Conclusion
In summary, we have realized the enantioselective synthesis ofγ -chirogenic amine derivatives via the asymmetric hydrogenation
of γ -branched N -phthaloyl allylamines. A bisphosphine-Rh
complex bearing a large bite angle was employed to provide the desired
products with satisfactory yields and excellent enantioselectivities (up
to >99% ee). This protocol was further applied to the
preparation of some important pharmaceutical compounds, including the
well-known antidepressant drug Fluoxetine (up to 50000 S/C). A nearly
linear P-RhIII-P coordination pattern and a weak
interaction-promoted substrate-coordination activation mode, both of
which are unusual in the bidentate bisphosphine-Rh-catalyzed
hydrogenation, have been found according to the mechanism calculation.
Experimental Section
(R )-SKP ligand (0.59 mg, 0.0021 mmol) and
[Rh(cod)2]SbF6 (1.11 mg, 0.002 mmol)
were dissolved in anhydrous and degassed EtOAc (2 mL) under nitrogen.
The mixture was allowed to stir for 30 min at room temperature. The
substrate (0.2 mmol) was placed in a 5.0 mL tube equipped with a
magnetic stirrer bar. This tube was placed in an autoclave. The
pre-prepared solution of catalyst was added under a nitrogen atmosphere.
After purging with hydrogen three times, the hydrogen pressure was
finally pressurized to 50 bar. The reaction mixture was vigorously
stirred at room temperature for 12 h. The conversion of the product was
determined by 1H NMR spectroscopic analysis of the
crude reaction mixture and the yield was calculated after isolation by
flash chromatography. The ee value was determined by chiral HPLC.
Acknowledgements
This work was supported by National Key R&D Program of China (No.
2018YFE0126800), National Natural Science Foundation of China (Nos.
21620102003, 21831005, 91856106, 21991112, 22071150), and Shanghai
Municipal Education Commission (No. 201701070002E00030). We also thank
the Instrumental Analysis Center of Shanghai Jiao Tong University.
Keywords: asymmetric hydrogenation • bisphosphine ligand • SKP
• chiral amines • allylamines
Reference
[1] Reviews: a) T. C. Nugent (Ed.), Chiral Amine Synthesis –
Methods, Developments and Applications. 2010 , WILEY-VCH; b) T.
C. Nugent, M. El-Shazly, Adv. Synth. Catal. 2010 ,352 , 753–819; c) Q. Yin, Y. Shi, J. Wang, X. Zhang, Chem.
Soc. Rev. 2020 , 49 , 6141–6153. Recent representative
examples: d) J. Chen, X. Gong, J. Li, Y. Li, J. Ma, C. Hou, G. Zhao, W.
Yuan, B. Zhao, Science 2018 , 360 , 1438–1442; e)
S. Zhang, J. d. Pozo, F. Romiti, Y. Mu, S. Torker, A. H. Hoveyda,Science 2019 , 364 , 45–51; f) M.-L. Li, J.-H. Yu,
Y.-H. Li, S.-F. Zhu, Q.-L. Zhou, Science 2019 ,366 , 990–994.
[2] Reviews: a) D.-S. Wang, Q.-A. Chen, S.-M. Lu, Y.-G. Zhou,Chem. Rev. 2012 , 112 , 2557–2590; b) Z. Zhang, N.
A. Butt, W. Zhang, Chem. Rev. 2016 , 116 ,
14769–14821; c) Z. Zhang, N. A. Butt, M. Zhou, D. Liu, W. Zhang,Chin. J. Chem. 2018 , 36 , 443–454; Recent
representative examples: d) Q. Yan, G. Xiao, Y. Wang, G. Zi, Z. Zhang,
G. Hou, J. Am. Chem. Soc. 2019 , 141 , 1749–1756;
e) J. Wang, P.-L. Shao, X. Lin, B. Ma, J. Wen, X. Zhang, Angew.
Chem. 2020 , 132, 18323–18328; Angew. Chem. Int.
Ed. 2020 , 59 , 18166–18171; f) J. Mas-Roselló, T.
Smejkal, N. Cramer, Science 2020 , 368 ,
1098–1102; g) F.-H. Zhang, F.-J. Zhang, M.-L. Li, J.-H. Xie, Q.-L.
Zhou, Nat. Catal. 2020 , 3 , 621–627.
[3] Reviews: a) J.-H. Xie, S.-F. Zhu, Q.-L. Zhou, Chem. Rev.2011 , 111 , 1713–1760; Recent representative examples:
b) M. R. Friedfeld, H. Zhong, R. T. Ruck, M. Shevlin, P. J. Chirik,Science 2018 , 360 , 888–893; c) C. Li, F. Wan, Y.
