References
1. Chaoui R. Evolution of fetal cardiac imaging in 30 years of ISUOG. Ultrasound in Obstet & Gyne . 2021;57(1):38-42. doi:10.1002/uog.23551
2. Nogué L, Gómez O, Izquierdo N, et al. Feasibility of 4D-Spatio Temporal Image Correlation (STIC) in the Comprehensive Assessment of the Fetal Heart Using FetalHQ®. JCM . 2022;11(5):1414. doi:10.3390/jcm11051414
3. Van Mieghem T, DeKoninck P, Steenhaut P, Deprest J. Methods for prenatal assessment of fetal cardiac function: FETAL CARDIAC FUNCTION.Prenat Diagn . 2009;29(13):1193-1203. doi:10.1002/pd.2379
4. Crispi F, Valenzuela-Alcaraz B, Cruz-Lemini M, Gratacós E. Ultrasound assessment of fetal cardiac function. Australasian Journal of Ultrasound in Medicine . 2013;16(4):158-167. doi:10.1002/j.2205-0140.2013.tb00242.x
5. Huntley ES, Hernandez-Andrade E, Soto E, DeVore G, Sibai BM. Novel Speckle Tracking Analysis Showed Excellent Reproducibility for Size and Shape of the Fetal Heart and Good Reproducibility for Strain and Fractional Shortening. Fetal Diagn Ther . 2021;48(7):541-550. doi:10.1159/000517625
6. Godfrey ME, Messing B, Cohen SM, Valsky DV, Yagel S. Functional assessment of the fetal heart: a review. Ultrasound Obstet Gynecol . 2012;39(2):131-144. doi:10.1002/uog.9064
7. Crispi F, Sepulveda-Swatson E, Cruz-Lemini M, et al. Feasibility and Reproducibility of a Standard Protocol for 2D Speckle Tracking and Tissue Doppler-Based Strain and Strain Rate Analysis of the Fetal Heart.Fetal Diagn Ther . 2012;32(1-2):96-108. doi:10.1159/000337329
8. Crispi F, Gratacós E. Fetal Cardiac Function: Technical Considerations and Potential Research and Clinical Applications.Fetal Diagn Ther . 2012;32(1-2):47-64. doi:10.1159/000338003
9. Enzensberger C, Degenhardt J, Tenzer A, Doelle A, Axt-Fliedner R. First Experience with Three-Dimensional Speckle Tracking (3D Wall Motion Tracking) in Fetal Echocardiography. Ultraschall in Med . 2014;35(06):566-572. doi:10.1055/s-0034-1384882
10. van Oostrum NHM, de Vet CM, Clur SB, et al. Fetal myocardial deformation measured with two‐dimensional speckle‐tracking echocardiography: longitudinal prospective cohort study of 124 healthy fetuses. Ultrasound in Obstet & Gyne . 2022;59(5):651-659. doi:10.1002/uog.24781
11. Zhu C, Li M, Xu CJ, et al. Comparison of the left and right ventricular size and systolic function of low-risk fetuses in the third trimester: Which is more dominant? Front Cardiovasc Med . 2023;10:1052178. doi:10.3389/fcvm.2023.1052178
12. Graupner O, Enzensberger C. Kardiale Funktionsanalyse beim Feten: Schritt für Schritt. Gynäkologe . 2022;55(1):7-13. doi:10.1007/s00129-021-04889-z
13. Duan S, Ha S, Li S, et al. Evaluation of cardiac function and systolic dyssynchrony of fetuses exposed to maternal autoimmune diseases using speckle tracking echocardiography. Clin Rheumatol . 2021;40(9):3807-3815. doi:10.1007/s10067-021-05723-6
14. Day TG, Charakida M, Simpson JM. Using speckle‐tracking echocardiography to assess fetal myocardial deformation: are we there yet? Ultrasound Obstet Gynecol . 2019;54(5):575-581. doi:10.1002/uog.20233
15. Germanakis I, Gardiner H. Assessment of Fetal Myocardial Deformation Using Speckle Tracking Techniques. Fetal Diagn Ther . 2012;32(1-2):39-46. doi:10.1159/000330378
16. DeVore GR, Polanco B, Satou G, Sklansky M. Two-Dimensional Speckle Tracking of the Fetal Heart: A Practical Step-by-Step Approach for the Fetal Sonologist. Journal of Ultrasound in Medicine . 2016;35(8):1765-1781. doi:10.7863/ultra.15.08060
17. van Oostrum NHM, Derks K, van der Woude DaisyAA, Clur SA, Oei SG, van Laar JOEH. Two-dimensional Speckle tracking echocardiography in Fetal Growth Restriction: a systematic review. European Journal of Obstetrics & Gynecology and Reproductive Biology . 2020;254:87-94. doi:10.1016/j.ejogrb.2020.08.052
