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Abstract

This paper is concerned with the inverse scattering of acoustic waves by an unbounded

periodic elastic medium in the three-dimensional case. A novel uniqueness theorem is proved

for the inverse problem of recovering a bi-periodic interface between acoustic and elastic waves

using the near-field data measured only from the acoustic side of the interface, corresponding

to a countably infinite number of quasi-periodic incident acoustic waves. The proposed

method depends only on a fundamental a priori estimate established for the acoustic and

elastic wave fields and a new mixed-reciprocity relation established in this paper for the

solutions of the fluid-solid interaction scattering problem.
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1 Introduction

This paper is concerned with the scattering of time-harmonic acoustic waves by an unbounded

bi-periodic interface in three dimensions. The medium above the interface is assumed to be filled

with homogeneous compressible inviscid fluid, and the medium below the interface is occupied

by an isotropic linearly elastic solid. Recently, this class of problems have attracted much

attention due to practical applications in diverse fields such as modern diffractive optics and

nondestructive testing; see e.g., [5, 6] and references therein.

For convenience, we write a point x in R3 for (x̃, x3) with x̃ := (x1, x2) ∈ R2. Let Γ denote

a bi-periodic interface described by a C2-smooth function f . We assume that f is periodic with

respect to the variable x̃, that is, f(x̃, x3) = f(x̃ + 2nπ, x3) for n := (n1, n2) ∈ Z2. As shown

in Figure 1, let Ω+ denote the unbounded region above Γ, filled with fluid with the real valued
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Figure 1: Geometric configuration of the scattering problem

constant mass density ρf > 0. And let Ω− denote the unbounded region below Γ, occupied by

elastic solid with the real valued constant mass density ρs > 0 and the lamé constants λ, µ ∈ R
satisfying the condition that µ > 0, 3λ+ 2µ > 0.

Consider the incident wave taking the form

pi(x) = exp(iαj · x̃− iηjx3), j ∈ Z2, (1.1)

where αj = α + j with α = (α1, α2) := k(sin θ1 cos θ2, sin θ1 sin θ2) for θ1 ∈ [0, π/2), θ2 ∈ [0, 2π)

and k ∈ R+ is the wavenumber, and ηj ∈ C is given by

ηj =
√
k2 − |αj |2, if |αj | ≤ k, ηj = i

√
|αj |2 − k2, if |αj | > k.

Under the hypothesis of small amplitude oscillations in both the solid and the fluid, the

scattering problem can be formulated as finding the wave field (p,u) such that
4p+ k2p = 0 in Ω+,

4∗u + ρsω
2u = 0 in Ω−,

t(u) = −pν on Γ,

ηu · ν = ∂p
∂ν on Γ,

(1.2)

where 4∗ := µ4+ (λ+ µ)∇div denotes the Navier operator, and p is the total field consisting

of the incident wave pi and its scattered wave ps. In (1.2), the wave field p and u are coupled

on the bi-periodic interface Γ with the transmission coefficient η := ρfω
2 and the stress vector

t(u) := 2µ
∂u

∂ν
+ λ(div u)ν + µν × curl u on Γ,
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where ν stands for the normal vector directing into Ω−.

By (1.1), it is noticed that the incident wave pi(·) satisfies such an α-quasi-periodic condition

pi(x̃+ 2nπ, x3) = ei2α·nπpi(x̃, x3) for all n ∈ Z2. So, the same condition is also required for the

wave field (p,u) in order to obtain the well-posedness of the scattering problem. That is,

p(x̃+ 2nπ, x3) = ei2α·nπp(x̃, x3), u(x̃+ 2nπ, x3) = ei2α·nπu(x̃, x3). (1.3)

Moreover, the upward and downward Rayleigh expansions are imposed on the scattered field

ps and transmitted field u, respectively, in the periodical case:
ps =

∑
n∈Z2

pn exp(iαn · x̃+ iηnx3), x3 > A1,

u =
∑
n∈Z2

{
Ap,n

(
αTn
−βn

)
exp(iαn · x̃− iβnx3) + As,n exp(iαn · x̃− iγnx3)

}
, x3 < A2,

(1.4)

where A1 := max(f), A2 := min(f), the Rayleigh coefficients pn ∈ C, Ap,n ∈ C and As,n ∈ C3

satisfies the property that As,n ·(αn,−γn)T = 0 for all n ∈ Z2. Similar to the definition of ηn, βn

and γn are defined by the wavenumber kp := ω
√
ρs/(2µ+ λ) and ks := ω

√
ρs/µ, respectively.

