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1. Introduction

In [1], Ibragimov presents the following equation

yxx = −y−1y2
x − 3x−1yx, (1)

with its respective solution

y(x) = ±
√
C1 −

C2

x2
, where C1, C2 are constants. (2)

This solution is obtained using the integrating factor method. In [2], Muriel
and Romero, calculate the λ−Symmetries associated to integrating factors
of (1). In [3], Polyanin and Zaitsev present a solution of (1) of the form

y(x) = C2 exp
(
C1|x|4

)
, where C1, C2 are constants. (3)

The purpose of this work is: i) to calculate the Lie symmetry group, ii) to
present the optimal algebra (optimal system) for (1), iii) making use of all el-
ements of the optimal algebra, to propose invariant solutions for (1), then iv)
to construct the Lagrangian with which we could determine the variational
symmetries using Noether′s theorem, and thus to present conservation laws
associated, and iv) also using Ibragimov′s method build some non-trivial
conservation laws, and finally v) to classify the Lie algebra associated to
(1), corresponding to the symmetry group. we note that equation (1) can
be considered as a modification of the generalization of the Emden–Fowler
Equation.

2. Continuous group of Lie symmetries

In this section we study the Lie symmetry group for (1). The main result of
this section can be presented as follows:

Proposition 1. The Lie symmetry group for the equation (1) is generated
by the following vector fields:

Π1 = x
∂

∂x
, Π2 = x3 ∂

∂x
, Π3 = xy2 ∂

∂x
+
(
−y3

) ∂
∂y
, Π4 = x3y2 ∂

∂x
, (4)

Π5 = y
∂

∂y
,
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Proof. A general form of the one-parameter Lie group admitted by (1) is
given by

x→ x+ εξ(x, y) +O
(
ε2
)
, and y → y + εη(x, y) +O

(
ε2
)
,

where ε is the group parameter. The vector field associated with the group
of transformations shown above can be written as Γ = ξ(x, y) ∂

∂x
+ η(x, y) ∂

∂y
,

where ξ, η are differentiable functions in R2. Applying its second prolongation

Γ(2) = Γ + η[x]
∂

∂yx
+ η[xx]

∂

∂yxx
, (5)

to eq.(1), we must find the infinitesimals ξ, η satisfying the symmetry condi-
tion

ξ
(
−3x−2yx

)
+ η

(
−y2

xy
−2
)

+ η[x]

(
2y−1yx + 3x−1

)
+ η[xx] = 0, (6)

associated with (1). Here η[x], η[xx] are the coefficients in Γ(2) given by:

η[x] = Dx[η]− (Dx[ξ])yx = ηx + (ηy − ξx)yx − ξyy2
x.

η[xx] = Dx[η[x]]− (Dx[ξ])yxx,

= ηxx + (2ηxy − ξxx)yx + (ηyy − 2ξxy)y
2
x − ξyyy3

x

+(ηy − 2ξx)yxx − 3ξyyxyxx. (7)

Being Dx is the total derivative operator: Dx = ∂x + yx∂y + yxx∂yx + · · · .
Replacing (7) into (6) and using (1) we obtain:

(5y−1ξy − ξyy)y3
x + (y−1ηy − ηy−2 − 2ξxy + 6x−1ξy + ηyy)y

2
x

+ (−3x−2ξ + 2y−1ηx + 3x−1ξx + 2ηxy − ξxxx)yx + (ηxx + 3x−1ηx) = 0.

From (8), canceling the coefficients of the monomials variables in derivatives
1, y3

x, y
2
x and yx we obtain the determining equations for the symmetry group

of (1), with x, y 6= 0. That is:

5ξy − yξyy =0, (8a)
xyηy − xη − 2xy2ξxy + 6y2ξy + xy2ηyy =0, (8b)

−3yξ + 2x2ηx + 3xyξx + 2x2yηxy − x2yξxxx =0. (8c)
xηxx + 3ηx =0. (8d)
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Solving the system of equations (8a)-(8d) for ξ and η we get

ξ = c1x+ c2x
3 + c3xy

2 + c4x
3y2,

η = −c3y
3 + c5y.

