POINTWISE CONVERGENCE ALONG A TANGENTIAL CURVE
FOR THE FRACTIONAL SCHRODINGER EQUATION WITH
0<m<1
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ABSTRACT. In this article, we study the pointwise convergence problem about
solution to the fractional Schrédinger equation with 0 < m < 1 along the
tangential curve and estimate the capacitary dimension of the divergence set.
We extend the results of Cho and Shiraki in [§] for the case m > 1 to the case
0 < m < 1, which is sharp up to the endpoint.

1. INTRODUCTION

In this paper, we consider the fractional Schrédinger equation on R xR as follows

iu+ (—~A)Fu=0, (t,z) eERx R
{“(ﬂ%o) = f(z), r € R, (1.1)

where m > 0 and f € H?(R). The solution to this equation is
(e, t) = 9T fe) = [ Feerem e e
For m = 2, Carleson put out a question about exploring the minimal s such that
for Vf € H®, there holds the pointwise convergence
e A f(x) = f(x), forae xR, (1.2)

as time ¢ tends to zero.

In dimension one, Carleson [6] proved that the pointwise convergence holds
if s > 1 which is proved to be sharp by Dahlberg and Kenig [10] through con-
structing the counterexample. In higher dimensions, one can see [3, [ 5], @] 111, 12,
13), 221, [25] 27, 28], [29] for details.

Next, we consider the pointwise convergence to the solution of the Schrodinger
equation along the tangential curve. We say that the continuous function v(x,t) is

Hoélder continuous of order « € (0,1] in ¢ if
\’Y(%t)*’Y(%t/” SCl|t7t/|H7 xGRd,t,t' € [*131]7 (13)
and bilipschitz in z if

1
F\x — 2| < Jy(x,t) — (', t)| < Colz —2'|, x,2' €eRYt e [-1,1]. (1.4)
2

Then we define the set T'(d, k) by

I(d, k) = {y(z,t) : 7(x,0) = z, and satisfies (L.3)(L.4)}. (1.5)
Let T'(k) =T'(1, k).
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Then, an elementary question is for v € I'(k), determining the minimal s such
that for Vf € H*(R),

e“(*A)%f(fy(x,t)) = f(x), forae.x€eR, (1.6)

as time ¢ tends to zero. Cho-Lee-Varges in [7] deal with the case v € I'(k) and
m = 2. Later, Cho and Shiraki considered the case of m > 1 in [§].

In the pointwise convergence of the Schrodinger equation with harmonic oscil-
lator potential, Lee and Rogers [14] showed that the pointwise convergence in this
case for any v € C*(R? x [~1,1],R%) with v(x,0) = z is essentially equivalent to
that in the vertical case, particularly for v(z,t) =  — (¢*,0,---,0) with x > 1.

We also study the divergence set which consists of all the points for which the
pointwise convergence fails, and characterize its size in a more precise way
than Lebesgue measure.

We say that a measure u is a-dimensional for « € (0, d] if

w(B(z,r)) <cr®, 2z €Rir >0,

where B(z,r) is a ball centered at = with the radius r.

Define
Q1. f) = {z € R: "7 f(y(w, 1)) » f(z), as t — 0}, (1.7)
The capacitary dimension of a set X is defined by
dim.(X) = {a : M* # 0}, (1.8)
where
M(X) = {p: pis a — dimensional and 0 < pu(X) < oo}. (1.9)

Sjogren and Sjolin [24] obtained the corresponding results for the estimate of the
divergence set for y(z,t) =  and m > 2, which was extended to the case m > 1
by Barceld, Bennet, Carbery and Rogers in [I]. In higher dimensions, one can refer
21 (111, [12, (15}, (16, [17).

Define S; f(v(z,t)) as follows

Sef(v(w, ) = "2 f(y(x,1) = / e OO f(¢) de. (1.10)
We have the following pointwise convergence result for the operator S; along the
tangential curve (y(z,t),t).
Theorem 1.1. Let 0 < m < 1, 0 < kK < 1, p be an a-dimensional measure,
v €T (k). If s > max{3 — 2, =228} “then we have
thH(l) Stf(’)/(xa t)) = f($)7 M—a.e re R) (111)
-y
for f € H*(R).
Theorem follows from the following local maximal estimate for Sif(y(x,t)),
which can be seen in Section 3.