For any fixed j ∈ Z2, it has been shown in [9] that the scattering problem (1.1)-(1.4) has a

unique solution in the classical H1-space for all frequencies excluding a discrete set with the only

accumulation point at infinity, using the variational method. For convenience, throughout this

paper, we always assume that the problem (1.1)-(1.4) is uniquely solvable. The inverse problem

we are concerned in this paper with is to determine the shape and location of the bi-periodic

interface Γ by the knowledge of the acoustic wave fields p in Ω+. Lots of uniqueness theorems

and numerical methods for periodic interfaces can be found in e.g., [2, 7, 11, 12, 15, 16, 19]

and references therein for the full Helmholtz equation or Maxwell’s equation case. However, to

the best of authors’ knowledge, there exists almost no results available on the inverse problem

considered in the current paper in the literature. Recently, a factorization method was just

studied in [18] for numerically reconstructing the bi-periodic interface, generating the idea of A.

Kirsch et al. [10] for the bounded case. Notice that a related uniqueness result [13] was shown

in determining a bounded elastic body from the far-field data. The method used in [13] follows

from the work [8, 3] with the full Helmholtz equation, based on a technical analysis of both

an interior transmission problem in the whole domain and the H2-regularity of the scattered

solution. It seems very hard to extend this idea to the inverse fluid-solid interaction problem in

the periodical case, since the interface under consideration is unbounded. It is important for the

current topic to mention that a uniqueness result [14] was established for identifying a bounded

penetrable solid body with buried objects inside, which depends only on a fundamental a priori

estimate of the scattered solution.

In this paper, we shall study the unique determination of a bi-periodic interface by the

knowledge of the near-field data only from one side of the interface. A motivation comes from
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the work of Yang et al. [17] for the full Helmholtz equation in the bounded case. We expect

to address a novel version of uniqueness for the inverse problem in the periodical case. To this

end, a related scattering problem is first considered with a series of incident point sources in

Section 2. Then, a uniform a priori estimate of solutions is proved as the location of the point

sources approximate the interface. This, combined with a new mixed-relation established in

Section 3, leads to a novel uniqueness result on the inverse problem. That is, the bi-periodic

interface can be uniquely recovered by means of acoustic near-field data in the top domain

above the interface, generated by a countably infinite number of quasi-periodic incident waves.

Particularly, the same result can be also obtained if the elastic near-field data are taken only in

the bottom domain below the interface. The method proposed depends only on the H1-estimate

of the elastic wave field and the L2-estimate of the acoustic wave field, and is thus very simple.

We conclude this section with some notations that will be used in the rest of this paper.

For simplicity, we use Ω± and Γ± again to denote the same sets restricted to one period 0 <

x1, x2 < 2π. We also introduce four subsets of Ω± for each h > 0, denoted by Ω+(h) := {x ∈
Ω+ : x3 < A1 + h}, Ω−(h) := {x ∈ Ω− : x3 > A2 − h}, Γ+(h) := {x ∈ Ω+ : x3 = A1 + h}
and Γ−(h) := {x ∈ Ω− : x3 = A2 − h}, respectively. Then, let H1

α(Ω±(h)) and Lpα(Ω±(h))(p ≥
1) denote the Sobolev spaces of scalar functions on Ω±(h) which are assumed to be α-quasi-

periodic with respect to the variable x̃. They are equipped with the norms in the usual Sobolev

spaces H1(Ω±(h)) and Lp(Ω±(h)), respectively, whereas H
1/2
α (Γ±(h)) denote the trace space of

H1
α(Ω±(h)) and H

−1/2
α (Γ±(h)) is the dual space of H

1/2
α (Γ±(h)).