Thus, the infinitesimal generators of the group of symmetries of (1) are the
operators Π1- Π5 described in the statement of the Proposition 1; thus having
the proposed result.

3. Optimal Algebra

Taking into account [4, 5, 6, 7], we present in this section the optimal alge-
bra associated to the symmetry group of (1), that shows a systematic way
to classify the invariant solutions.

To obtain the optimal algebra, we should first calculate the corresponding
commutator table, which can be obtained from the operator

[Πα,Πβ] = ΠαΠβ − ΠβΠα =
n∑
i=1

(
Πα(ξiβ)− Πβ(ξiα)

) ∂

∂xi
, (9)

where i = 1, 2, with α, β = 1, · · · , 5 and ξiα, ξiβ are the corresponding coeffi-
cients of the infinitesimal operators Πα,Πβ. After applying the operator (9)
to the symmetry group of (1), we obtain the operators that are shown in the
following table

Π1 Π2 Π3 Π4 Π5

Π1 0 2Π2 0 2Π4 0
Π2 −2Π2 0 −2Π4 0 0
Π3 0 2Π4 0 0 −2Π3

Π4 −2Π4 0 0 0 −2Π4

Π5 0 0 2Π3 2Π4 0

Table 1: Commutators table associated to the symmetry group of (1).

Now, the next thing is to calculate the adjoint action representation of the
symmetries of (1) and to do that, we use Table 1 and the operator

Ad(exp(λΠ))H =
∞∑
n=0

λn

n!
(ad(Π))nG for the symmetries Π and G.
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Making use of this operator, we can construct the Table 2, which shows the
adjoint representation for each Πi.

adj[ , ] Π1 Π2 Π3 Π4 Π5

Π1 Π1 e−2λΠ2 Π3 e−2λΠ4 Π5

Π2 Π1 + 2λΠ2 Π2 Π3 + 2λΠ4 Π4 Π5

Π3 Π1 Π2 − 2λΠ4 Π3 Π4 Π5 + 2λΠ3

Π4 Π1 + 2λΠ4 Π2 Π3 Π4 Π5 + 2λΠ4

Π5 Π1 Π2 e−2λΠ3 e−2λΠ4 Π5

Table 2: Adjoint representation of the symmetry group of (1).

Proposition 2. The optimal algebra associated to the equation (1) is given
by the vector fields

Π4, a2Π2, a3Π3, a1Π1 + a3Π3, a2Π2 + Π3,Π3 + b5Π4, a1Π1 + b6Π4,Π2 + b7Π4,

b3Π3 + Π5, a2Π2 + Π5, a1Π1 + Π5,−2Π1 + b1Π4 + Π5, a2Π2 + a3Π3 + b4Π4,

Π1 + b8Π2 + b9Π4, a2Π2 +
a4

a2

Π3 + b2Π4 + Π5.

Proof. To calculate the optimal algebra system, we start with the generators
of symmetries (4) and a generic nonzero vector. Let

G = a1Π1 + a2Π2 + a3Π3 + a4Π4 + a5Π5. (10)

The objective is to simplify as many coefficients ai as possible, through maps
adjoint to G, using Table (2).

