References
1. Chaoui R. Evolution of fetal cardiac imaging in 30 years of
ISUOG. Ultrasound in Obstet & Gyne . 2021;57(1):38-42.
doi:10.1002/uog.23551
2. Nogué L, Gómez O, Izquierdo N, et al. Feasibility of 4D-Spatio
Temporal Image Correlation (STIC) in the Comprehensive Assessment of the
Fetal Heart Using FetalHQ®. JCM . 2022;11(5):1414.
doi:10.3390/jcm11051414
3. Van Mieghem T, DeKoninck P, Steenhaut P, Deprest J. Methods for
prenatal assessment of fetal cardiac function: FETAL CARDIAC FUNCTION.Prenat Diagn . 2009;29(13):1193-1203. doi:10.1002/pd.2379
4. Crispi F, Valenzuela-Alcaraz B, Cruz-Lemini M, Gratacós E. Ultrasound
assessment of fetal cardiac function. Australasian Journal of
Ultrasound in Medicine . 2013;16(4):158-167.
doi:10.1002/j.2205-0140.2013.tb00242.x
5. Huntley ES, Hernandez-Andrade E, Soto E, DeVore G, Sibai BM. Novel
Speckle Tracking Analysis Showed Excellent Reproducibility for Size and
Shape of the Fetal Heart and Good Reproducibility for Strain and
Fractional Shortening. Fetal Diagn Ther . 2021;48(7):541-550.
doi:10.1159/000517625
6. Godfrey ME, Messing B, Cohen SM, Valsky DV, Yagel S. Functional
assessment of the fetal heart: a review. Ultrasound Obstet
Gynecol . 2012;39(2):131-144. doi:10.1002/uog.9064
7. Crispi F, Sepulveda-Swatson E, Cruz-Lemini M, et al. Feasibility and
Reproducibility of a Standard Protocol for 2D Speckle Tracking and
Tissue Doppler-Based Strain and Strain Rate Analysis of the Fetal Heart.Fetal Diagn Ther . 2012;32(1-2):96-108. doi:10.1159/000337329
8. Crispi F, Gratacós E. Fetal Cardiac Function: Technical
Considerations and Potential Research and Clinical Applications.Fetal Diagn Ther . 2012;32(1-2):47-64. doi:10.1159/000338003
9. Enzensberger C, Degenhardt J, Tenzer A, Doelle A, Axt-Fliedner R.
First Experience with Three-Dimensional Speckle Tracking (3D Wall Motion
Tracking) in Fetal Echocardiography. Ultraschall in Med .
2014;35(06):566-572. doi:10.1055/s-0034-1384882
10. van Oostrum NHM, de Vet CM, Clur SB, et al. Fetal myocardial
deformation measured with two‐dimensional speckle‐tracking
echocardiography: longitudinal prospective cohort study of 124 healthy
fetuses. Ultrasound in Obstet & Gyne . 2022;59(5):651-659.
doi:10.1002/uog.24781
11. Zhu C, Li M, Xu CJ, et al. Comparison of the left and right
ventricular size and systolic function of low-risk fetuses in the third
trimester: Which is more dominant? Front Cardiovasc Med .
2023;10:1052178. doi:10.3389/fcvm.2023.1052178
12. Graupner O, Enzensberger C. Kardiale Funktionsanalyse beim Feten:
Schritt für Schritt. Gynäkologe . 2022;55(1):7-13.
doi:10.1007/s00129-021-04889-z
13. Duan S, Ha S, Li S, et al. Evaluation of cardiac function and
systolic dyssynchrony of fetuses exposed to maternal autoimmune diseases
using speckle tracking echocardiography. Clin Rheumatol .
2021;40(9):3807-3815. doi:10.1007/s10067-021-05723-6
14. Day TG, Charakida M, Simpson JM. Using speckle‐tracking
echocardiography to assess fetal myocardial deformation: are we there
yet? Ultrasound Obstet Gynecol . 2019;54(5):575-581.
doi:10.1002/uog.20233
15. Germanakis I, Gardiner H. Assessment of Fetal Myocardial Deformation
Using Speckle Tracking Techniques. Fetal Diagn Ther .