2 A priori estimate for the wave fields

In this section, we shall study the scattering problem (1.2)-(1.4) with the incident field pi induced

by a point source

G(x, y) =
i

8π2

∑
n∈Z2

1

ηn
exp(iαn · (x̃− ỹ) + iηn|x3 − y3|), x 6= y. (2.1)

located at y ∈ Ω+, namely, the α-quasi-periodic Green’s function of the Helmholtz equation in

the free space satisfying 4G(·, y) + k2G(·, y) = −δy(·) in R3. Eliminating the incident field pi,

the scattered field ps and u solve the transmission problem
4E + k2E = 0 in Ω+,

4∗F + ρsω
2F = 0 in Ω−,

t(F) + Eν = f1 on Γ,

ηF · ν − ∂E
∂ν = f2 on Γ,

(2.2)

with the α-quasi-periodic condition (1.3) and the Rayleigh expansions (1.4), where f1(·) :=

−G(·, y)ν and f2(·) := ∂νG(·, y). The well-posedness of (2.2) can be similarly proved as in [9] by

the variational method or the boundary integral equation method. Then, a precise singularity

4



analysis will be explored for the scattered fields ps and u, as the location of the incident point

source approximates the bi-periodic interface.

For a fixed y0 ∈ Γ, define a sequence of points by

yj := y0 −
δ

j
ν(y0), j = 1, 2, 3, · · · · · ·

with a sufficiently small δ > 0 such that yj ∈ Ω+ for all j ∈ N+. We will show that u is

uniformly bounded in the H1-space and ps has the at most same singularity with the Green’s

function G(·, yj) near the point y0, as j →∞. To this end, let Ej(·) := ps(·; yj)−G(·, zj) in Ω+

and Fj(·) := u(·; yj) with zj defined by zj := y0 + (δ/j)ν(y0), j ∈ N+. It is easily checked that

Ej and Fj satisfy the transmission problem (2.2), (1.3) and (1.4) with the boundary conditions

f1,j(·) : = −G(·, yj)ν −G(·, zj)ν, on Γ (2.3)

f2,j(·) : = ∂νG(·, yj) + ∂νG(·, zj), on Γ (2.4)

for each j ∈ N+.

Notice that the difference between G and Φ defines an analytic function in R3, where

Φ(x, y) = eik|x−y|/(4π|x−y|) denotes the fundamental solution of the Helmholtz equation in the

free space. One thus has f1,j ∈ L2−ε1
α (Γ)3 and f2,j ∈ L∞α (Γ) uniformly for all j ∈ N+ and any

fixed 0 < ε1 ≤ 1. This allows us to have the following a priori estimates of the solutions.

Theorem 2.1. Let pj and uj be the solution to the scattering problem (1.2)-(1.4) with the

incident point source pi(·) = G(·, yj). Then,

‖pj‖L2
α(Ω+(h)) + ‖∇pj‖L3/2−ε

α (Ω+(h))3
+ ‖uj‖H1

α(Ω−(h))3 ≤ C, (2.5)

where ε > 0 is chosen with 0 < ε ≤ 1
2 and C > 0 is independent of j ∈ N+.

Proof. Based on the above analysis, it is known that the functions Ej and Fj satisfy the boundary

value problem (2.2) with (1.3), (1.4) and (2.3)-(2.4).

For any fixed j ∈ N+, by the Green and Betti’s formulas, we deduce that Ej and Fj solve

the variational problem: find (Ej ,Fj) ∈ X := H1
α(Ω+(h))×H1

α(Ω−(h))3 such that

A((Ej ,Fj); (φ,Ψ)) = F ((f1,j , f2,j); (φ,Ψ)) for all (φ,Ψ) ∈ X, (2.6)

where the sesquilinear form A : X ×X → C is defined as

A((Ej ,Fj); (φ,Ψ)) :=

∫
Ω+(h)

(∇Ej · ∇φ− k2Ejφ)dx− η
∫

Γ
Fj · νφds−

∫
Γ+(h)

T+Ejφds

+η

{∫
Ω−(h)

(E(Fj ,Ψ)− ρsω2Fj ·Ψ)dx−
∫

Γ
Ejν ·Ψds−

∫
Γ−(h)

T−Fj ·Ψds

}
and the right functional F : X → C is defined as

F ((f1,j , f2,j); (φ,Ψ)) := −
∫

Γ
f2,jφds− η

∫
Γ

f1,j ·Ψds.
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In (2.6), E(·, ·) is described by

