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Abstract. In this article, we study the pointwise convergence problem about

solution to the fractional Schrödinger equation with 0 < m < 1 along the
tangential curve and estimate the capacitary dimension of the divergence set.

We extend the results of Cho and Shiraki in [8] for the case m > 1 to the case

0 < m < 1, which is sharp up to the endpoint.

1. Introduction

In this paper, we consider the fractional Schrödinger equation on R×R as follows{
i∂tu+ (−∆)

m
2 u = 0, (t, x) ∈ R× R

u(x, 0) = f(x), x ∈ R,
(1.1)

where m > 0 and f ∈ Hs(R). The solution to this equation is

u(x, t) = eit(−∆)
m
2 f(ξ) =

∫
f̂(ξ)eit|ξ|

m

eixξ dξ.

For m = 2, Carleson put out a question about exploring the minimal s such that
for ∀f ∈ Hs, there holds the pointwise convergence

e−it∆f(x)→ f(x), for a.e. x ∈ R, (1.2)

as time t tends to zero.
In dimension one, Carleson [6] proved that the pointwise convergence (1.2) holds

if s ≥ 1
4 , which is proved to be sharp by Dahlberg and Kenig [10] through con-

structing the counterexample. In higher dimensions, one can see [3, 4, 5, 9, 11, 12,
13, 22, 25, 27, 28, 29] for details.

Next, we consider the pointwise convergence to the solution of the Schrödinger
equation along the tangential curve. We say that the continuous function γ(x, t) is
Hölder continuous of order κ ∈ (0, 1] in t if

|γ(x, t)− γ(x, t′)| ≤ C1|t− t′|κ, x ∈ Rd, t, t′ ∈ [−1, 1], (1.3)

and bilipschitz in x if

1

C2
|x− x′| ≤ |γ(x, t)− γ(x′, t)| ≤ C2|x− x′|, x, x′ ∈ Rd, t ∈ [−1, 1]. (1.4)

Then we define the set Γ(d, κ) by

Γ(d, κ) = {γ(x, t) : γ(x, 0) = x, and satisfies (1.3)(1.4)}. (1.5)

Let Γ(κ) = Γ(1, κ).
1
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Then, an elementary question is for γ ∈ Γ(κ), determining the minimal s such
that for ∀f ∈ Hs(R),

eit(−∆)
m
2 f(γ(x, t))→ f(x), for a.e. x ∈ R, (1.6)

as time t tends to zero. Cho-Lee-Varges in [7] deal with the case γ ∈ Γ(κ) and
m = 2. Later, Cho and Shiraki considered the case of m > 1 in [8].

In the pointwise convergence of the Schrödinger equation with harmonic oscil-
lator potential, Lee and Rogers [14] showed that the pointwise convergence in this
case for any γ ∈ C1(Rd × [−1, 1],Rd) with γ(x, 0) = x is essentially equivalent to
that in the vertical case, particularly for γ(x, t) = x− (tκ, 0, · · · , 0) with κ ≥ 1.

We also study the divergence set which consists of all the points for which the
pointwise convergence (1.6) fails, and characterize its size in a more precise way
than Lebesgue measure.

We say that a measure µ is α-dimensional for α ∈ (0, d] if

µ(B(x, r)) ≤ crα, x ∈ Rd r > 0,

where B(x, r) is a ball centered at x with the radius r.
Define

Q(γ, f) = {x ∈ R : eit(−∆)
m
2 f(γ(x, t)) 9 f(x), as t→ 0}. (1.7)

The capacitary dimension of a set X is defined by

dimc(X) = {α :Mα 6= ∅}, (1.8)

where
Mα(X) = {µ : µ is α− dimensional and 0 < µ(X) <∞}. (1.9)

Sjögren and Sjölin [24] obtained the corresponding results for the estimate of the
divergence set for γ(x, t) = x and m > 2, which was extended to the case m > 1
by Barceló, Bennet, Carbery and Rogers in [1]. In higher dimensions, one can refer
[2, 11, 12, 15, 16, 17].