2012;32(1-2):39-46. doi:10.1159/000330378
16. DeVore GR, Polanco B, Satou G, Sklansky M. Two-Dimensional Speckle
Tracking of the Fetal Heart: A Practical Step-by-Step Approach for the
Fetal Sonologist. Journal of Ultrasound in Medicine .
2016;35(8):1765-1781. doi:10.7863/ultra.15.08060
17. van Oostrum NHM, Derks K, van der Woude DaisyAA, Clur SA, Oei SG,
van Laar JOEH. Two-dimensional Speckle tracking echocardiography in
Fetal Growth Restriction: a systematic review. European Journal of
Obstetrics & Gynecology and Reproductive Biology . 2020;254:87-94.
doi:10.1016/j.ejogrb.2020.08.052
18. DeVore GR, Klas B, Satou G, Sklansky M. Speckle Tracking Analysis to
Evaluate the Size, Shape, and Function of the Atrial Chambers in Normal
Fetuses at 20–40 Weeks of Gestation. J Ultrasound Med . Published
online November 26, 2021:jum.15888. doi:10.1002/jum.15888
19. DeVore GR, Klas B, Satou G, Sklansky M. Longitudinal Annular
Systolic Displacement Compared to Global Strain in Normal Fetal Hearts
and Those With Cardiac Abnormalities: Longitudinal Annular Systolic
Displacement. J Ultrasound Med . 2018;37(5):1159-1171.
doi:10.1002/jum.14454
20. DeVore GR, Klas B, Satou G, Sklansky M. Twenty-four Segment
Transverse Ventricular Fractional Shortening: A New Technique to
Evaluate Fetal Cardiac Function: Twenty-four Segment Transverse
Ventricular Fractional Shortening. J Ultrasound Med .
2018;37(5):1129-1141. doi:10.1002/jum.14455
21. DeVore GR, Jone PN, Satou G, Sklansky M, Cuneo BF. Aortic
Coarctation: A Comprehensive Analysis of Shape, Size, and Contractility
of the Fetal Heart. Fetal Diagn Ther . 2020;47(Suppl. 5):429-439.
doi:10.1159/000500022
22. DeVore GR, Klas B, Satou G, Sklansky M. 24-segment sphericity index:
a new technique to evaluate fetal cardiac diastolic shape: 24-segment
sphericity index. Ultrasound Obstet Gynecol . 2018;51(5):650-658.
doi:10.1002/uog.17505
23. DeVore GR, Cuneo B, Klas B, Satou G, Sklansky M. Comprehensive
Evaluation of Fetal Cardiac Ventricular Widths and Ratios Using a
24‐Segment Speckle Tracking Technique. J Ultrasound Med .
2019;38(4):1039-1047. doi:10.1002/jum.14792
24. DeVore GR, Satou G, Sklansky M. Comparing the Non‐Quiver
and Quiver Techniques for Identification of the Endocardial Borders Used
for Speckle‐Tracking Analysis of the Ventricles of the Fetal
Heart. J Ultrasound Med . 2021;40(9):1955-1961.
doi:10.1002/jum.15561
25. Kühle H, Cho SKS, Barber N, et al. Advanced imaging of fetal cardiac
function. Front Cardiovasc Med . 2023;10:1206138.
doi:10.3389/fcvm.2023.1206138
26. Ta-Shma A, Perles Z, Gavri S, et al. Analysis of Segmental and
Global Function of the Fetal Heart Using Novel Automatic Functional
Imaging. Journal of the American Society of Echocardiography .
2008;21(2):146-150. doi:10.1016/j.echo.2007.05.007
27. Meister M, Axt-Fliedner R, Graupner O, et al. Atrial and Ventricular
Deformation Analysis in Normal Fetal Hearts Using Two-Dimensional
Speckle Tracking Echocardiography. Fetal Diagn Ther .