E(H1,H2) := 2µ
3∑

i,j=1

∂iH1,j∂iH2,j + λ(div H1)(div H2)− µcurl H1 · curl H2

with H1 := (H1,1, H1,2, H1,3) and H2 := (H2,1, H2,2, H2,3), T+ : H
1
2
α (Γ+(h)) → H

− 1
2

α (Γ+(h))

and T− : H
1
2
α (Γ+(h))3 → H

− 1
2

α (Γ+(h))3 are two Dirichlet-to-Neumann operators defined by

T+g = ∂νv|Γ+(h) and T−g = t(v)|Γ−(h), respectively, which are related to the following two

Dirichlet problems
4v + k2v = 0 in x3 > A1 + h,

v = g on Γ+(h),

v satisfies the upward Rayleigh expansion in (1.4)

(2.7)

for g ∈ H
1
2
α (Γ+(h)) and

4∗v + ρsω
2v = 0 in x3 < A2 − h,

v = g on Γ−(h),

v satisfies the downward Rayleigh expansion in (1.4)

(2.8)

for g ∈ H
1
2
α (Γ−(h))3.

It is noticed from [9, 18] that the operator −Re(T−) can be decomposed into two parts:

−Re(T−) = T1+T2 with a positive definite operator T1 and a finite rank operator T2. Combining

with the positivity of −Re(T+) implies that the sesquilinear form A can be divided into A =

A1 +A2 with

A1((Ej ,Fj); (φ,Ψ)) : =

∫
Ω+(h)

(∇Ej · ∇φ+ Ejφ)dx−
∫

Γ+(h)
T+Ejφds

+η

{∫
Ω−(h)

(E(Fj ,Ψ) + Fj ·Ψ)dx+

∫
Γ−(h)

T1Fj ·Ψds

}

and

A2((Ej ,Fj); (φ,Ψ)) : = −
∫

Ω+(h)
((1 + k2)Ejφ)dx− η

∫
Γ

Fj · νφds

+η

{∫
Ω−(h)

(ρ1Fj ·Ψ)dx−
∫

Γ
Ejν ·Ψds+

∫
Γ−(h)

T2Fj ·Ψds

}
.

Here, ρ1 := −(1 + ρsω
2). It is easily seen that A1(·; ·) is coercive on X × X, and A2(·; ·) is a

compact operator on X due to the compact embedding of H1 into L2. Thus, A(·; ·) generates

a Fredholm operator denoted by A on X with index 0 by the Riesz representation theorem.

Combining the uniqueness of the scattering problem (1.2)-(1.4) yields that A has a bounded

invertible operator A−1 on X.
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On the other hand, recalling that f1,j ∈ L2−ε1
α (Γ)3 and f2,j ∈ L∞α (Γ) uniformly for all j ∈ N+

and any fixed 0 < ε1 ≤ 1, then choosing ε1 = 1/2, we immediately deduce that f1,j ∈ L3/2
α (Γ)3

and f2,j ∈ L∞α (Γ) uniformly for all j ∈ N+. Furthermore, it follows from [1, Theorem 5.36] that,

for any ψ ∈ H1
α(Ω±(h)),

‖ψ‖L4
α(Γ) ≤ C‖ψ‖H1

α(Ω±(h)),

where C > 0 is independent of ψ ∈ H1
α(Ω±(h)). So we observe from the definition of the

function F that it defines a family of bounded linear functionals Fj on X, that is, there exists

some C > 0, independent of j ∈ N+, such that

|Fj(φ,Ψ)| = |F ((f1,j , f2,j); (φ,Ψ))| ≤ C(‖φ‖H1
α(Ω+(h)) + ‖Ψ‖H1

α(Ω−(h))3).

Now, we arrive from this equality and the boundedness of A−1 at

‖Ej‖H1
α(Ω+(h)) + ‖Fj‖H1

α(Ω−(h))3 ≤ C (2.9)

uniformly for all j ∈ N+. Recalling that Ej(·) = p(·; yj)−G(·; yj)−G(·, zj) in Ω+ and Fj = uj

in Ω− yields the required estimate (2.5), due to the weak singularity of the Green’s function

G(·, ·). This completes the proof.

3 Uniqueness of the inverse problem

In this section, we shall study the inverse fluid-solid interaction problem in the bi-periodical

case. The uniqueness result is proved for recovering the bi-periodic interface by making use

of the acoustic near-field data. The proposed method depends on the H1-estimate and a new

mixed-reciprocity relation of solutions of the scattering problem.

