
Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B.
Rama). Cambridge University Press, Cambridge, UK. In Press.
Janská, A., Marsík, P., Zelenková, S., & Ovesná, J. (2010) cold stress
and acclimation – what is important for metabolic adjustment?Plant Biology , 12 , 395-405.
Kaplan, F., Kopka, J., Sung, D. Y., Zhao, W., Popp, M., Porat, R., &
Guy, C. L. (2007) Transcript and metabolite profiling during cold
acclimation of Arabidopsis reveals an intricate relationship of
cold-regulated gene expression with modifications in metabolite content.The Plant Journal , 50 , 967-981.
Kiefer, M., Schmickl, R., German, D., Lysak, M., Al-Shehbaz, I. A.,
Franzke, A., Mummenhoff, K., Stamatakis, A., & Koch, M. A. (2014)BrassiBase : Introduction to a Novel Knowledge Database on
Brassicaceae Evolution. Plant Cell and Physiology , 55 ,
e3.
Koch, M. (1996) Zur Ausbreitung des Dänisches Löffelkrautes
(Cochlearia danica L. ) als Küstensippe in das Niedersächsische
Binnenland. Floristische Rundbriefe , 30 , 20–23.
Koch, M. (1997) Kurznotiz zur südlichen Ausbreitung des Dänischen
Löffelkrauts ( Cochlearia danica L. ) in
Nordrhein-Westfalen. Floristische Rundbriefe , 31 ,
136–138.
Koch, M. (2002): Genetic differentiation and speciation in prealpineCochlearia (Brassicaceae): Allohexaploid Cochlearia
bavarica (Brassicaceae) compared to its diploid ancestorCochlearia pyrenaica in Germany and Austria. Plant
Systematics and Evolution , 232 , 35–49.
Koch, M. A. (2012) Mid-Miocene divergence of Ionopsidium andCochlearia and its impact on the systematics and biogeography of
the tribe Cochlearieae (Brassicaceae). Taxon, 61, 76–92.
Koch, M. A. (2018) The plant model system Arabidopsis set into an
evolutionary, systematic and spatio-temporal context. Journal of
Experimental Botany , 70 , 55–67.
Koch, M., & Bernhardt, K.-G. (2004): Cochlearia macrorrhiza , a
highly endangered lowland species from Eastern Austria. Conservation
genetics, ex situ and in situ conservation efforts. Scripta
Botanica Belgica , 29 , 157–164.
Koch, M., Dobes, C., Bernhardt, K.-G., & Kochjarova, J. (2003).Cochlearia macrorrhiza : A bridging species between Cochlearia
taxa from the Eastern Alps and the Carpathians. Plant Systematics
and Evolution , 242 , 137–147.
Koch, M. A., German, D. A., Kiefer, M., & Franzke, A. (2018). Database
taxonomics as key to modern plant biology. Trends in Plant
Sciences , 23 , 4–6.
Koch, M., Hurka, H., Mummnhoff, K. (1996). Chloroplast DNA restriction
site variation and RAPD-analyses in Cochlearia (Brassicaceae).
Biosystematics and speciation processes. Nordic Journal of
Botany , 16 , 585–604.
Koch, M., Huthmann, M., & Hurka, H. (1998). Isozymes, speciation and
evolution in the polyploid complex Cochlearia L. (Brassicaceae).Botanica Acta , 111 , 451–466.
Koch, M. A., Kiefer, M., German, D., Al-Shehbaz, I. A., Franzke, A.,
Mummenhoff, K., & Schmickl. R. (2012). BrassiBase: Tools and biological
resources to study characters and traits in the Brassicaceae – version
1.1. Taxon , 61 , 1001–1009.
Koch, M., Mummenhoff, K., & Hurka, H. (1999) Molecular phylogenetics ofCochlearia L. and allied genera based on chloroplast trn L
intron and nuclear ribosomal ITS DNA sequence analysis contradict
traditional classification. Plant Systematics and Evolution ,216 , 207–230.
Kovach, W. L. (2007). MVSP - A MultiVariate Statistical Package for
Windows, ver. 3.1. Kovach Computing Services, Pentraeth, Wales, U.K.
Kreyling, J. (2010). Winter climate change: a critical factor for
temperate vegetation performance. Ecology , 91 ,
1939–1948.
Lee, B. H., & Zhu, J. K. (2010) Phenotypic analysis ofArabidopsis mutants: electrolyte leakage after freezing stress.
Cold Spring Harbor Protocols, pdb.prot4970. doi: 10.1101/pdb.prot4970.
Lesica, P., & McCune, B. (2004). Decline of arctic-alpine plants at the
southern margin of their range following a decade of climatic warming.Journal of Vegetation Science , 15 , 679–690.
Loarie, S., Duffy, P. B., Hamilton, Hamilton, H., Asner, G. P., Field,
C. B., & Ackerly, D. D. (2009) The velocity of climate change.Nature , 462, 1052–1055.
Mascle, G., & Mascle, J. (2019) The Messinian salinity legacy: 50 years
later. Mediterranean Geoscience Reviews , 1, 5–15.