Define Stf(γ(x, t)) as follows

Stf(γ(x, t)) = eit(−∆)
m
2 f(γ(x, t)) =

∫
ei(γ(x,t)ξ+t|ξ|m)f̂(ξ) dξ. (1.10)

We have the following pointwise convergence result for the operator St along the
tangential curve (γ(x, t), t).

Theorem 1.1. Let 0 < m < 1, 0 < κ ≤ 1, µ be an α-dimensional measure,
γ ∈ Γ(κ). If s > max{ 1

2 −
m
4 ,

1−mακ
2 }, then we have

lim
t→0

Stf(γ(x, t)) = f(x), µ− a.e. x ∈ R, (1.11)

for f ∈ Hs(R).

Theorem 1.1 follows from the following local maximal estimate for Stf(γ(x, t)),
which can be seen in Section 3.

Theorem 1.2. Let 0 < m < 1, 0 < κ ≤ 1, and µ be an α-dimensional measure,
γ ∈ Γ(κ). If s > max{ 1

2 −
m
4 ,

1−mακ
2 }, then we have(∫ 1

−1

sup
t∈[−1,1]

|Stf(γ(x, t))|2 dµx

) 1
2

. ‖f‖Hs(R) (1.12)

for f ∈ Hs(R).
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Remark 1.3. (1) By the Sobolev embedding, we can obtain the local maximal es-
timate (1.12) holds for s > 1

2 . Furthermore, if we also consider the effect of the

Schrödinger operator eit(−∆)m , then through the stationary phase we can lower down
the regular exponent s to s > 1

2 −
m
4 , which is a better result.

(2) For 0 < m < 1, the change of the regularity for the exponent s for which
the pointwise convergence to the initial data along the tangential curve {(γ(x, t), t) :
t ∈ [−1, 1]} with respect to m is opposite to the vertical case {(x, t) : t ∈ [−1, 1]}.
Indeed, as m tends to zero, we can see that regularity of s for the pointwise conver-
gence (1.11) to hold becomes worse, while that of s for the pointwise convergence
in the vertical case becomes better.

(3) In the following section, we can see that the exponent about s in Theorem 1.2
is sharp up to the endpoint, that is, there exist γ ∈ Γ(κ), α-dimensional measure µ
and f ∈ Hs(R) with s < max{ 1

2 −
m
4 ,

1−mακ
2 } such that (1.12) fails.

(4) Cho and Shiraki [8] dealt with the case m > 1 for the corresponding local
maximal estimate for the general α-dimensional measure including the Lebesgue
measure, which coincides with Corollary 1.5 as a special case of Theorem 1.2.

As a direct consequence of Theorem 1.1, we have the following estimate for the
divergence set.

Corollary 1.4. Let 0 < m < 1, 0 < κ ≤ 1, γ ∈ Γ(κ). If s > 1
2 −

m
4 , then we have

dimc(Q(γ, f)) ≤ 1−2s
mκ . (1.13)

If we take µ = L which is the Lebesgue measure on R. By Theorem 1.2, we have

Corollary 1.5. Let 0 < m < 1, 0 < κ ≤ 1, γ ∈ Γ(κ). If s > max{ 1
2 −

m
4 ,

1−mκ
2 },

then we have (∫ 1

−1

sup
t∈[−1,1]

|Stf(γ(x, t))|2 dx

) 1
2

. ‖f‖Hs(R) (1.14)

for f ∈ Hs(R).

For the operator eitφ(
√
−∆), Y. Niu and Y. Xue[20] studied the pointwise con-

vergence problem along the tangential curve(γ(x, t), t) with t ∈ [−1, 1] for the local
maximal estimate in Corollary 1.5 for the Lebesgue measure, where φ satisfies some
growth conditions and |ξ|m with m ≥ 2 is the special case of φ.

This paper is organised as follows. In section 2, we give some useful lemmas and
elementary tools. In section 3, we show how local maximal estimate in Theorem
1.2 yields the pointwise convergence result in Theorem 1.1. In section 4, we prove
a main lemma which is the reduction of the estimates (1.12) in Theorem 1.2. In
section 5, we prove the necessary condition for the local maximal estimate (1.12)
in Theorem 1.2 to hold.