1) Assuming a5 = 1 in (10) we have that G = a1Π1 +a2Π2 +a3Π3 +a4Π4 +
Π5. Applying the adjoint operator to (Π1, G) and (Π5, G) we don‘t
have any reducción, on the other hand applying the adjoint operator
to (Π2, G) we get

G1 = Ad (exp (λ1Π2))G = a1Π1+(a2+2a1λ1)Π2+a3Π3+(a4+2a3λ1)Π4+Π5.
(11)

1.1) Case a1 6= 0. Using λ1 = −a2
2a1

, with a1 6= 0, in (11), Π2 is
eliminated, therefore G1 = a1Π1 + a3Π3 + b1Π4 + Π5, where b1 =
a4 + a3

a1
. Now, applying the adjoint operator to (Π3, G1), we get G2 =

Ad (exp (λ2Π3))G1 = a1Π1 +(a3 +2λ2)Π3 +b1Π4 +Π5. Using λ2 = −a3
2
,

is eliminated Π3, then G2 = a1Π1 + b1Π4 + Π5. Applying the adjoint
operator to (Π4, G2), we get

G3 = Ad (exp (λ3Π4))G2 = a1Π1 + (b1 + 2λ3(a1 + 2))Π4 + Π5. (12)
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1.1.A) Case a1 + 2 6= 0. Using λ3 = 1
2(a1+2)

, with a1 + 2 6= 0, in (12),
Π4 is eliminated, therefore G3 = a1Π1 + Π5. Then, we have the first
element of the optimal system.

G3 = a1Π1 + Π5, with a1 6= 0 and a1 + 2 6= 0. (13)

This is how the first reduction of the generic element (10) ends.

1.1.B) Case a1 + 2 = 0. We get G3 = −2Π1 + b1Π4 + Π5. Then, we
have other element of the optimal system.

G3 = −2Π1 + b1Π4 + Π5. (14)

This is how other reduction of the generic element (10) ends.

1.2) Case a1 = 0. We get G1 = a2Π2 + a3Π3 + (a4 + 2a3λ1)Π4 + Π5.

1.2.A) Case a3 6= 0. Using λ1 = −a4
2a3

, with a3 6= 0, is eliminated Π4,
then G1 = a2Π2+a3Π3+Π5. Applying the adjoint operator to (Π3, G1),
we get

G4 = Ad (exp (λ4Π3))G1 = a2Π2 + (a3 + 2λ)Π3 − 2λ4Π4 + Π5. (15)

Using λ4 = −a3
2
, is eliminated Π3, then G4 = a2Π2 + a3Π4 + Π5. Now

applying the adjoint operator to (Π4, G4), we have

G5 = Ad (exp (λ5Π4))G4 = a2Π2 + (a3 + 2λ5)Π4 + Π5. (16)

Using λ5 = −a3
2
, is eliminated Π4, then we have other element of the

optimal system.
G5 = a2Π2 + Π5. (17)

This is how other reduction of the generic element (10) ends.

1.2.B) Case a3 = 0. We get G1 = a2Π2 + a4Π4 + Π5. Now applying
the adjoint operator to (Π3, G1), we have

G6 = Ad (exp (λ6Π3))G1 = a2Π2 + 2λ6Π3 + (a4− 2a2λ6)Π4 + Π5. (18)

1.2.B.1) Case a2 6= 0. Using λ6 = a4
2a2

, with a2 6= 0, is eliminated Π4,
then G6 = a2Π2 + a4

a2
Π3 + Π5. Now applying the adjoint operator to

(Π4, G4), we get

G7 = Ad (exp (λ7Π4))G6 = a2Π2 +
a4

a2

Π3 + 2λ7Π4 + Π5. (19)
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It’s clear that we don’t have any reduction, then using λ7 = b2
2
, then

we have other element of the optimal system.

G7 = a2Π2 +
a4

a2

Π3 + b2Π4 + Π5. (20)

This is how other reduction of the generic element (10) ends.

1.2.B.2) Case a2 = 0. We get G6 = 2λ6Π3 + a4Π4 + Π5. It is clear
that we don’t have any reduction, then using λ6 = b3

2
, we have G6 =

b3Π3 + a4Π4 + Π5. Now applying the adjoint operator to (Π4, G6), we
have

G8 = Ad (exp (λ8Π4))G6 = b3Π3 + (a4 + 2λ8)Π4 + Π5. (21)

Using λ8 = −a4
2
, is eliminated Π4, then we have other element of the

optimal system.
G8 = b3Π3 + Π5. (22)

This is how other reduction of the generic element (10) ends.