The next lemma is related to the mixed-reciprocity relation between the incident plane wave

in (1.1) and the incident point source in (2.1). To see this, we define α̂ := −α and consider the

α̂-quasi-periodic scattering problem
4p̂+ k2p̂ = 0 in Ω+,

4∗û + ρsω
2û = 0 in Ω−,

t(û) = −p̂ν on Γ,

ηû · ν = ∂p̂
∂ν on Γ,

(3.1)

with p̂ := p̂i + p̂s in Ω+ and û in Ω− satisfying the α̂-quasi-periodic condition

p̂(x̃+ 2nπ, x3) = ei2α̂·nπp̂(x̃, x3), û(x̃+ 2nπ, x3) = ei2α̂·nπû(x̃, x3) (3.2)

and the upward and downward Rayleigh expansions
p̂s =

∑
n∈Z2

p̂n exp(iα̂n · x̃+ iη̂nx3), x3 > A1,

û =
∑
n∈Z2

{
Âp,n

(
α̂Tn
−β̂n

)
exp(iα̂n · x̃− iβ̂nx3) + Âs,n exp(iα̂n · x̃− iγ̂nx3)

}
, x3 < A2.

(3.3)
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Here, α̂n, β̂n, η̂n, γ̂n are defined by αn, βn, ηn, γn with α replaced by α̂, respectively.

If p̂i(·) = Ĝ(·, z0) with z0 ∈ Ω+, we indicate the dependence of the wave fields on the

location of the point source by writing p̂s(·; z0) and û(·; z0). Moreover, let p(·;m) and u(·;m)

be the solution of (1.2)-(1.4) corresponding to the incident wave pi(x;m) = eiαm·x̃−iηmx3 for

m ∈ Z2. Then, one can conclude the following result.

Lemma 3.1. For z0 ∈ Ω+, let p̂n(z0) be the Rayleigh coefficients of p̂s(·; z0). Then

ps(z0;m) = −8π2iη̂−mp̂−m(z0) for all m ∈ Z2. (3.4)

Proof. Due to z0 ∈ Ω+, we can first define a small ball denoted by Bδ(z0), which is centered at

z0 with radius δ ∈ R+ such that Bδ(z0) ⊆ Ω+ for sufficiently small δ > 0. It then follows from

the definition of the domain Ω+(h) that we can choose some h0 > 0 such that Bδ(z0) ⊆ Ω+(h0).

Now, an application of the Green’s theorem yields that

0 =

∫
Ω+(h0)\Bδ(z0)

[
4p(x;m)p̂(x, z0)− p(x;m)4p̂(x, z0)

]
dx

=

{∫
Γ
−
∫

Γ+(h0)
−
∫
∂Bδ(z0)

}[
∂p(x;m)

∂ν(x)
p̂(x, z0)− p(x;m)

∂p̂(x, z0)

∂ν(x)

]
ds(x)

= : I − II − III (3.5)

In the above equality, the integrals vanish on two vertical lines due to the quasi-periodicity of

the functions p(x;m) and p̂(x, z0).

Using the transmission conditions on Γ and applying the Betti’s formula for the elastic fields

u(x;m) and û(x; z0) in Ω−(h0), we have

I = η

∫
Γ

[
t(u(x;m))û(x; z0)− u(x;m)t(û(x; z0))

]
ds(x)

= η

∫
Γ−(h0)

[
t(u(x;m))û(x; z0)− u(x;m)t(û(x; z0))

]
ds(x)

= 0. (3.6)

Here, the downward Rayleigh expansions for u(x;m) and û(x; z0) as well as the fact that βn(α) =

β̂−n(α̂), γn(α) = γ̂−n(α̂) for all n ∈ Z2 have been used in deriving the last equality of (3.6).