2020;47(9):699-710. doi:10.1159/000508881
28. Ohira A, Hayata K, Mishima S, et al. The assessment of the fetal
heart function using two-dimensional speckle tracking with a high frame
rate. Early Human Development . 2020;151:105160.
doi:10.1016/j.earlhumdev.2020.105160
29. Luo L, Liu H, Zhou S, et al. Quantitative evaluation of fetal
ventricular function by speckle tracking echocardiography.Echocardiography . 2021;38(11):1924-1931. doi:10.1111/echo.15240
30. DeVore GR, Klas B, Satou G, Sklansky M. Evaluation of Fetal Left
Ventricular Size and Function Using Speckle‐Tracking and the Simpson
Rule. J Ultrasound Med . 2019;38(5):1209-1221.
doi:10.1002/jum.14799
31. DeVore GR, Haxel C, Satou G, et al. Improved detection of
coarctation of the aorta using speckle‐tracking analysis of fetal heart
on last examination prior to delivery. Ultrasound Obstet Gynecol .
2021;57(2):282-291. doi:10.1002/uog.21989
32. DeVore GR, Klas B, Satou G, Sklansky M. Quantitative evaluation of
fetal right and left ventricular fractional area change using
speckle‐tracking technology. Ultrasound Obstet Gynecol .
2019;53(2):219-228. doi:10.1002/uog.19048
33. DeVore GR, Klas B, Satou G, Sklansky M. Evaluation of the right and
left ventricles: An integrated approach measuring the area, length, and
width of the chambers in normal fetuses. Prenatal Diagnosis .
2017;37(12):1203-1212. doi:10.1002/pd.5166
34. DeVore GR, Satou G, Sklansky M. Area of the fetal heart’s
four-chamber view: a practical screening tool to improve detection of
cardiac abnormalities in a low-risk population: Area of the fetal
heart’s four-chamber view: a practical screening. Prenat Diagn .
2017;37(2):151-155. doi:10.1002/pd.4980
35. DeVore GR, Gumina DL, Hobbins JC. Assessment of ventricular
contractility in fetuses with an estimated fetal weight less than the
tenth centile. American Journal of Obstetrics and Gynecology .
2019;221(5):498.e1-498.e22. doi:10.1016/j.ajog.2019.05.042
36. Gireadă R, Socolov D, Mihălceanu E, et al. Evaluation of Fetal
Cardiac Geometry and Contractility in Gestational Diabetes Mellitus by
Two-Dimensional Speckle-Tracking Technology. Diagnostics .
2022;12(9):2053. doi:10.3390/diagnostics12092053
37. Wang D, Liu C, Liu X, Zhang Y, Wang Y. Evaluation of prenatal
changes in fetal cardiac morphology and function in maternal diabetes
mellitus using a novel fetal speckle-tracking analysis: a prospective
cohort study. Cardiovasc Ultrasound . 2021;19(1):25.
doi:10.1186/s12947-021-00256-z
38. Song Y, Yin H, Wang W, et al. Evaluation of fetal cardiac functions
in the setting of maternal diabetes: Application of the global spherical
index, global strain and fractional area change by the speckle tracking
technique. European Journal of Obstetrics & Gynecology and
Reproductive Biology . 2021;264:162-167.
doi:10.1016/j.ejogrb.2021.07.004
39. Rolf N, Kerschke L, Braun J, et al. Quantification of fetal
myocardial function in pregnant women with diabetic diseases and in
normal controls using speckle tracking echocardiography (STE).Journal of Perinatal Medicine . 2018;47(1):68-76.
doi:10.1515/jpm-2018-0031
40. Van Mieghem T, Giusca S, DeKoninck P, et al. Prospective Assessment
of Fetal Cardiac Function With Speckle Tracking in Healthy Fetuses and
Recipient Fetuses of Twin-to-Twin Transfusion Syndrome. Journal of
the American Society of Echocardiography . 2010;23(3):301-308.
doi:10.1016/j.echo.2009.12.024
41. Harbison AL, Pruetz JD, Ma S, Sklansky MS, Chmait RH, DeVore GR.
Evaluation of cardiac function in the recipient twin in successfully
treated twin‐to‐twin transfusion syndrome using a novel fetal
speckle‐tracking analysis. Prenatal Diagnosis .