2) Assuming a5 = 0 and a4 = 1 in (10), we have that G = a1Π1 + a2Π2 +
a3Π3 + Π4. Applying the adjoint operator to (Π1, G) and (Π5, G) we
don’t have any reduction, on the other hand applying the adjoint ope-
rator to (Π2, G) we get

G9 = Ad (exp (λ9Π2))G = a1Π1+(a2+2a1λ9)Π2+a3Π3+(1+2a3λ9)Π4.
(23)

2.1) Case a1 6= 0. Using λ9 = −a2
2a1

, with a1 6= 0, in (23), Π2 is
eliminated, therefore G9 = a1Π1 + a3Π3 + b3Π4, where b3 = 1 − a3a2

a1
.

Now, applying the adjoint operator to (Π3, G9), we don’t have any
reduction, after applying the adjoint operator to (Π4, G9), we get G10 =
Ad (exp (λ10Π4))G9 = a1Π1 + a3Π3 + (b3 + 2a1λ10)Π4. How a1 6= 0, we
can use λ10 = −b3

2a1
, is eliminated Π4, thus we have other element of the

optimal system.
G10 = a1Π1 + a3Π3. (24)

This is how other reduction of the generic element (10) ends.

2.2) Case a1 = 0.We get G9 = a2Π2 + a3Π3 + (1 + 2a3λ9)Π4.
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2.2.A) Case a3 6= 0. Using λ9 = −1
2a3

, with a3 6= 0, Π4 is eliminated,
therefore G9 = a2Π2 + a3Π3. Now, applying the adjoint operator to
(Π3, G9), we get G11 = Ad (exp (λ11Π3))G9 = a2Π2 + a3Π3− 2a2λ11Π4.

2.2.A.1) Case a2 6= 0. It’s clear that we don’t have any reduction,
using λ11 = −b4

2a2
, with a2 6= 0, we get G11 = a2Π2 + a3Π3 + b4Π4. Now,

applying the adjoint operator to (Π4, G11), we don’t have any reduction,
thus we have other element of the optimal system.

G11 = a2Π2 + a3Π3 + b4Π4. (25)

This is how other reduction of the generic element (10) ends.

2.2.A.2) Case a2 = 0. We get G11 = a3Π3. Now, applying the adjoint
operator to (Π4, G11), we don’t have any reduction, thus we have other
element of the optimal system.

G11 = a3Π3. (26)

This is how other reduction of the generic element (10) ends.

2.2.B) Case a3 = 0. We get G9 = a2Π2 + Π4. Now, applying the
adjoint operator to (Π3, G9), we have G12 = Ad (exp (λ12Π3))G9 =
a2Π2 + (1− 2a2λ12)Π4.

2.2.B.1) Case a2 6= 0. Using λ12 = 1
2a2

, with a2 6= 0, is eliminated Π4,
then G12 = a2Π2. Now, applying the adjoint operator to (Π4, G12), we
don’t have any reduction, thus we have other element of the optimal
system.

G12 = a2Π2. (27)

This is how other reduction of the generic element (10) ends.

2.2.B.2) Case a2 = 0. We get G12 = Π4. Now, applying the adjoint
operator to (Π4, G12), we don’t have any reduction, thus we have other
element of the optimal system.