Theorem 1.2. Let 0 <m <1, 0 < k <1, and p be an a-dimensional measure,
v €T (k). If s > max{5 — 2, =225} " then we have

1 3
(/ sup IStf(v(x,t))IQdux> Sl aew) (1.12)
—1t€[-1,1]

for f € H*(R).
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Remark 1.3. (1) By the Sobolev embedding, we can obtain the local mazimal es-

timate (1.12)) holds for s > % Furthermore, if we also consider the effect of the

it(—A)™

Schradinger operator e , then through the stationary phase we can lower down
m

the reqular exponent s to s > % — T, which is a better result.

(2) For 0 < m < 1, the change of the reqularity for the exponent s for which
the pointwise convergence to the initial data along the tangential curve {(v(z,t),t) :
t € [-1,1]} with respect to m is opposite to the vertical case {(z,t) : t € [-1,1]}.
Indeed, as m tends to zero, we can see that regularity of s for the pointwise conver-
gence to hold becomes worse, while that of s for the pointwise convergence
in the vertical case becomes better.

(3) In the following section, we can see that the exponent about s in Theorem
is sharp up to the endpoint, that is, there exist v € T'(k), a-dimensional measure
and f € H*(R) with s < max{% — 2, 1=025} sych that fails.

(4) Cho and Shiraki [8] dealt with the case m > 1 for the corresponding local
mazimal estimate for the general a-dimensional measure including the Lebesgue

measure, which coincides with Corollary[1.5 as a special case of Theorem[1.2

As a direct consequence of Theorem [1.1I} we have the following estimate for the
divergence set.

Corollary 1.4. Let0<m<1,0< k<1, vye(k). If s > % — 4, then we have
dim.(Q(y, f)) < 2. (1.13)

- mks

If we take o = £ which is the Lebesgue measure on R. By Theorem[I.2] we have

Corollary 1.5. Let 0 <m < 1,0< k<1, ye (k). If s > max{% -7 1_5””},
then we have

1 3
(/ sup |Stf(’7(xvt))|2dx> S e ) (1.14)
—1t€[-1,1]
for f € H*(R).

For the operator e*(V=2) Y Niu and Y. Xue[20] studied the pointwise con-
vergence problem along the tangential curve(y(x,t),t) with ¢ € [—1, 1] for the local
maximal estimate in Corollary for the Lebesgue measure, where ¢ satisfies some
growth conditions and |£|™ with m > 2 is the special case of ¢.

This paper is organised as follows. In section 2, we give some useful lemmas and
elementary tools. In section 3, we show how local maximal estimate in Theorem
[1.2) yields the pointwise convergence result in Theorem In section 4, we prove
a main lemma which is the reduction of the estimates in Theorem In
section 5, we prove the necessary condition for the local maximal estimat
in Theorem [L.2] to hold.

Finally, we conclude the introduction by giving some notations which will be used
throughout this paper. If A and B are two positive quantities, we write A < B
when there exists a constant C' > 0 such that A < CB, where the constant will be
clear from the context. We use S(R) to denote the Schwartz class of functions on
the Euclidean space R. We denote I to be the interval [—1,1].

2. PRELIMINARIES

In this section, we give some useful tools for the later proof in the following
sections.
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The Frostman lemma in [I8][19] establish the relationship between the capacitary
dimension for the Borel set and the corresponding a-dimensional measure on it.

Lemma 2.1 (Frostman). Let X C R? be a Borel measure. Then dim.(X) > «
if and only if there exists an a-dimensional measure p such that suppp C X and
0 < u(X) < oco.

The following Van der corput lemma plays an important role in the oscillatory
integral estimate for (1.12)) in Theorem in section 4.

Lemma 2.2 (Van der corput lemma, [26]). Suppose ¢ is real-valued and smooth
in (a,b), ¥ is complez-valued and smooth, and that |p™*) (x)| > 1 for all z € (a,b).
Then

b b
| [ @) da] < ox [l + [ 10/ @)] do] (21)
holds when
(i) E>2 or
(ii) k=1 and ¢'(z) is monotonic.
The bound ci, is independent of ¢ and A.