Finally, we conclude the introduction by giving some notations which will be used
throughout this paper. If A and B are two positive quantities, we write A . B
when there exists a constant C > 0 such that A ≤ CB, where the constant will be
clear from the context. We use S(R) to denote the Schwartz class of functions on
the Euclidean space R. We denote I to be the interval [−1, 1].

2. Preliminaries

In this section, we give some useful tools for the later proof in the following
sections.
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The Frostman lemma in [18, 19] establish the relationship between the capacitary
dimension for the Borel set and the corresponding α-dimensional measure on it.

Lemma 2.1 (Frostman). Let X ⊂ Rd be a Borel measure. Then dimc(X) ≥ α
if and only if there exists an α-dimensional measure µ such that suppµ ⊂ X and
0 < µ(X) <∞.

The following Van der corput lemma plays an important role in the oscillatory
integral estimate for (1.12) in Theorem 1.2 in section 4.

Lemma 2.2 (Van der corput lemma, [26]). Suppose φ is real-valued and smooth
in (a, b), ψ is complex-valued and smooth, and that |φ(k)(x)| ≥ 1 for all x ∈ (a, b).
Then ∣∣∣ ∫ b

a

eiλφ(x)ψ(x) dx
∣∣∣ ≤ ckλ− 1

k

[
|ψ(b)|+

∫ b

a

|ψ′(x)| dx
]

(2.1)

holds when

(i) k ≥ 2 or
(ii) k = 1 and φ′(x) is monotonic.

The bound ck is independent of φ and λ.

Cho and Shiraki proved an useful estimate in [8], which we will use it with
Lemma 2.2 to prove Theorem 1.2.

Lemma 2.3 (Cho, Shiraki, [8]). Let µ be an α-dimensional measure for 0 < α ≤ 1.
There exists a constant C such that for any interval [a, b](∞ < a, b <∞)∣∣∣∣∫∫ ∫∫ g(x, t)h(x′, t′)χ[a,b](x− x′) dµxdtdµx′dt′

∣∣∣∣
≤ C(b− a)α‖g‖L2

x(dµ)L1
t
‖h‖L2

x′ (dµ)L1
t′
.

(2.2)

Moreover, for 0 < ρ < α, there exists a constant C such that∣∣∣∣∫∫ ∫∫ g(x, t)h(x′, t′)|x− x′|−ρ dµxdtdµx′dt′
∣∣∣∣

≤ C‖g‖L2
x(dµ)L1

t
‖h‖L2

x′ (dµ)L1
t′
.

(2.3)

Here, the both integrals are taken over (x, t), (x′, t′) ∈ I × I.

3. Reduction argument

3.1. Proof of Theorem 1.2⇒ Theorem 1.1. Since Schwartz functions are dense
in Hs(R) with s ≥ 0, if f ∈ Hs(R) with s > max{ 1

2 −
m
4 ,

1−mακ
2 } as in Theorem

1.2, then for ∀ε > 0 we can split the function f into two parts as follows f = g + h
with g ∈ S(R) and ‖h‖Hs < ε.

For the divergence set Q(γ, f), we have

µ(Q(γ, f)) ≤
∑
j∈Z

∞∑
λ=1

µ({x ∈ I + j : lim
t→0
|Stf(γ(x, t))− f(x)| > 1

λ}). (3.1)

In order to prove the pointwise convergence result, that is µ(Q(γ, f)) = 0, it suffices
to prove that

µ({x ∈ I+j : lim
t→0
|Stf(γ(x, t))−f(x)| > 1

λ}) = 0, for∀ j ∈ Z and 1 ≤ λ <∞. (3.2)
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If j = 0 and λ ≥ 1, we have

µ({x ∈ I : lim
t→0
|Stf(γ(x, t))− f(x)| > 1

λ})

. µ({x ∈ I : lim
t→0
|Stf(γ(x, t))− Stg(γ(x, t))| > 1

3λ})

+ µ({x ∈ I : lim
t→0
|Stg(γ(x, t))− g(x)| > 1

3λ})