To estimate the terms II and III, it is found by the upward Rayleigh expansions for both

ps(x;m) and p̂(x; z0), and also ηn(α) = η̂−n(α̂) that∫
Γ+(h0)

[
∂ps(x;m)

∂ν(x)
p̂(x, z0)− ps(x;m)

∂p̂(x, z0)

∂ν(x)

]
ds(x) = 0. (3.7)

On the other hand, since both p(x;m) and p̂s(x; z0) are smooth and satisfy the Helmholtz

equations in Bδ(z0), it is deduced from the Green’s theorem that∫
∂Bδ(z0)

[
∂p(x;m)

∂ν(x)
p̂s(x, z0)− p(x;m)

∂p̂s(x, z0)

∂ν(x)

]
ds(x) = 0. (3.8)
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Combining (3.7)-(3.8) and (3.5), we then have∫
Γ+(h0)

[
∂pi(x;m)

∂x3
p̂(x, z0)− pi(x;m)

∂p̂(x, z0)

∂x3

]
ds(x)

=

∫
∂Bδ(z0)

[
p(x;m)

∂Ĝ(x, z0)

∂ν(x)
− Ĝ(x, z0)

∂p(x;m)

∂ν(x)

]
ds(x)

= p(z0;m), as δ → 0. (3.9)

Recalling that p̂(x, z0) = Ĝ(x, z0) + p̂s(x; z0) leads from the representation formula of pi and the

Rayleigh expansion of p̂s to that

pi(z0;m) =

∫
Γ+(h0)

[
∂pi(x;m)

∂x3
Ĝ(x, z0)− pi(x;m)

∂Ĝ(x, z0)

∂x3

]
ds(x),

and ∫
Γ+(h0)

[
∂pi(x;m)

∂x3
p̂s(x, z0)− pi(x;m)

∂p̂s(x, z0)

∂x3

]
ds(x)

= −i
∑
n∈Z2

(η̂n + ηm)p̂n(z0)

∫ 2π

0

∫ 2π

0
ei(α̂n+αm)·x̃dx1dx2 · exp(i(η̂n − ηm)h0)

= −8π2iη̂−mp̂−m(z0),

where the fact that α̂n + αm = n + m and η`(α) = η̂−`(α̂) has been made use of in order to

derive the above equalities. Together with these two equalities, we finally arrive by (3.9) at the

required equality (3.4). The proof is thus complete.

Lemma 3.1 provides a connection of the solutions of the scattering problems with different

incident wave fields. More precisely, the α-quasi-periodic scattered solution with the incident

wave (1.1) can be transferred into the Rayleigh coefficient of the -α-quasi-periodic solution with

the incident point source. This corresponds to the mixed-reciprocity relation in the bounded

and periodical cases (cf. [4, 15]), and can thus simplify the proof of uniqueness on the inverse

fluid-solid interaction problem for the bi-periodic structure.

Let Γ and Γ̃ denote the two different bi-periodic interfaces described by the functions f and

f̃ , respectively. We choose h > 0 such that h > max{A1, Ã1} and define the measurement sets

CΓ(h) := {ps(x;m)|Γ(h) : m ∈ Z2}, C
Γ̃
(h) := {p̃s(x;m)|Γ(h) : m ∈ Z2} (3.10)

with Γ(h) := {x ∈ R3 : x3 = h}, where ps(·;m) and p̃s(·;m) are the scattered solutions to

(1.2)-(1.4) with respect to Γ and Γ̃ for the same incident wave pi(x;m) = eiαm·x̃−iηmx3 , m ∈ Z2.

We are now in a position to state the main uniqueness result for determining the shape and

location of the bi-periodic interface in this paper.

Theorem 3.2. Assume that CΓ(h) = C
Γ̃
(h). Then Γ = Γ̃.
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Proof. We will prove the assertion by contradiction. Suppose that Γ 6= Γ̃. Without loss of

generality, we can choose some point z∗ ∈ Γ \ Γ̃ such that f(z∗) > f̃(z∗). Define the sequence

zj := z∗ − ε0

j
ν(z∗) for j = 1, 2, · · · · · · (3.11)

with sufficiently small ε0 > 0 such that zj ∈ Bε1(z∗) ⊆ Ω̃+ for all j ∈ N+ and some ε1 > 0.