Cho and Shiraki proved an useful estimate in [8], which we will use it with
Lemma [2:2] to prove Theorem [I.2}

Lemma 2.3 (Cho, Shiraki, [8]). Let u be an a-dimensional measure for 0 < o < 1.
There exists a constant C such that for any interval [a,b](co < a,b < )

//// (z, t)h(x’ ) Xa,p) (x — &) dpadtdpa’dt’

(2.2)
<C(b—a)" ||g||L2(du)L1Hh||L2,(du
Moreover, for 0 < p < «, there exists a constant C such that
’// //g(m,t)h(x’,t’ﬂx — &' |7° dpxdtdpz’dt’ (2.3)

< Cliglrzawri 1hllz2, @mry, -
Here, the both integrals are taken over (z,t),(z',t') € I x I.

3. REDUCTION ARGUMENT

3.1. Proof of Theorem [1.2]=> Theorem[I.1l Since Schwartz functions are dense
in H*(R) with s > 0, if f € H*(R) with s > max{3 — 2, 1=225} a5 in Theorem
then for Ve > 0 we can split the function f into two parts as follows f =g+ h
with g € SR) and ||h||g- <e.

For the divergence set Q(v, f), we have

OO <Y Y n{rel+j: lim |, f(v(2,1) = ()| > 5})- (3.1)

JEZ A=1

In order to prove the pointwise convergence result, that is £ (Q(v, f)) = 0, it suffices
to prove that

p{zel+j: tli_r)r(l)|Stf('y(x,t))—f(x)| >1})=0, forVj € Zand1 < A < 0. (3.2)
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If j = 0 and A > 1, we have

u({r € 12 lm S, f(1(2. 1)) — F(@)] > 1))

Su({z e I:lim (S f(y(x,1) = Srg(y(2. 1)) > 35})
({1 i [Syg(y(. 1)) — g(a)] > )
+u({z el |g(x) - f(2)] > 35})

Su({zel: sup |Sef(v(, 1)) = Srg(v(x, )| > 35})
+0+p({z e l:]g(x) - f(2)] > 35}

S ulte € I:sup|Suf (v(2.1)) = Sig(y(w. )] > 35 0):

where the last inequality is obtained by

lg(z) — f(z)| = [Sog(v(x,0)) = Sof(v(x,0))|
< sup 1Seg(v(2,t)) — Sef (v(x,1))]-

Using Theorem [I.2] and Chebyshev’s inequality, we have
p{zel: Sup S f (y(x, 1)) = Seg(v(z, 1)) > 35})
SN = 9l @y = X0l @) < A€,
which yields that
p({z el Sup |Sef(y(2,t)) = Sig(y(x, 1) > 35}) =0

by the arbitrary choice of e.

Then for Vj €Z, let % (@, t) =y(x+J,t) and p;(x) = (x—i—j) Since v;(x, t) also
satisfies ) and (1.4]), then we can obtain that Theorem 2| also holds for v;(z, t)
and ,uj(a:). Hence by the similar argument as above, we can get the pointwise
convergence result on the interval I + 5 with respect to x, that is for V5 € Z and
A > 1, there holds

pH{rel+j: tli_r>r(1j|5tf(’7($at)) — f@)] >3} =0

3.2. Proof of Theorem = Corollary Let s > %t and f € H®, if
dim.(Q(v, f)) > +=25, then by Lemma for dlmc( (v, f)) > a > =22 there
exists an a-dimensional measure p such that 0 < p(Q(y, f)) < oo and supp u C

Q0. f)
By Theorem and s > 1‘%, we can obtain that p(Q(v, f)) = 0, which

contradicts with 0 < u(Q(v, f)) <
Hence, there holds dim.(9(v, f)) 1=2s

— MK

4. PROOF OF THEOREM

Take a function ¢ (§) € C°(R) satisfying
supp ¥(§) C {€ € R: 5 < [¢] <2}, ¢(R) C [0,1].
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Let 15 (€) = 1/)(2,5,1 ), and use ¥ (§) to obtain the Littlewood-Paley decomposition,

that is
po(€) + 3 wi(e) = 1,

E>1
where ¢g(§) € C°(R) satisfies that

supp 900(5) C [71v 1]7 QOO(R) - [Ov 1}7 500(5) =1on [7%7 %]
We define the operator Ag by
Aof(€) = o) (€),
Arf(€) = on(©)F (), for k> 1.
With this decomposition and the triangle inequality, we can get
[1Sef (v(2; )l 21,0 L7° (1)
=D Selduf (v, 0)ll a1, Li* (1)

k>0
SISt Ao f (v(w, )l 22 (1,4 L7 (1)

+ Z IS¢ Aw f(v(z, )l L2 (1,ap) L7 (1)-

E>1
It is easy to see that
[15e A0 f (v(@, )l L2(r,a L (1)

S/m@WMM

SQMMM&
= fles

then it is remained to estimate the local maximal estimate for Sy Ay f(y(z,t)), k > 1.