+ µ({x ∈ I : |g(x)− f(x)| > 1
3λ})

. µ({x ∈ I : sup
t∈I
|Stf(γ(x, t))− Stg(γ(x, t))| > 1

3λ})

+ 0 + µ({x ∈ I : |g(x)− f(x)| > 1
3λ})

. µ({x ∈ I : sup
t∈I
|Stf(γ(x, t))− Stg(γ(x, t))| > 1

3λ}),

where the last inequality is obtained by

|g(x)− f(x)| = |S0g(γ(x, 0))− S0f(γ(x, 0))|
≤ sup

t∈I
|Stg(γ(x, t))− Stf(γ(x, t))|.

Using Theorem 1.2 and Chebyshev’s inequality, we have

µ({x ∈ I : sup
t∈I
|Stf(γ(x, t))− Stg(γ(x, t))| > 1

3λ})

. λ2‖f − g‖2Hs(R) = λ2‖h‖2Hs(R) ≤ λ
2ε2,

which yields that

µ({x ∈ I : sup
t∈I
|Stf(γ(x, t))− Stg(γ(x, t))| > 1

3λ}) = 0

by the arbitrary choice of ε.
Then for ∀j ∈ Z, let γj(x, t) = γ(x+j, t) and µj(x) = µ(x+j). Since γj(x, t) also

satisfies (1.3) and (1.4), then we can obtain that Theorem 1.2 also holds for γj(x, t)
and µj(x). Hence by the similar argument as above, we can get the pointwise
convergence result on the interval I + j with respect to x, that is for ∀j ∈ Z and
λ ≥ 1, there holds

µ({x ∈ I + j : lim
t→0
|Stf(γ(x, t))− f(x)| > 1

λ}) = 0.

3.2. Proof of Theorem 1.1 ⇒ Corollary 1.4. Let s > m
4 and f ∈ Hs, if

dimc(Q(γ, f)) > 1−2s
mκ , then by Lemma 2.1, for dimc(Q(γ, f)) > α > 1−2s

mκ , there
exists an α-dimensional measure µ such that 0 < µ(Q(γ, f)) < ∞ and suppµ ⊂
Q(γ, f).

By Theorem 1.1 and s > 1−mακ
2 , we can obtain that µ(Q(γ, f)) = 0, which

contradicts with 0 < µ(Q(γ, f)) <∞.
Hence, there holds dimc(Q(γ, f)) ≤ 1−2s

mκ .

4. Proof of Theorem 1.2

Take a function ψ(ξ) ∈ C∞c (R) satisfying

supp ψ(ξ) ⊂ {ξ ∈ R : 1
2 ≤ |ξ| ≤ 2}, ψ(R) ⊂ [0, 1].
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Let ψk(ξ) = ψ( ξ
2k−1 ), and use ψ(ξ) to obtain the Littlewood-Paley decomposition,

that is

ϕ0(ξ) +
∑
k≥1

ψk(ξ) = 1,

where ϕ0(ξ) ∈ C∞c (R) satisfies that

supp ϕ0(ξ) ⊂ [−1, 1], ϕ0(R) ⊂ [0, 1], ϕ0(ξ) = 1 on [− 1
2 ,

1
2 ].

We define the operator ∆k by

∆̂0f(ξ) = ϕ0(ξ)f̂(ξ),

∆̂kf(ξ) = ψk(ξ)f̂(ξ), for k ≥ 1.

With this decomposition and the triangle inequality, we can get

‖Stf(γ(x, t))‖L2(I,dµ)L
∞
t (I)

= ‖
∑
k≥0

St∆kf(γ(x, t))‖L2(I,dµ)L
∞
t (I)

. ‖St∆0f(γ(x, t))‖L2(I,dµ)L
∞
t (I)

+
∑
k≥1

‖St∆kf(γ(x, t))‖L2(I,dµ)L
∞
t (I).