Chen, H. Peng, W. Tang, S. Yu, J. C. McWilliams, J. Mustakis, L. Samp,
R. J. Maguire, Angew. Chem. 2019 , 131 ,
13707–13717; Angew. Chem. Int. Ed. 2019 , 58 ,
13573–13583; d) Y. Chen, Y. Pam, Y.-M. He, Q.-H. Fan, Angew.
Chem. 2019 , 131 , 16987–16990; Angew. Chem. Int.
Ed. 2019 , 58 , 16831–16834; e) Y. Ge, Z. Han, Z. Wang,
K. Ding, J. Am. Chem. Soc. 2019 , 141 , 8981−8988.
[4] a) C.-J. Wang, X. Sun, X. Zhang, Angew. Chem.2005 , 117 , 5013–5015; Angew. Chem. Int. Ed.2005 , 44 , 4933–4935; b) L. Qiu, M. Prashad, B. Hu, K.
Prasad, O. Repic, T. J. Blacklock, F. Y. Kwong, S. H. L. Kok, H. W. Lee,
A. S. C. Chan, PNAS 2007 , 104 , 16787–16792; c)
D. P. Steinhuebel, S. W. Krska, A. Alorati, J. M. Baxter, K. Belyk, B.
Bishop, M. Palucki, Y. Sun, I. W. Davies, Org. Lett.2010 , 12 , 4201–4203; d) A. Cabré, E. Romagnoli, P.
Martínez-Balart, X. Verdaguer, A. Riera, Org. Lett.2019 , 21 , 9709–9713.
[5] J. Zhang, C. Liu, X. Wang, J. Chen, Z. Zhang, W. Zhang,Chem. Commun. 2018 , 54 , 6024–6027.
[6] Special examples for the AH of γ -branched allylamines
bearing exocyclic vinyl group has been reported: a) T. Yamano, M.
Yamashita, M. Adachi, M. Tanaka, K. Matsumoto, M. Kawada, O. Uchikawa,
K. Fukatsu, S. Ohkawa, Tetrahedron: Asymmetry 2006 ,17 , 184–190; b) M. Yamashita, T. Yamano, Chem. Lett.2009 , 38 , 100–101.
[7] Selected examples: a) Y. Liu, W. Zhang, Angew. Chem.2013 , 125 , 2259–2262; Angew. Chem. Int. Ed.2013 , 52 , 2203–2206; b) J. Chen, D. Liu, N. Butt, C.
Li, D. Fan, Y. Liu, W. Zhang, Angew. Chem. 2013 ,125 , 11846–11850; Angew. Chem. Int. Ed. 2013 ,52 , 11632–11636; c) Y. Liu, I. D. Gridnev, W. Zhang,Angew. Chem. 2014 , 126 , 1932–1936; Angew.
Chem. Int. Ed. 2014 , 53 , 1901–1905; d) Q. Hu, Zhang,
Z.; Y. Liu, T. Imamoto, W. Zhang, Angew. Chem. 2015 ,127 , 2288–2292; Angew. Chem. Int. Ed. 2015 ,54 , 2260–2264; e) Q. Hu, J. Chen, Z. Zhang, Y. Liu, W. Zhang,Org. Lett. 2016 , 18 , 1290–1293; f) C. Liu, J.
Yuan, J. Zhang, Z. Wang, Z. Zhang, W. Zhang, Org. Lett.2018 , 20 , 108–111; g) J. Chen, Z. Zhang, B. Li, F. Li,
Y. Wang, M. Zhao, I. D. Gridnev, T. Imamoto, W. Zhang, Nat.
Commun. 2018 , 9 , 5000; h) D. Fan, Y. Liu, J. Jia, Z.
Zhang, Y. Liu, W. Zhang, Org. Lett. 2019 , 21 ,
1042–1045; i) B. Li, J. Chen, Z. Zhang, I. D. Gridnev, W. Zhang,Angew. Chem. 2019 , 131 , 7407–7412; Angew.
Chem. Int. Ed. 2019 , 58 , 7329–7334; j) J. Zhang, J.
Jia, X. Zeng, Y. Wang, Z. Zhang, I. D. Gridnev, W. Zhang, Angew.
Chem. 2019 , 131 , 11629–11636; Angew. Chem. Int.
Ed. 2019 , 58 , 11505–11512; k) Y. Hu, Z. Zhang, J.
Zhang, Y. Liu, I. D. Gridnev, W. Zhang, Angew. Chem. Int. Ed.2019 , 58 , 15767–15771; l) Y. Hu, J. Chen, B. Li, Z.