Consider the α̂-quasi-periodic scattering problem (3.1)-(3.3) with the two different bi-periodic

interfaces Γ and Γ̃, induced by the same incident point source p̂i = Ĝ(·, zj). Let (p̂(·; zj), û(·; zj))
and (ˆ̃p(·; zj), ˆ̃u(·; zj)) denote the corresponding solutions to (3.1)-(3.3). One has from Lemma

3.1 that

ps(zj ;m) = −8π2iη̂−mp̂−m(zj) and p̃s(zj ;m) = −8π2iη̂−mˆ̃p−m(zj) (3.12)

for all m ∈ Z2, where p̂−m(zj) and ˆ̃p−m(zj) are the Rayleigh coefficients of p̂s(·; zj) and ˆ̃p
s
(·; zj),

respectively. Due to the assumption that CΓ(h) = C
Γ̃
(h), it is concluded that p̂−m(zj) = ˆ̃p−m(zj),

m ∈ Z2, which means by the Rayleigh expansions and the unique continuation principle that

p̂(·; zj) = ˆ̃p(·; zj) for each j ∈ N+ (3.13)

in the common domain Ω+ ∩ Ω̃+.

Figure 2: Geometric configuration for the choice of the domain D0

Let D0 := Bε1(z∗)∩Ω− (See Figure 2) with sufficiently small ε1 > 0 so that D0 is of Lipschitz

class due to the C2 regularity of Γ. Define vj := ˆ̃p(·; zj) and wj := û(·; zj) in D0. It is found

that vj and wj satisfy the following boundary value problem
4vj − a1vj = g1,j in D0,

4∗wj − a2wj = g2,j in D0,

t(wj) + vjν = h1,j on ∂D0,

ηwj · ν − ∂vj
∂ν = h2,j on ∂D0

(3.14)

with the right terms and boundary data:

g1,j := −(a1 + k2)ˆ̃p(·; zj), g2,j := −(a2 + ρsω
2)û(·; zj),

h1,j := t(û(·; zj)) + ˆ̃p(·; zj)ν, h2,j := ηû(·; zj) · ν − ∂ˆ̃p(·; zj)/∂ν.
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Next, we shall show that g1,j , g2,j , h1,j and h2,j are bounded uniformly for all j ∈ N+ in the

corresponding function spaces. It first follows from the equality (3.13) and the transmission

conditions on Γ that

h1,j = 0, h2,j = 0 on Γ ∩Bε1(z∗) (3.15)

for all j ∈ N+. Using Theorem 2.1, it is then known that û(·; zj) in D0 is bounded in the sense

of H1-norm uniformly for all j ∈ N+. That is, there exists C1 > 0, independent of j ∈ N+, such

that ‖û(·; zj)‖H1(D0)3 ≤ C1. Furthermore, by Theorem 2.1, it is also known that ˆ̃p(·; zj) in D0

is bounded in the sense of L2-norm uniformly for all j ∈ N+, e.g, ‖ˆ̃p(·; zj)‖L2(D0) ≤ C2 for some

fixed C2 > 0. Moreover, the positive distance between z∗ and Γ̃ leads to that ‖ˆ̃p
s
(·; zj)‖Hs(D0) ≤

C3 with one fixed C3 > 0 and s ≥ 1 uniformly for j ∈ N+, due to the well-posedness of (3.1)-

(3.3) associated with the bi-periodic interface Γ̃. Then, ‖ˆ̃p(·; zj)‖Hs(D0\Bε2 (z∗)) ≤ C4 (s ≥ 1) for

another constant C4 > 0, independent of j ∈ N+. Therefore, we have from the trace theorem

and (3.15) that

‖g1,j‖L2(D0) + ‖g2,j‖L2(D0)3 + ‖h1,j‖H−1/2(∂D0)3 + ‖h2,j‖H−1/2(∂D0) ≤ C5 (3.16)

uniformly for all j ∈ N+.

Recalling vj = ˆ̃p(·; zj) and using the well-posedness of (3.14) in the variational sense (cf.

[13]), we thus arrive at

C ≥ ‖vj‖H1(D0) = ‖ˆ̃p(·; zj)‖H1(D0) ≥ ‖Ĝ(·, zj)‖H1(D0) − ‖ˆ̃p
s
(·, zj)‖H1(D0)

uniformly for a fixed constant C > 0. Obviously, this is a contradiction due to the fact that

‖ˆ̃p
s
(·; zj)‖H1(D0) is uniformly bounded for all j ∈ N and ‖Ĝ(·, zj)‖H1(D0) → ∞ as j → ∞.

Therefore, Γ = Γ̃, which completes the proof of the theorem.
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