It is easy to see that

‖St∆0f(γ(x, t))‖L2(I,dµ)L
∞
t (I)

.
∫
ϕ0(ξ)|f̂(ξ)|dξ

. (

∫
|f̂(ξ)|2 dξ)

1
2

= ‖f‖L2 ,

(4.1)

then it is remained to estimate the local maximal estimate for St∆kf(γ(x, t)), k ≥ 1.
Let s∗ = min{m4 ,

mακ
2 }.

Lemma 4.1. Let µ be an α-dimensional measure, γ(x, t) ∈ Γ(κ). Then we have

‖Stf(γ(x, t))‖L2(I,dµ)L∞t (I) . λ
1
2−s∗+ε‖f‖L2(R), (4.2)

where f ∈ L2 and is supported in [−2λ,−λ2 ] ∪ [λ2 , 2λ] for λ > 1.

We postpone the proof of this lemma, and first look at how we get the results in
Theorem 1.2 by Lemma 4.1. By Lemma 4.1, we have∑

k≥1

‖St∆kf(γ(x, t))‖L2(I,dµ)L∞t (I)

.
∑
k≥1

2k( 1
2−s∗+ε)‖∆kf‖L2

.
∑
k≥1

2−kε‖f‖
H

1
2
−s∗+2ε

. ‖f‖
H

1
2
−s∗+2ε .

(4.3)

Combining (4.1) and (4.3), we can obtain the proof of Theorem 1.2.
Now we turn to the proof of Lemma 4.1.
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The proof of Lemma 4.1. Let

Tf = χ(x, t)

∫
eiγ(x,t)ξeit|ξ|

m

f(ξ)ψ( ξλ ) dξ, (4.4)

where χ(x, t) is the characteristic function on I × I.
In order to prove Lemma (4.1), we just need to prove that

‖Tf‖L2
x(dµ)L∞t

. λ
1
2−s∗+ε‖f‖L2 . (4.5)

Indeed, by Plancherel’ theorem, we obtain

‖Stf(γ(x, t))‖L2
x(I,dµ)L∞t (I) = ‖T f̂‖L2

x(dµ)L∞t
. λ

1
2−s∗+ε‖f̂‖L2 = λ

1
2−s∗+ε‖f‖L2 .

(4.6)
By the TT ∗ method, it suffices to prove

‖T ∗g‖L2 . λ
1
2−s∗+ε‖g‖L2

x(dµ)L1
t
, (4.7)

where

T ∗g = ψ( ξλ )

∫
e−iγ(x,t)ξe−it|ξ|

m

g(x, t)χ(x, t) dµdt. (4.8)

Next we prove (4.7).

‖T ∗g‖2L2 =

∫
ψ( ξλ )2

∫∫ ∫∫
e−i[(γ(x,t)−γ(x′,t′))ξ+(t−t′)|ξ|m]

χ(x, t)g(x, t)χ(x′, t′)g(x′, t′) dµxdtdµx′dt′dξ

= λ

∫
ψ(ξ)2

∫∫ ∫∫
e−i[(γ(x,t)−γ(x′,t′))λξ+λm(t−t′)|ξ|m]

χ(x, t)g(x, t)χ(x′, t′)g(x′, t′) dµxdtdµx′dt′dξ

=

∫
W

∫
W ′

χ(w)g(w)χ(w′)g(w′)Kλ(w,w′) dwdw′

=

3∑
i=1

∫∫
Vi

χ(w)g(w)χ(w′)g(w′)Kλ(w,w′) dwdw′

= I1 + I2 + I3,

where w = (x, t), w′ = (x′, t′), W = I × I, W ′ = I × I, and

Kλ(w,w′) = λ

∫
e−iφ(λξ)ψ(ξ)2 dξ (4.9)

with

φ(ξ) = (γ(x, t)− γ(x′, t′))ξ + (t− t′)|ξ|m. (4.10)

The set Vi, i = 1, 2, 3 are defined by

V1 = {(w,w′) ∈W ×W ′ : |x− x′| ≤ λ−
2s∗
α },

V2 = {(w,w′) ∈W ×W ′ : |x− x′| > λ−
2s∗
α , 1

C2
|x− x′| ≥ 2C1|t− t′|κ},

V3 = {(w,w′) ∈W ×W ′ : |x− x′| > λ−
2s∗
α , 1

C2
|x− x′| < 2C1|t− t′|κ}.