Zhang, I. D. Gridnev, W. Zhang, Angew. Chem. 2020 ,132 , 5409–5413; Angew. Chem. Int. Ed. 2020 ,59 , 5371–5375; m) D. Fan, J. Zhang, Y. Hu, Z. Zhang, I. D.
Gridnev, W. Zhang, ACS Catal. 2020 , 10 ,
3232–3240; n) D. Liu, B. Li, J. Chen, I. D. Gridnev, D. Yan, W. Zhang,Nat. Commun. 2020 , 11 , 5935.
[8] Developed by Ding: a) X. Wang, Z. Han, Z. Wang, K. Ding,Angew. Chem. 2012 , 124 , 960–964; Angew.
Chem. Int. Ed. 2012 , 51 , 936–940; b) X. Wang, Z. Han,
Z. Wang, K. Ding, Acc. Chem. Res. 2021 , DOI:
10.1021/acs.accounts.0c00697.
[9] Developed by Zhou: a) J.-H. Xie, L.-X. Wang, Y. Fu, S.-F. Zhu,
B.-M. Fan, H.-F. Duan, Q.-L. Zhou, J. Am. Chem. Soc.2003 , 125 , 4404–4405; b) J.-H. Xie, Q.-L. Zhou,Acc. Chem. Res. 2008 , 41 , 581–593.
[10] a) A. Miyashita, A. Yasuda, H. Takaya, K. Toriumi, T. Ito, T.
Soushi, R. Noyori, J. Am. Chem. Soc. 1980 , 102 ,
7932–7934; b) Y. Kita, S. Hida, K. Higashihara, H. S. Jena, K.
Higashida, K. Mashima, Angew. Chem. 2016 , 128 ,
8439–8443; Angew. Chem. Int. Ed. 2016 , 55 ,
8299–8303.
[11] M. J. Burk, J. E. Feaster, W. A. Nugent, R. L. Harlow, J.
Am. Chem. Soc. 1993 , 115 , 10125–10138.
[12] T. Imamoto, K. Tamura, Z. Zhang, Y. Horiuchi, M. Sugiya, K.
Yoshida, A. Yanagisawa, I. D. Gridnev, J. Am. Chem. Soc.2012 , 134 , 1754−1769.
[13] K. Tamura, M. Sugiya, K. Yoshida, A. Yanagisawa, T. Imamoto,Org. Lett. 2010 , 12 , 4400−4403.
[14] A. T. Axtell, J. Klosin, G. T. Whiteker, Organometallics2009 , 28 , 2993–2999.
[15] A. Meißner, A. Preetz, H.-J. Drexler, W. Baumann, A.
Spannenberg, A. König, D. Heller, ChemPlusChem 2015 ,80 , 169–180.
[16] Reviews: a) J.-A. Ma, D. Cahard, Chem. Rev.2004 , 104 , 6119−6146, and its update in 2008 ,108 , PR1-PR43; Recent representative examples: b) G. Pupo, F.
Ibba, D. M. H. Ascough, A. C. Vicini, P. Ricci, K. E. Christensen, L.
Pfeifer, J. R. Morphy, J. M. Brown, R. S. Paton, V. Gouverneur,Science 2018 , 360 , 638–642; c) H. Park, P.
Verma, K. Hong, J.-Q. Yu, Nat. Chem. 2018, 10 ,
755–762; d) Q. Wang, M. Lübcke, M. Biosca, M. Hedberg, L. Eriksson, F.
Himo, K. J. Szabó, J. Am. Chem. Soc. 2020 , 142 ,
20048−20057.
[17] a) M. Engman, J. S. Diesen, A. Paptchikhine, P. G. Andersson,J. Am. Chem. Soc. 2007 , 129 , 4536–4537; b) A.
Stumpf, M. Reynolds, D. Sutherlin, S. Babu, E. Bappert, F. Spindler, M.
Welch, J. Gaudino, Adv. Synth. Catal. 2011 , 353 ,
3367–3372; c) S. Ponra, W. Rabten, J. Yang, H. Wu, S. Kerdphon, P. G.
Andersson, J. Am. Chem. Soc. 2018 , 140 ,
13878−13883; d) S. Ponra, J. Yang, S. Kerdphon, P. G. Andersson,Angew. Chem. 2019 , 131 , 9383−9388; Angew.
Chem. Int. Ed. 2019 , 58 , 9282−9287; e) Y.-Q. Guan, Z.
Han, X. Li, C. You, X. Tan, H. Lv, X. Zhang, Chem. Sci.2019 , 10 , 252–256.
[18] Selected example: M. T. Whited, M. J. Trenerry, K. E.
DeMeulenaere, B. L. H. Taylor, Organometallics 2019 ,38 , 1493–1501.