G12 = Π4. (28)

This is how other reduction of the generic element (10) ends.
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3) Assuming a5 = a4 = 0 and a3 = 1 in (10), we have that G = a1Π1 +
a2Π2 + Π3. Applying the adjoint operator to (Π1, G) and (Π5, G) we
don’t have any reduction, on the other hand applying the adjoint ope-
rator to (Π2, G) we get

G13 = Ad (exp (λ13Π2))G = a1Π1+(a2+2a1λ13)Π2+Π3+2λ13Π4. (29)

3.1) Case a1 6= 0. Using λ13 = −a2
2a1

, with a1 6= 0, in (29), Π2 is
eliminated, therefore G13 = a1Π1 + Π3 + b3Π4, where b3 = −a2

a1
. Now,

applying the adjoint operator to (Π3, G13), we don’t have any reduc-
tion, after applying the adjoint operator to (Π4, G9), we get G14 =
Ad (exp (λ14Π4))G13 = a1Π1 + Π3 + (b3 + 2a1λ13)Π4. As a1 6= 0, we
can use λ13 = −b3

2a1
, is eliminated Π4, then we have other element of the

optimal system.
G14 = a1Π1 + Π3. (30)

This is how other reduction of the generic element (10) ends.

3.2) Case a1 = 0. We get G13 = a2Π2 + Π3 + 2λ13Π4, using λ13 = b5
2
,

then G13 = a2Π2 + Π3 + b5Π4. Now, applying the adjoint operator
to (Π3, G13), we get G14 = Ad (exp (λ14Π3))G13 = a2Π2 + Π3 + (b5 −
2a2λ14)Π4.

3.2.A) Case a2 6= 0. Using λ14 = b5
2a2

, with a2 6= 0, is eliminated Π4,
then G14 = a2Π2 + Π3. Now applying the adjoint operator to (Π4, G14)
we don’t have any reduction, then we have other element of the optimal
system.

G14 = a2Π2 + Π3. (31)

This is how other reduction of the generic element (10) ends.

3.2.B) Case a2 = 0. We get G14 = Π3 + b5Π4. Now applying the
adjoint operator to (Π4, G14) we don’t have any reduction, then we
have other element of the optimal system.

G14 = Π3 + b5Π4. (32)

This is how other reduction of the generic element (10) ends.
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4) Assuming a5 = a4 = a3 = 0 and a2 = 1 in (10), we have that G =
a1Π1 + Π2. Applying the adjoint operator to (Π1, G) and (Π5, G) we
don’t have any reduction, on the other hand applying the adjoint ope-
rator to (Π2, G) we get

G15 = Ad (exp (λ15Π2))G = a1Π1 + (1 + 2a1λ15)Π2. (33)

4.1) Case a1 6= 0. Using λ15 = −1
2a1

, with a1 6= 0, is eliminated Π2, then
G15 = a1Π1. Now applying the adjoint operator to (Π3, G15) we don’t
have any reduction, on the other hand applying the adjoint operator
to (Π4, G15) we get G16 = Ad (exp (λ16Π4))G15 = a1Π1 + 2a1λ16Π4. It
is clear that we don’t have any reduction, then using λ16 = b6

2a1
, with

a1 6= 0, we have other element of the optimal system.

G16 = a1Π1 + b6Π4. (34)

This is how other reduction of the generic element (10) ends.

4.2) Case a1 = 0. We getG15 = Π2. Now applying the adjoint operator
to (Π3, G15), we get G17 = Ad (exp (λ17Π3))G15 = Π2 − 2λ17Π4. It is
clear that we don’t have any reduction, then using λ17 = −b7

2
, then

G17 = Π2 + b7Π4. Now applying the adjoint operator to (Π4, G17), we
don’t have any reduction, after we have other element of the optimal
system.

G17 = Π2 + b7Π4. (35)

This is how other reduction of the generic element (10) ends.

5) Assuming a5 = a4 = a3 = a2 = 0 and a1 = 1 in (10), we have that
G = Π1. Applying the adjoint operator to (Π1, G), (Π3, G) and (Π5, G)
we don’t have any reduction, on the other hand applying the adjoint
operator to (Π2, G) we get

G18 = Ad (exp (λ18Π2))G = Π1 + 2λ18Π2. (36)

It’s clear that we don’t have any reduction, then using λ18 = b8
2
, we get

G18 = Π1 + b8Π2. Now applying the adjoint operator to (Π4, G18), we
have

G19 = Π1 + b8Π2 + 2λ19Π2. (37)
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It’s clear that we don’t have any reduction, then using λ19 = b9
2
, we

have other element of the optimal system.