18. DeVore GR, Klas B, Satou G, Sklansky M. Speckle Tracking Analysis to Evaluate the Size, Shape, and Function of the Atrial Chambers in Normal Fetuses at 20–40 Weeks of Gestation. J Ultrasound Med . Published online November 26, 2021:jum.15888. doi:10.1002/jum.15888
19. DeVore GR, Klas B, Satou G, Sklansky M. Longitudinal Annular Systolic Displacement Compared to Global Strain in Normal Fetal Hearts and Those With Cardiac Abnormalities: Longitudinal Annular Systolic Displacement. J Ultrasound Med . 2018;37(5):1159-1171. doi:10.1002/jum.14454
20. DeVore GR, Klas B, Satou G, Sklansky M. Twenty-four Segment Transverse Ventricular Fractional Shortening: A New Technique to Evaluate Fetal Cardiac Function: Twenty-four Segment Transverse Ventricular Fractional Shortening. J Ultrasound Med . 2018;37(5):1129-1141. doi:10.1002/jum.14455
21. DeVore GR, Jone PN, Satou G, Sklansky M, Cuneo BF. Aortic Coarctation: A Comprehensive Analysis of Shape, Size, and Contractility of the Fetal Heart. Fetal Diagn Ther . 2020;47(Suppl. 5):429-439. doi:10.1159/000500022
22. DeVore GR, Klas B, Satou G, Sklansky M. 24-segment sphericity index: a new technique to evaluate fetal cardiac diastolic shape: 24-segment sphericity index. Ultrasound Obstet Gynecol . 2018;51(5):650-658. doi:10.1002/uog.17505
23. DeVore GR, Cuneo B, Klas B, Satou G, Sklansky M. Comprehensive Evaluation of Fetal Cardiac Ventricular Widths and Ratios Using a 24‐Segment Speckle Tracking Technique. J Ultrasound Med . 2019;38(4):1039-1047. doi:10.1002/jum.14792
24. DeVore GR, Satou G, Sklansky M. Comparing the Non‐Quiver and Quiver Techniques for Identification of the Endocardial Borders Used for Speckle‐Tracking Analysis of the Ventricles of the Fetal Heart. J Ultrasound Med . 2021;40(9):1955-1961. doi:10.1002/jum.15561
25. Kühle H, Cho SKS, Barber N, et al. Advanced imaging of fetal cardiac function. Front Cardiovasc Med . 2023;10:1206138. doi:10.3389/fcvm.2023.1206138
26. Ta-Shma A, Perles Z, Gavri S, et al. Analysis of Segmental and Global Function of the Fetal Heart Using Novel Automatic Functional Imaging. Journal of the American Society of Echocardiography . 2008;21(2):146-150. doi:10.1016/j.echo.2007.05.007
27. Meister M, Axt-Fliedner R, Graupner O, et al. Atrial and Ventricular Deformation Analysis in Normal Fetal Hearts Using Two-Dimensional Speckle Tracking Echocardiography. Fetal Diagn Ther . 2020;47(9):699-710. doi:10.1159/000508881
28. Ohira A, Hayata K, Mishima S, et al. The assessment of the fetal heart function using two-dimensional speckle tracking with a high frame rate. Early Human Development . 2020;151:105160. doi:10.1016/j.earlhumdev.2020.105160
29. Luo L, Liu H, Zhou S, et al. Quantitative evaluation of fetal ventricular function by speckle tracking echocardiography.Echocardiography . 2021;38(11):1924-1931. doi:10.1111/echo.15240
30. DeVore GR, Klas B, Satou G, Sklansky M. Evaluation of Fetal Left Ventricular Size and Function Using Speckle‐Tracking and the Simpson Rule. J Ultrasound Med . 2019;38(5):1209-1221. doi:10.1002/jum.14799
31. DeVore GR, Haxel C, Satou G, et al. Improved detection of coarctation of the aorta using speckle‐tracking analysis of fetal heart on last examination prior to delivery. Ultrasound Obstet Gynecol . 2021;57(2):282-291. doi:10.1002/uog.21989
32. DeVore GR, Klas B, Satou G, Sklansky M. Quantitative evaluation of fetal right and left ventricular fractional area change using speckle‐tracking technology. Ultrasound Obstet Gynecol . 2019;53(2):219-228. doi:10.1002/uog.19048
33. DeVore GR, Klas B, Satou G, Sklansky M. Evaluation of the right and left ventricles: An integrated approach measuring the area, length, and width of the chambers in normal fetuses. Prenatal Diagnosis . 2017;37(12):1203-1212. doi:10.1002/pd.5166