Meireles, J. E., Beulke, A., Borkowski, D. S., Romero-Severson, J., &
Cavender-Bares, J. (2017). Balancing selection maintains diversity in a
cold tolerance gene in broadly distributed live oaks. Genome ,60 , 762–769.
Parolo, G., & Rossi, G. (2008). Upward migration of vascular plants
following a climate warming trend in the Alps. Basic and Applied
Ecology , 9 , 100–107.
Pomeroy, J.W., & Brun, E. (2001). Physical properties of snow. Pp.
45–126.
In: Snow ecology: An interdisciplinary examination of snow-covered
ecosystems (eds. Jones, H.G., Walker, D.A., Pomeroy, J.W., Hoham, R.).
Cambridge University Press, Cambridge, UK. Pp. 378.
R Core Team (2021). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.
Renaut, J., Hoffmann, L., & Hausman, J.-F. (2005). Biochemical and
physiological mechanisms related to cold acclimation and enhanced
freezing tolerance in poplar plantlets. Physiologia Plantarum ,125 , 82–94.
Reyes-Díaz, M., Ulloa, N., Zúniga-Feest, A., Gutiérrez, A., Gidekel, M.,
Alberdi, M., Corcuera, L. J., & Bravo, L. A. (2006). Arabidopsis
thaliana avoids freezing by supercooling. Journal of Experimental
Botany , 57 , 3687–3696.
Ritonga, F. N., & Chen, S. (2020) Physiological and molecular mechanism
involved in cold stress tolerance in plants. Plants , 9 ,
560.
Román-Palacios, C., & Wiens, J. J. (2020). Recent responses to climate
change reveal the drivers of species extinction and survival.Proceedings of the National Academy of Sciences, USA ,117 , 4211–4217.
Schmickl, R., Jorgenson, M., Brysting, A., & Koch, M. A. (2010). The
evolutionary history of the Arabidopsis lyrata complex: A hybrid
in the amphi-Beringian area closes a large distribution gap and builds
up a genetic barrier. BMC Evolutionary Biology , 10 , e98.
Sonesson, M., & Callaghan, T. V. (1991). Strategies of survival in
plants of the Fennoscandian tundra. Arctic , 44 , 95–105.
Thalhammer, A., Hincha, D. K., & Zuther, E. (2014). Measuring freezing
tolerance: electrolyte leakage and chlorophyll fluorescence assays. In:
Hincha, D., Zuther, E. (eds) Plant Cold Acclimation. Methods in
Molecular Biology, vol 1166. Humana Press, New York, NY.
https://doi.org/10.1007/978-1-4939-0844-8_3.
Thomashow, M. F. (20120) Molecular basis of plant cold acclimation:
insights gained from studying the CBF cold response pathway. Plant
Physiology , 154 , 571–577.
Uemura, M., Joseph, R. A., & Steponkus, P. L. (1995). Cold acclimation
of Arabidopsis thaliana (effect on plasma membrane lipid
composition and freeze-induced lesions). Plant Physiology ,109 , 15–30.
Vogt, R. (1987). Die Gattung Cochlearia L. (Cruciferae) auf der
Iberischen Halbinsel. Mitteilungen Botanische Staatssammlung
München , 23 , 393–421.
Walden, N., German, D. A., Wolf, E. M., Kiefer, M., Rigault, P., Huang,
X.-C., Kiefer, C., Schmickl, R., Franzke, A., Neuffer, B., Mummenhoff,
K., & Koch, M. A. (2020) Nested whole-genome duplications coincide with
diversification and high morphological disparity in Brassicaceae.Nature Communications , 11, 3795.
Walther, G.-R., Beisner, S., & Burga, C. A. (2005) Trends in the upward
shift of alpine plants. Journal of Vegetation Science ,16 , 541–548.
Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A., & Langham,
G. (2008). Towards an integrated framework for assessing the
vulnerability of species to climate change. PLoS Biology ,6 , e325.
Wipf, S., & Rixen, C. (2010). A review of snow manipulation experiments
in Arctic and alpine tundra ecosystems. Polar Research ,29 , 95–109.
Wolf, E., Gaquerel, E., Scharmann, M., Yant, L., Koch, M. A. (2021).
Evolutionary footprints of a cold relic in a rapidly warming world.Elife , 10 , e71572.
Wos, G., & Willi, Y. (2015). Temperature-stress resistance and
tolerance along a latitudinal cline in North American Arabidopsis
lyrata . PloS One , 10 , e0131808.
Wos, G., & Willi, Y. (2018). Thermal acclimation in Arabidopsis
lyrata : genotypic costs and transcriptional changes. Journal of
Evolutionary Biology , 31 , 123–135.
Xin, Z., & Browse, J. (2000). Cold comfort farm: the acclimation of
plants to freezing temperatures. Plant, Cell & Environment ,23 , 893–902.
Zhen, Y., Dhakal, P., & Ungerer, M. C. (2011). Fitness benefits and
costs of cold acclimation in Arabidopsis thaliana . The
American Naturalist , 178 , 44–52.
Zuther, E., Schulz, E., Childs, L. H., & Hincha, D. K. (2012) Clinal
variation in the non-acclimated and cold-acclimated freezing tolerance
of Arabidopsis thaliana accessions. Plant, Cell &
Environment , 35 , 1860–1878.