G19 = Π1 + b8Π2 + b9Π4. (38)

This is how other reduction of the generic element (10) ends.

4. Invariant solutions by the generators of the optimal algebra

In this section, we characterize the invariant solutions taking into account all
operators that generate the optimal algebra presented in Proposition 2. For
this purpose, we use the method of invariant curve condition [5] (presented
in section 4.3), which is given by the following equation

Q(x, y, yx) = η − yxξ = 0. (39)

Using the element Π4 from Proposition 2, under the condition (39), we obtain
that Q = η4 − yxξ4 = 0, which implies (0) − yx(x

3y2) = 0. After, we
get y(x) = c, where c is a constant, which is an invariant solution for (1),
using an analogous procedure with all of the elements of the optimal algebra
(Proposition 2), we obtain both implicit and explicit invariant solutions that
are shown in the Table 3, with c being a constant.

Elements Q(x, y, yx) = 0 Solutions Type Solution
1 Π4 (0)− yx(x3y2) = 0 y(x) = 0, y(x) = c Trivial
2 Π2 (0)− yx(x3) = 0 y(x) = c Trivial
3 Π3 (−y3)− yx(xy2) = 0 y(x) = c

x
Explicit

4 Π1 + Π3 (−y3)− yx(x+ xy2) = 0 y(x) = ± 1√
W (x2c)

, withW (z) the product log function. Explicit

5 Π2 + Π3 (−y3)− yx(x3 + xy2) = 0 y(x) = ±
√

e4c

x2
−
√
e4c(e4c+x4)

x2
Explicit

6 Π3 + Π4 (−y3)− yx(x3y2 + xy2) = 0 y(x) = c
√
x2+1
x

Explicit
7 Π1 + Π4 (0)− yx(x+ x3y2) = 0 y(x) = ± i

x
, y(x) = c Explicit

8 Π2 + Π4 (0)− yx(x3 + x3y2) = 0 y(x) = ±i, y(x) = c Explicit
9 Π3 + Π5 (−y3 + y)− yx(xy2) = 0 y(x) = ±

√
c+x2

x
Explicit

10 Π2 + Π5 (y)− yx(x3) = 0 y(x) = ce−1/(2x2) Explicit
11 Π1 + Π5 (y)− yx(x) = 0 y(x) = cx Explicit

12 −2Π1 + Π4 + Π5 (y)− yx(x3y2 − 2x) = 0 y(x) = ±

√
± e−2c

√
4e2c+x2

x
−e−2c

√
2

Explicit

13 Π2 + Π3 + Π4 (−y3)− yx(xy2 + x3 + x3y2) = 0 y(x) = ±1
4

√
− 1
cx2
±
√

(x2+1)2−16cx4

cx2
− 1

c
Explicit

14 Π1 + Π2 + Π4 (0)− yx(x3 + x3y2 + x) = 0 y(x) = ±
√
−x2−1
x

, y(x) = c Explicit
15 Π2 + Π3 + Π4 + Π5 (y − y3)− yx(x3y2 + x3 + xy2) = 0 1

4

(
1

1−y(x)2
+ log(y(x))− 1

2
log (1− y(x)2)

)
− 1

8x2(y(x)2−1)
= c Implicit

Table 3: Solutions for (1) using invariant curve condition.
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5. Variational symmetries and conserved quantities

In this section, we present the variational symmetries of (1) and we are going
to use them to define conservation laws via Noether’s theorem [8]. First of all,
we are going to determine the Lagrangian using the Jacobi Last Multiplier
method, presented by Nucci in [9], and for this reason, we are urged to
calculate the inverse of the determinant ∆,