Let s, = rnin{%7 s

(4.1)

Lemma 4.1. Let pu be an a-dimensional measure, v(x,t) € I'(k). Then we have
1 s, +e
I1Sef (v(@, )2 raweee ) S A2 TN fll 2wy (4.2)
where f € L? and is supported in [—2X, —3] U [5,2] for A > 1.

We postpone the proof of this lemma, and first look at how we get the results in
Theorem [I.2] by Lemma [£.1] By Lemma we have

S IS AR (v (@, )2 (1. L (1)

k>1
S D 2ET A S| 1

E>1 (4.3)
5 Z 2_ke||f||Héfs*+2é

k>1

S Hf||H%—s*+2e~

Combining (4.1)) and (4.3)), we can obtain the proof of Theorem [1.2
Now we turn to the proof of Lemma [4.1
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The proof of Lemma Let
Tf = x(ayt) [ 05" peyus) de, (4.4

where x(z,t) is the characteristic function on I x I.
In order to prove Lemma (4.1]), we just need to prove that

ITfllezamre < A2~ fllce. (4.5)
Indeed, by Plancherel’ theorem, we obtain

R 1 s ten s oy i_s.+4e
||Stf(7(33at))”Li(I,dy)L?"(l) = HTf”Lfﬁ(du)L;” S Az + ||fHL2 = A2 + ||f||L2-
(4.6)
By the T'T* method, it suffices to prove

* 1 5. +e
179l S A2~ llgll 12 (apyrs (4.7)
where
T*g = w(§)/e‘”(’c’t)fe_"t'i'mg(x,t)x(:mt) dpdt. (4.8)
Next we prove (4.7]).

1T gl = /w(gy////efi[m(w,t)fw(m e+t €™

x(z, t)g(z, t)x (2, t")g(x', t") duxdtdpz’dt’dE

_)\/w //// ~HO @D =A@ E DM (=) Ie]"]

x(z,t)g(z, t)x (@', t')g(2’, t") dpadtdpa’dt’dg

- / / (w)g(w)x () K (w, ') dwdu’
W 1
3

-y / /V (@) )

=T + Iy + I3,
where w = (z,t), w' = (&/,¢/), W=Ix I, W =1x1I, and

K (w,w') = A / 0 ()2 de (4.9)

with
¢(§) = (v(@, 1) — (2, ¢)E + (¢ — ) [¢|™ (4.10)
The set V;,¢ = 1,2, 3 are defined by

Vi ={(w,w') e W x W":
Vo={(w,w)eWxW':|z—z
Va={(w,w)eWxW':|z—z

The estimate is reduced to prove
IZi| < /\172S*+6H9HL§(du)L37 fori=1,2,3. (4.11)

)

arle —a'| > 2C |t — ']},

e aole —a'| <20t — 1|7}
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Case 1, Estimate for Z;. In this case, it is easy to see that
|\ (w, w')| S A, (4.12)
which yields that

TS [ xwlgw_, -

5 )\1—23*

v 2e (2 — 2 x(w)|g(w)| dpzdtdus’dt’
A a]( )x(w)]g(w’)| dpzdtdp (4.13)

s
o

2

QHLg(du)Lg~

Case 2, Estimate for Z,. By the definition of the set V5, we have
Iy(z,t) = (@', )] = [y(z, t) = v(@", 1) = [y(2', 1) — v (2, 1))

1

> |z —a| - Cylt —¢|"

> olo—al| = Cift— ¢!