2021;41(1):136-144. doi:10.1002/pd.5835
42. Kräker K, Schütte T, O’Driscoll J, et al. Speckle Tracking
Echocardiography: New Ways of Translational Approaches in Preeclampsia
to Detect Cardiovascular Dysfunction. IJMS . 2020;21(3):1162.
doi:10.3390/ijms21031162
43. Fan X, Zhou Q, Zeng S, et al. Impaired Fetal Myocardial Deformation
in Intrahepatic Cholestasis of Pregnancy. Journal of Ultrasound in
Medicine . 2014;33(7):1171-1177. doi:10.7863/ultra.33.7.1171
44. Van Dalen BM, Caliskan K, Soliman OII, et al. Left ventricular solid
body rotation in non-compaction cardiomyopathy: A potential new
objective and quantitative functional diagnostic criterion?European Journal of Heart Failure . 2008;10(11):1088-1093.
doi:10.1016/j.ejheart.2008.08.006
45. Van Dalen BM, Caliskan K, Soliman OII, et al. Diagnostic Value of
Rigid Body Rotation in Noncompaction Cardiomyopathy. Journal of
the American Society of Echocardiography . 2011;24(5):548-555.
doi:10.1016/j.echo.2011.01.002
46. Weichert J, Welp A, Scharf JL, Dracopoulos C, Becker WH, Gembicki M.
The Use of Artificial Intelligence in Automation in the Fields of
Gynaecology and Obstetrics – an Assessment of the State of Play.Geburtshilfe Frauenheilkd . 2021;81(11):1203-1216.
doi:10.1055/a-1522-3029
47. Scharf JL, Dracopoulos C, Gembicki M, Welp A, Weichert J. How
Automated Techniques Ease Functional Assessment of the Fetal Heart:
Applicability of MPI+TM for Direct Quantification of
the Modified Myocardial Performance Index. Published online 2023.
48. Tegnander E, Eik-Nes SH. The examiner’s ultrasound experience has a
significant impact on the detection rate of congenital heart defects at
the second-trimester fetal examination. Ultrasound Obstet
Gynecol . 2006;28(1):8-14. doi:10.1002/uog.2804
49. Yeo L, Romero R. Optical ultrasound simulation-based training in
obstetric sonography. The Journal of Maternal-Fetal & Neonatal
Medicine . Published online July 7, 2020:1-16.
doi:10.1080/14767058.2020.1786519
50. Steinhard J, Freundt P, Janzing P, Popov V, Menkhaus R, Ross L.
Künstliche Intelligenz und Simulation in der Pränatalmedizin – was wir
von Maschinen lernen können. Gynäkologie . 2022;55(10):746-758.
doi:10.1007/s00129-022-04996-5
51. Grunhut J, Wyatt AT, Marques O. Educating Future Physicians in
Artificial Intelligence (AI): An Integrative Review and Proposed
Changes. Journal of Medical Education and Curricular Development .
2021;8:238212052110368. doi:10.1177/23821205211036836
52. Gudigar A, U. R, Samanth J, et al. Role of Four-Chamber Heart
Ultrasound Images in Automatic Assessment of Fetal Heart: A Systematic
Understanding. Informatics . 2022;9(2):34.
doi:10.3390/informatics9020034
53. Chen Z, Liu Z, Du M, Wang Z. Artificial Intelligence in Obstetric
Ultrasound: An Update and Future Applications. Front Med .