The estimate (4.7) is reduced to prove

|Ii| . λ1−2s∗+ε‖g‖L2
x(dµ)L2

t
, for i = 1, 2, 3. (4.11)
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Case 1, Estimate for I1. In this case, it is easy to see that

|Kλ(w,w′)| . λ, (4.12)

which yields that

|I1| . λ
∫
χ(w)|g(w)|χ

[−λ−
2s∗
α ,λ−

2s∗
α ]

(x− x′)χ(w′)|g(w′)|dµxdtdµx′dt′

. λ1−2s∗‖g‖2L2
x(dµ)L1

t
.

(4.13)

Case 2, Estimate for I2. By the definition of the set V2, we have

|γ(x, t)− γ(x′, t′)| ≥ |γ(x, t)− γ(x′, t)| − |γ(x′, t)− γ(x′, t′)|

≥ 1

C2
|x− x′| − C1|t− t′|κ

& |x− x′|.

Split the integral Kλ(w,w′) into two parts as follows

Kλ(w,w′) = λ

∫
U1

e−iφ(λ)ψ(ξ)2 dξ + λ

∫
U2

e−iφ(λ)ψ(ξ)2 dξ

= E1 + E2,

where

U1 = {ξ ∈ suppψ : |x− x′| ≥ 4mλm−1|t− t′||ξ|m−1},
U2 = {ξ ∈ suppψ : |x− x′| < 4mλm−1|t− t′||ξ|m−1}.

For E1, we have

|∂ξφ(λξ)| ≥ λ|(γ(x, t)− γ(x′, t′)| −mλm|t− t′||ξ|m−1

& λ(|x− x′| − 1
4 |x− x

′|)
& λ|x− x′|

& λλ−
2s∗
α

≥ 1,

since 2s∗
α = min{ m2α ,mκ} ≤ 1. Thus by Lemma 2.2, we have

|E1| . λ(λ|x− x′|)−1. (4.14)

For E2, since

|∂2
ξφ(λξ)| = m(1−m)λm|t− t′||ξ|m−2

& λ|x− x′|

& λλ−
2s∗
α

≥ 1,

where the last inequality is also obtained by 2s∗
α ≤ 1, then we have by Lemma 2.2

|E2| . λ(λ|x− x′|)− 1
2 . (4.15)
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Combining the estimates (4.14) and (4.15) implies that

|Kλ| . λ(λ|x− x′|)−1 + λ(λ|x− x′|)− 1
2

. λ(λ|x− x′|)−m2

. λ1−2s∗+ε|x− x′|−min{m2 ,mακ}+ε.

Since 0 < min{m2 ,mακ} − ε < α, then we have

|I2| . λ1−2s∗+ε‖g‖2L2
t (dµ)L1

t
. (4.16)

Case 3, Estimate for I3. By the definition of the set V3, we have

|∂2
ξφ(λξ)| = m(1−m)λm|t− t′||ξ|m−2

& λm|x− x′| 1κ

& λmλ−
2s∗
ακ

≥ 1,

since 2s∗
ακ = min{ m

2ακ ,m} ≤ m.

By 2s∗
m = min{ 1

2 , ακ} ≤
1
2 and Lemma 2.2, we have

|Kλ(w,w′)| . λ(λm|x− x′| 1κ )−
1
2

. λ(λm|x− x′| 1κ )−
2s∗
m

= λ1−2s∗ |x− x′|−
2s∗
mκ

. λ1−2s∗+ε|x− x′|−
2s∗
mκ+ε.

Since 0 < 2s∗
mκ − ε = min{ 1

2κ , α} − ε < α, then we have

|I3| . λ1−2s∗+ε‖g‖2L2
x(dµ)L1

t
. (4.17)

The proof is completed. �

5. Sharpness of the Sobolev index s in Theorem 1.2

In this section, we study the necessary condition for the Sobolev index s for the
local maximal estimate in the Theorem 1.2 to hold.