34. DeVore GR, Satou G, Sklansky M. Area of the fetal heart’s four-chamber view: a practical screening tool to improve detection of cardiac abnormalities in a low-risk population: Area of the fetal heart’s four-chamber view: a practical screening. Prenat Diagn . 2017;37(2):151-155. doi:10.1002/pd.4980
35. DeVore GR, Gumina DL, Hobbins JC. Assessment of ventricular contractility in fetuses with an estimated fetal weight less than the tenth centile. American Journal of Obstetrics and Gynecology . 2019;221(5):498.e1-498.e22. doi:10.1016/j.ajog.2019.05.042
36. Gireadă R, Socolov D, Mihălceanu E, et al. Evaluation of Fetal Cardiac Geometry and Contractility in Gestational Diabetes Mellitus by Two-Dimensional Speckle-Tracking Technology. Diagnostics . 2022;12(9):2053. doi:10.3390/diagnostics12092053
37. Wang D, Liu C, Liu X, Zhang Y, Wang Y. Evaluation of prenatal changes in fetal cardiac morphology and function in maternal diabetes mellitus using a novel fetal speckle-tracking analysis: a prospective cohort study. Cardiovasc Ultrasound . 2021;19(1):25. doi:10.1186/s12947-021-00256-z
38. Song Y, Yin H, Wang W, et al. Evaluation of fetal cardiac functions in the setting of maternal diabetes: Application of the global spherical index, global strain and fractional area change by the speckle tracking technique. European Journal of Obstetrics & Gynecology and Reproductive Biology . 2021;264:162-167. doi:10.1016/j.ejogrb.2021.07.004
39. Rolf N, Kerschke L, Braun J, et al. Quantification of fetal myocardial function in pregnant women with diabetic diseases and in normal controls using speckle tracking echocardiography (STE).Journal of Perinatal Medicine . 2018;47(1):68-76. doi:10.1515/jpm-2018-0031
40. Van Mieghem T, Giusca S, DeKoninck P, et al. Prospective Assessment of Fetal Cardiac Function With Speckle Tracking in Healthy Fetuses and Recipient Fetuses of Twin-to-Twin Transfusion Syndrome. Journal of the American Society of Echocardiography . 2010;23(3):301-308. doi:10.1016/j.echo.2009.12.024
41. Harbison AL, Pruetz JD, Ma S, Sklansky MS, Chmait RH, DeVore GR. Evaluation of cardiac function in the recipient twin in successfully treated twin‐to‐twin transfusion syndrome using a novel fetal speckle‐tracking analysis. Prenatal Diagnosis . 2021;41(1):136-144. doi:10.1002/pd.5835
42. Kräker K, Schütte T, O’Driscoll J, et al. Speckle Tracking Echocardiography: New Ways of Translational Approaches in Preeclampsia to Detect Cardiovascular Dysfunction. IJMS . 2020;21(3):1162. doi:10.3390/ijms21031162
43. Fan X, Zhou Q, Zeng S, et al. Impaired Fetal Myocardial Deformation in Intrahepatic Cholestasis of Pregnancy. Journal of Ultrasound in Medicine . 2014;33(7):1171-1177. doi:10.7863/ultra.33.7.1171
44. Van Dalen BM, Caliskan K, Soliman OII, et al. Left ventricular solid body rotation in non-compaction cardiomyopathy: A potential new objective and quantitative functional diagnostic criterion?European Journal of Heart Failure . 2008;10(11):1088-1093. doi:10.1016/j.ejheart.2008.08.006
45. Van Dalen BM, Caliskan K, Soliman OII, et al. Diagnostic Value of Rigid Body Rotation in Noncompaction Cardiomyopathy. Journal of the American Society of Echocardiography . 2011;24(5):548-555. doi:10.1016/j.echo.2011.01.002
46. Weichert J, Welp A, Scharf JL, Dracopoulos C, Becker WH, Gembicki M. The Use of Artificial Intelligence in Automation in the Fields of Gynaecology and Obstetrics – an Assessment of the State of Play.Geburtshilfe Frauenheilkd . 2021;81(11):1203-1216. doi:10.1055/a-1522-3029
47. Scharf JL, Dracopoulos C, Gembicki M, Welp A, Weichert J. How Automated Techniques Ease Functional Assessment of the Fetal Heart: Applicability of MPI+TM for Direct Quantification of the Modified Myocardial Performance Index. Published online 2023.