2021;8:733468. doi:10.3389/fmed.2021.733468
54. Edwards C, Chamunyonga C, Searle B, Reddan T. The application of
artificial intelligence in the sonography profession: Professional and
educational considerations. Ultrasound . Published online January
21, 2022:1742271X2110724. doi:10.1177/1742271X211072473
55. Ahn KH, Lee KS. Artificial intelligence in obstetrics. Obstet
Gynecol Sci . 2022;65(2):113-124. doi:10.5468/ogs.21234
56. Sakai A, Komatsu M, Komatsu R, et al. Medical Professional
Enhancement Using Explainable Artificial Intelligence in Fetal Cardiac
Ultrasound Screening. Biomedicines . 2022;10(3):551.
doi:10.3390/biomedicines10030551
57. Rizzo G, Pietrolucci ME, Capponi A, Mappa I. Exploring the role of
artificial intelligence in the study of fetal heart. Int J
Cardiovasc Imaging . Published online March 16, 2022:s10554-022-02588-x.
doi:10.1007/s10554-022-02588-x
58. Komatsu M, Sakai A, Dozen A, et al. Towards Clinical Application of
Artificial Intelligence in Ultrasound Imaging. Biomedicines .
2021;9(7):720. doi:10.3390/biomedicines9070720
59. Komatsu M, Sakai A, Komatsu R, et al. Detection of Cardiac
Structural Abnormalities in Fetal Ultrasound Videos Using Deep Learning.Applied Sciences . 2021;11(1):371. doi:10.3390/app11010371
60. Lin M, He X, Guo H, et al. Use of real‐time artificial intelligence
in detection of abnormal image patterns in standard sonographic
reference planes in screening for fetal intracranial malformations.Ultrasound in Obstet & Gyne . 2022;59(3):304-316.
doi:10.1002/uog.24843
61. Malani SN, Shrivastava D, Raka MS. A Comprehensive Review of the
Role of Artificial Intelligence in Obstetrics and Gynecology.Cureus . Published online February 12, 2023.
doi:10.7759/cureus.34891
62. Xiao S, Zhang J, Zhu Y, et al. Application and Progress of
Artificial Intelligence in Fetal Ultrasound. JCM .
2023;12(9):3298. doi:10.3390/jcm12093298
63. Tenajas R, Miraut D, Illana CI, Alonso-Gonzalez R, Arias-Valcayo F,
Herraiz JL. Recent Advances in Artificial Intelligence-Assisted
Ultrasound Scanning. Applied Sciences . 2023;13(6):3693.
doi:10.3390/app13063693
64. Bravo-Valenzuela NJM, Malho AS. Evolution of Fetal Cardiac Imaging
over the Last 20 Years. Published online 2023.
65. Jost E, Kosian P, Jimenez Cruz J, et al. Evolving the Era of 5D
Ultrasound? A Systematic Literature Review on the Applications for
Artificial Intelligence Ultrasound Imaging in Obstetrics and Gynecology.JCM . 2023;12(21):6833. doi:10.3390/jcm12216833
66. Peixoto AB, Bravo-Valenzuela NJ, Rocha LA, Araujo Júnior E. Spectral
Doppler, tissue Doppler, and speckle-tracking echocardiography for the
evaluation of fetal cardiac function: an update. Radiol Bras .
2021;54(2):99-106. doi:10.1590/0100-3984.2020.0052
67. Cruz-Martinez R, Figueras F, Jaramillo JJ, et al. Learning curve for
Doppler measurement of fetal modified myocardial performance index.Ultrasound Obstet Gynecol . 2011;37(2):158-162.
doi:10.1002/uog.7765
68. Hata T, Koyanagi A, Yamanishi T, et al. A 24-segment fractional
shortening of the fetal heart using Fetal HQ. Journal of
Perinatal Medicine . 2021;49(3):371-376. doi:10.1515/jpm-2020-0246
69. Hata T, Koyanagi A, Yamanishi T, et al. Evaluation of 24-segment
sphericity index of fetal heart using Fetal HQ. The Journal
of Maternal-Fetal & Neonatal Medicine . 2022;35(23):4573-4579.