Take γ(x, t) = x− tκ, dµx = |x|−1+αdx, and φ ∈ S(R) be supported in a small
neighborhood of the origin.

Case 1, s ≥ 1−mακ
2 . Take

f̂1(ξ) = φ(λ−
1
m ξ),

then

|Stf1(γ(x, t))| =
∣∣∣∣∫ ei[(x−t

κ)ξ+t|ξ|m]f̂1(ξ) dξ

∣∣∣∣
= λ

1
m

∣∣∣∣∫ eih1(ξ)φ(ξ) dξ

∣∣∣∣ ,
where

h1(ξ) = (x− tκ)λ
1
m ξ + λt|ξ|m

If x ∈ (0, 1
100λ

−κ) and t = t(x) = x
1
κ , then

0 < t . λ−1
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and

|h(ξ)| . 0 + λλ−1 ≤ 1
3 (5.1)

which yields that

|Stf1(γ(x, t(x)))| & χ(0, 1
100λ

−κ)(x). (5.2)

Then we have

‖ sup
t∈I
|Stf1(γ(x, t(x)))|‖L2

x(I,dµ)

& λ
1
m ‖χ(0, 1

100λ
−κ)‖L2

x(I,dµ)

& λ
1
mλ−

ακ
2 .

It is easy to see that

‖f1‖Hs(R) ∼
(∫

(1 + |ξ|2)s|φ(λ−
1
m ξ)|2 dξ

) 1
2

. λ
1

2mλ
s
m .

Combining the calculations above and Theorem (1.2), we have

λ
1
mλ−

ακ
2 . λ

1
2mλ

s
m . (5.3)

Let λ→∞, and we can see that it is necessary that

1
m −

ακ
2 ≤

1
2m + s

m ,

that is

s ≥ 1−mακ
2 . (5.4)

Case 2, s ≥ 1
2 −

m
4 . Take

f̂2(ξ) = λ−(2−m)φ(λ−(2−m)ξ + λm), (5.5)

then

|Stf2(γ(x, t))| =
∣∣∣∣∫ ei[(x−t

κ)ξ+t|ξ|m]f̂2(ξ) dξ

∣∣∣∣
=

∣∣∣∣∫ eih2(ξ)φ(ξ) dξ

∣∣∣∣
where

h2(ξ) = (x− tκ)λ2−mξ + λ(2−m)mt(λm − ξ)m

= (x− tκ)λ2−mξ + λ2mt(1− ξ
λm )m.

By Taylor’s formula, we have

(1− ξ
λm )m = 1− mξ

λm + m(m−1)
2

ξ2

λ2m +O(λ−3m|ξ|3),

then

h2(ξ) = λ2mt+ λm((x− tκ)λ2−2m −mt)ξ + m(m−1)
2 tξ2 +O(λ−mt|ξ|3).

For x ∈ (0, 1
100 ), take t(x) such that x = t(x)κ + mλ2m−2t(x). Let τ(t) =

tκ + mλ2m−2t, then τ−1(x) = t(x) which is bijection and increasing with respect
to x. Thus we have

0 = τ−1(0) < τ−1(x) = t(x) < τ−1( 1
100 ) . 1

100κ , (5.6)
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then
|h2(ξ)− λ2mt| . 0 + 1

100κ +O(λ−m) ≤ 1
3 . (5.7)

Hence

|Stf2(γ(x, t(x)))| & χ(0, 1
100 )(x),

which yields that

‖ sup
t∈I
|Stf2(γ(x, t))|‖L2

x(I,dµ) & 1.

It is easy to see that

‖f2‖Hs(R) ∼
(∫

(1 + |ξ|2)s|λ−(2−m)φ(λ−(2−m)ξ + λm)|2
) 1

2

. λ2sλ−
1
2 (2−m).

Combining the calculations above and Theorem (1.2), we have

1 . λ2sλ−
1
2 (2−m).

Let λ→∞, and we can see that it is necessary that

2s− 1
2 (2−m) ≥ 0,

which is
s ≥ 1

2 −
m
4 .
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