> |z — 2|

Split the integral K (w,w’) into two parts as follows

Ki(w,w') = )\/

Uy
= El + EQa

(e dg 4 [ e W2 dg

Uz

where
Ur = {€ €supp ) : [& — a'| > 4mA™ |t — /]|,
Uy = {¢€ €supp¥ : |z — 2/ < 4mA™ Ht —¢/||¢™ 1)
For Fy, we have
0e(NE)| = Al(y(, 1) — (@', )| = mA™ |t —¢'|¢[™
2 Mz —a'| = 3la —2'])
> ANx — 2|
>N
> 1,

since 222 = min{#%,mx} < 1. Thus by Lemma we have

|Ey| S A Az —2')~h (4.14)
For FE5, since

026(NE)| = m(1 — m)A™[t — ¢'[[¢]™ >
> Mx — 2|
>N
>1,

where the last inequality is also obtained by 2% < 1, then we have by Lemma

|Es| < MMz —2])" 2. (4.15)
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Combining the estimates (4.14) and (4.15) implies that
KA Az = /)7 + Az — a')) 7
SAAz —a'))~
< )\1725*+6|x . z/‘fmin{%,mom}nte'
Since 0 < min{’§, max} — € < «, then we have
2] S Al_QS*ﬁHQH%%(du)Lg- (4.16)
Case 3, Estimate for Z3. By the definition of the set V3, we have
|026(AE)| = m(L —m)X™ |t —t'||¢[™ >
2 A" = af|x
> AmA— R
> 1,

since 2= = min{ /2, m} < m.
akK 20k

By 2= = min{}, ax} < 1 and Lemma we have
[ (w,w)| S AN = a'[ )72
Ao — 2| )7

_ )\1—28*

254

|z — 2|~ =

2s

5 /\172s*+e|$ _ $I|7m:' +e.

Since 0 < 252 — ¢ = min{5-, a} — € < a, then we have
Zs| S Alizs*“”ﬁ“%g(@ﬂ} (4.17)
The proof is completed. O

5. SHARPNESS OF THE SOBOLEV INDEX § IN THEOREM

In this section, we study the necessary condition for the Sobolev index s for the
local maximal estimate in the Theorem [[.2] to hold.

Take v(z,t) = z — t*, duz = |z| 7' T*dz, and ¢ € S(R) be supported in a small
neighborhood of the origin.

Case 1, s > 1‘% Take

f1(&) = oA ¢),

then
Sufs (y(a )] = \ [tz g dﬁ‘
= | [ em @006 ae].
where )
h(€) = (& — P)ARE 1 Adle]™

If z € (0, ;55 A™") and t = t(z) = x, then

0<t< At
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and
()| S0+ <4 (5.1)
which yields that
1Sef1(y(@, 8(2)))] Z X0, 115 2-+) () (5.2)
Then we have

IFsup 1501 (2 H@)Dez (r.am

1
2 A7 X0, 2 a-m L2 (1w

> AmATE

It is easy to see that

Ve ~ ( Ja+ |§|2>S|¢<M§>|2d5)2

< Az o
Combining the calculations above and Theorem (|1.2)), we have
AmATY < Amw (5.3)

Let A\ = oo, and we can see that it is necessary that

L_%<L+%’

m 2 — 2m
that is
5 > lzman, (5.4)
Case 2, s > % — 7. Take
F2(8) = AETmMg(A=EmmIe 4 am), (5.5)
then
1S4 ol (2 1))] = ] [ etz df‘
=| [ emerote)ag
where

hal€) = (& — )AZTmg 4 AG=mImg(xm _ gy
= (ZL' _ tﬁ))\?—’mg + )\2mt(1 _ /\én )m

By Taylor’s formula, we have

m. m{m— 2 —om
(L= 350)" = 1= 5+ 2= + O™,

then
ha(€) = A2t 4+ A7 (( — tF)A2~2™ —mit)¢ + =D ye2 L oA~ ¢[¢]?).

For z € (0,155), take t(x) such that z = t(z)® + mA*™ 2¢(z). Let 7(t) =
t* + mA?™ =2t then 771(x) = t(z) which is bijection and increasing with respect
to x. Thus we have

0=7"10) <77 z) = t(z) <7 (355) < 107> (5.6)
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then

|ha(€) = A"t S0+ 5= +OA™) < 3. (5.7)

Hence

1Sefa(y(2, 1)) Z X(0,15) (2);

1
7%)

which yields that
| sup ISefo(v(@ )l L2 (1.ap) 2 1-
S

It is easy to see that

Nl

Ifelirey ~ [ 14162 A-Cmg0m=mg + 3P
S AT,
Combining the calculations above and Theorem , we have
1< AZsA—2(2-m),
Let A — 0o, and we can see that it is necessary that
25— 3(2—m) >0,

which is

1 m
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