doi:10.1080/14767058.2020.1856808
70. Dodaro MG, Montaguti E, Balducci A, et al. Fetal speckle-tracking
echocardiography: a comparison between two-dimensional and electronic
spatio-temporal image correlation (e-STIC) technique. The Journal
of Maternal-Fetal & Neonatal Medicine . Published online April 6,
2021:1-7. doi:10.1080/14767058.2021.1906855
71. Rolf D, Schmidt R, Möllers M, et al. Assessment of strain and
dyssynchrony in normal fetuses using speckle tracking echocardiography
– comparison of three different ultrasound probes. Journal of
Perinatal Medicine . 2018;46(9):960-967. doi:10.1515/jpm-2017-0113
72. Patey O, Carvalho JS, Thilaganathan B. Intervendor Discordance of
Fetal and Neonatal Myocardial Tissue Doppler and Speckle-Tracking
Measurements. Journal of the American Society of
Echocardiography . 2019;32(10):1339-1349.e23.
doi:10.1016/j.echo.2019.05.023
73. Sanz J, Sánchez-Quintana D, Bossone E, Bogaard HJ, Naeije R.
Anatomy, Function, and Dysfunction of the Right Ventricle. Journal
of the American College of Cardiology . 2019;73(12):1463-1482.
doi:10.1016/j.jacc.2018.12.076
74. Gardiner HM. Foetal cardiac function: assessing new technologies.Cardiol Young . 2014;24(S2):26-35. doi:10.1017/S1047951114001401
75. DiLorenzo MP, Bhatt SM, Mercer-Rosa L. How best to assess right
ventricular function by echocardiography. Cardiol Young .
2015;25(8):1473-1481. doi:10.1017/S1047951115002255
76. Schneider M, Aschauer S, Mascherbauer J, et al. Echocardiographic
assessment of right ventricular function: current clinical practice.Int J Cardiovasc Imaging . 2019;35(1):49-56.
doi:10.1007/s10554-018-1428-8
77. Chelliah A, Dham N, Frank LH, Donofrio M, Krishnan A. Myocardial
strain can be measured from first trimester fetal echocardiography using
velocity vector imaging: First trimester fetal strain. Prenat
Diagn . 2016;36(5):483-488. doi:10.1002/pd.4813
78. Semmler J, Day TG, Georgiopoulos G, et al. Fetal Speckle-Tracking:
Impact of Angle of Insonation and Frame Rate on Global Longitudinal
Strain. Journal of the American Society of Echocardiography .
2020;33(9):1141-1146.e2. doi:10.1016/j.echo.2020.03.013
79. Enzensberger C, Tenzer A, Degenhardt J, Kawecki A, Axt-Fliedner R.
Beurteilung der fetalen kardialen Funktion – etablierte und neue
Methoden. Z Geburtshilfe Neonatol . 2014;218(02):56-63.
doi:10.1055/s-0034-1371849
80. Enzensberger C, Achterberg F, Graupner O, Wolter A, Herrmann J,
Axt‐Fliedner R. Wall‐motion tracking in fetal
echocardiography—Influence of frame rate on longitudinal strain
analysis assessed by two‐dimensional speckle tracking.Echocardiography . 2017;34(6):898-905. doi:10.1111/echo.13542
81. Antúnez‐Montes OY, Kocica MJ, Olavarria AS, et al. Helical structure
of the ventricular myocardium. A narrative review of cardiac mechanics.Echocardiography . 2023;40(3):161-173. doi:10.1111/echo.15515
82. Geyer H, Caracciolo G, Abe H, et al. Assessment of Myocardial
Mechanics Using Speckle Tracking Echocardiography: Fundamentals and
Clinical Applications. Journal of the American Society of
Echocardiography . 2010;23(4):351-369. doi:10.1016/j.echo.2010.02.015