48. Tegnander E, Eik-Nes SH. The examiner’s ultrasound experience has a significant impact on the detection rate of congenital heart defects at the second-trimester fetal examination. Ultrasound Obstet Gynecol . 2006;28(1):8-14. doi:10.1002/uog.2804
49. Yeo L, Romero R. Optical ultrasound simulation-based training in obstetric sonography. The Journal of Maternal-Fetal & Neonatal Medicine . Published online July 7, 2020:1-16. doi:10.1080/14767058.2020.1786519
50. Steinhard J, Freundt P, Janzing P, Popov V, Menkhaus R, Ross L. Künstliche Intelligenz und Simulation in der Pränatalmedizin – was wir von Maschinen lernen können. Gynäkologie . 2022;55(10):746-758. doi:10.1007/s00129-022-04996-5
51. Grunhut J, Wyatt AT, Marques O. Educating Future Physicians in Artificial Intelligence (AI): An Integrative Review and Proposed Changes. Journal of Medical Education and Curricular Development . 2021;8:238212052110368. doi:10.1177/23821205211036836
52. Gudigar A, U. R, Samanth J, et al. Role of Four-Chamber Heart Ultrasound Images in Automatic Assessment of Fetal Heart: A Systematic Understanding. Informatics . 2022;9(2):34. doi:10.3390/informatics9020034
53. Chen Z, Liu Z, Du M, Wang Z. Artificial Intelligence in Obstetric Ultrasound: An Update and Future Applications. Front Med . 2021;8:733468. doi:10.3389/fmed.2021.733468
54. Edwards C, Chamunyonga C, Searle B, Reddan T. The application of artificial intelligence in the sonography profession: Professional and educational considerations. Ultrasound . Published online January 21, 2022:1742271X2110724. doi:10.1177/1742271X211072473
55. Ahn KH, Lee KS. Artificial intelligence in obstetrics. Obstet Gynecol Sci . 2022;65(2):113-124. doi:10.5468/ogs.21234
56. Sakai A, Komatsu M, Komatsu R, et al. Medical Professional Enhancement Using Explainable Artificial Intelligence in Fetal Cardiac Ultrasound Screening. Biomedicines . 2022;10(3):551. doi:10.3390/biomedicines10030551
57. Rizzo G, Pietrolucci ME, Capponi A, Mappa I. Exploring the role of artificial intelligence in the study of fetal heart. Int J Cardiovasc Imaging . Published online March 16, 2022:s10554-022-02588-x. doi:10.1007/s10554-022-02588-x
58. Komatsu M, Sakai A, Dozen A, et al. Towards Clinical Application of Artificial Intelligence in Ultrasound Imaging. Biomedicines . 2021;9(7):720. doi:10.3390/biomedicines9070720
59. Komatsu M, Sakai A, Komatsu R, et al. Detection of Cardiac Structural Abnormalities in Fetal Ultrasound Videos Using Deep Learning.Applied Sciences . 2021;11(1):371. doi:10.3390/app11010371
60. Lin M, He X, Guo H, et al. Use of real‐time artificial intelligence in detection of abnormal image patterns in standard sonographic reference planes in screening for fetal intracranial malformations.Ultrasound in Obstet & Gyne . 2022;59(3):304-316. doi:10.1002/uog.24843
61. Malani SN, Shrivastava D, Raka MS. A Comprehensive Review of the Role of Artificial Intelligence in Obstetrics and Gynecology.Cureus . Published online February 12, 2023. doi:10.7759/cureus.34891
62. Xiao S, Zhang J, Zhu Y, et al. Application and Progress of Artificial Intelligence in Fetal Ultrasound. JCM . 2023;12(9):3298. doi:10.3390/jcm12093298
63. Tenajas R, Miraut D, Illana CI, Alonso-Gonzalez R, Arias-Valcayo F, Herraiz JL. Recent Advances in Artificial Intelligence-Assisted Ultrasound Scanning. Applied Sciences . 2023;13(6):3693. doi:10.3390/app13063693
64. Bravo-Valenzuela NJM, Malho AS. Evolution of Fetal Cardiac Imaging over the Last 20 Years. Published online 2023.
65. Jost E, Kosian P, Jimenez Cruz J, et al. Evolving the Era of 5D Ultrasound? A Systematic Literature Review on the Applications for Artificial Intelligence Ultrasound Imaging in Obstetrics and Gynecology.JCM . 2023;12(21):6833. doi:10.3390/jcm12216833
66. Peixoto AB, Bravo-Valenzuela NJ, Rocha LA, Araujo Júnior E. Spectral Doppler, tissue Doppler, and speckle-tracking echocardiography for the evaluation of fetal cardiac function: an update. Radiol Bras . 2021;54(2):99-106. doi:10.1590/0100-3984.2020.0052
67. Cruz-Martinez R, Figueras F, Jaramillo JJ, et al. Learning curve for Doppler measurement of fetal modified myocardial performance index.Ultrasound Obstet Gynecol . 2011;37(2):158-162. doi:10.1002/uog.7765
68. Hata T, Koyanagi A, Yamanishi T, et al. A 24-segment fractional shortening of the fetal heart using Fetal HQ. Journal of Perinatal Medicine . 2021;49(3):371-376. doi:10.1515/jpm-2020-0246
69. Hata T, Koyanagi A, Yamanishi T, et al. Evaluation of 24-segment sphericity index of fetal heart using Fetal HQ. The Journal of Maternal-Fetal & Neonatal Medicine . 2022;35(23):4573-4579. doi:10.1080/14767058.2020.1856808
70. Dodaro MG, Montaguti E, Balducci A, et al. Fetal speckle-tracking echocardiography: a comparison between two-dimensional and electronic spatio-temporal image correlation (e-STIC) technique. The Journal of Maternal-Fetal & Neonatal Medicine . Published online April 6, 2021:1-7. doi:10.1080/14767058.2021.1906855
71. Rolf D, Schmidt R, Möllers M, et al. Assessment of strain and dyssynchrony in normal fetuses using speckle tracking echocardiography – comparison of three different ultrasound probes. Journal of Perinatal Medicine . 2018;46(9):960-967. doi:10.1515/jpm-2017-0113
72. Patey O, Carvalho JS, Thilaganathan B. Intervendor Discordance of Fetal and Neonatal Myocardial Tissue Doppler and Speckle-Tracking Measurements. Journal of the American Society of Echocardiography . 2019;32(10):1339-1349.e23. doi:10.1016/j.echo.2019.05.023
73. Sanz J, Sánchez-Quintana D, Bossone E, Bogaard HJ, Naeije R. Anatomy, Function, and Dysfunction of the Right Ventricle. Journal of the American College of Cardiology . 2019;73(12):1463-1482. doi:10.1016/j.jacc.2018.12.076
74. Gardiner HM. Foetal cardiac function: assessing new technologies.Cardiol Young . 2014;24(S2):26-35. doi:10.1017/S1047951114001401
75. DiLorenzo MP, Bhatt SM, Mercer-Rosa L. How best to assess right ventricular function by echocardiography. Cardiol Young . 2015;25(8):1473-1481. doi:10.1017/S1047951115002255
76. Schneider M, Aschauer S, Mascherbauer J, et al. Echocardiographic assessment of right ventricular function: current clinical practice.Int J Cardiovasc Imaging . 2019;35(1):49-56. doi:10.1007/s10554-018-1428-8
77. Chelliah A, Dham N, Frank LH, Donofrio M, Krishnan A. Myocardial strain can be measured from first trimester fetal echocardiography using velocity vector imaging: First trimester fetal strain. Prenat Diagn . 2016;36(5):483-488. doi:10.1002/pd.4813
78. Semmler J, Day TG, Georgiopoulos G, et al. Fetal Speckle-Tracking: Impact of Angle of Insonation and Frame Rate on Global Longitudinal Strain. Journal of the American Society of Echocardiography . 2020;33(9):1141-1146.e2. doi:10.1016/j.echo.2020.03.013
79. Enzensberger C, Tenzer A, Degenhardt J, Kawecki A, Axt-Fliedner R. Beurteilung der fetalen kardialen Funktion – etablierte und neue Methoden. Z Geburtshilfe Neonatol . 2014;218(02):56-63. doi:10.1055/s-0034-1371849
80. Enzensberger C, Achterberg F, Graupner O, Wolter A, Herrmann J, Axt‐Fliedner R. Wall‐motion tracking in fetal echocardiography—Influence of frame rate on longitudinal strain analysis assessed by two‐dimensional speckle tracking.Echocardiography . 2017;34(6):898-905. doi:10.1111/echo.13542
81. Antúnez‐Montes OY, Kocica MJ, Olavarria AS, et al. Helical structure of the ventricular myocardium. A narrative review of cardiac mechanics.Echocardiography . 2023;40(3):161-173. doi:10.1111/echo.15515
82. Geyer H, Caracciolo G, Abe H, et al. Assessment of Myocardial Mechanics Using Speckle Tracking Echocardiography: Fundamentals and Clinical Applications. Journal of the American Society of Echocardiography . 2010;23(4):351-369. doi:10.1016/j.echo.2010.02.015