∆ =

∣∣∣∣∣∣
x yx yxx

Π1,x Π1,y Π
(1)
1

Π2,x Π2,y Π
(1)
2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
x yx yxx
x 0 −yx
x3 0 −3x2yx

∣∣∣∣∣∣ ,
where Π1,x,Π1,y,Π2,x, and Π2,y are the components of the symmetries Π1,Π2

shown in the Proposition 4 and Π
(1)
1 ,Π

(1)
2 as its first prolongations. Then we

get ∆ = 2x3yx which implies that M = 1
∆

= x−3

2yx
. Now, from [9], we know

that M can also be written as M = Lyxyx which means that Lyxyx = x−3

2yx
,

then integrating twice with respect to yx we obtain the Lagrangian

L(x, y, yx) =
x−3

2
yx ln(yx)−

x−3

2
yx + yxf1(x, y) + f2(x, y), (40)

where f1, f2 are arbitrary functions. From the preceding expression we can
consider f1 = f2 = 0. It is possible to find more Lagrangians for (1) by
considering other vector fields given in the Proposition 4. We then calculate

ξ(x, y)Lx + ξx(x, y)L+ η(x, y)Ly + η[x](x, y)Lyx = Dx[f(x, y)],

using (40) and (7). Thus we get

ξ

(
−3x−4

2
yx ln(yx) +

3x−4

2
yx

)
+ ξx

(
x−3

2
yx ln(yx)−

x−3

2
yx

)
+

(
ηx + (ηy − ξx)yx − ξyy2

x

)(x−3

2
ln(yx)

)
− fx − yxfy = 0.

From the preceding expression, rearranging and associating terms with re-
spect to 1, yx, yx ln(yx), y

2
x ln(yx) and ln(yx), we obtain the following determi-

nant equations

ξy = ηx = fx =0, (41a)
−3ξ + xηy =0, (41b)

3ξ − xξx − 2x4fy =0. (41c)



12

Solving the preceding system for ξ, η and f we obtain the infinitesimal gen-
erators of Noether’s symmetries

η = a2, ξ = 0, and f(y) = a4. (42)

with a2 and a4 arbitrary constants. Then, the Noether symmetry group or
variational symmetries is

V1 =
∂

∂y
, (43)

According to [10], in order to obtain the conserved quantities or conservation
laws, we should solve

I = (Xyx − Y )Lyx −XL+ f,

so, using (40), (42) and (43). Therefore, the conserved quantities are given
by

I1 = −x
−3 ln(yx)

2
+ a4, (44)

6. Nonlinear Self-Adjointness

In this section we present the main definitions in the N. Ibragimov’s approach
to nonlinear self-adjointness of differential equations adopted to our specific
case. For further details the interested reader is directed to [11, 12, 13].
Consider second order differential equation

F
(
x, y, y(1), y(2), · · · , y(s)

)
= 0, (45)

with independent variables x and a dependent variable y, where y(1), y(2), · · · y(s)

denote the collection of 1, 2, · · · , s−th order derivatives of y.

Definition 1. Let F be a differential function and ν = ν(x)-the new depen-
dent variable, known as the adjoint variable or nonlocal variable [13]. The
formal Lagrangian for F = 0 is the differential function defined by

L := νF. (46)
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Definition 2. Let F be a differential function and for the differential equation
(45), denoted by F[y] = 0, we define the adjoint differential function to F by

F∗ :=
δL

δy
(47)

and the adjoint differential equation by

F∗[y, ν] = 0, (48)

where the Euler operator

δ

δy
=

∂

∂y
+
∞∑
m=1

(−1)mDxi · · ·Dxi,m
∂

∂yxi1xi2 ···xim
(49)

and Dxi is the total derivative operator with respect to xi defined by

Dxi = ∂xi + yxi∂y + yxixj∂yxj + · · ·+ yxixi1xi2 ···xin∂yxi1 xi2 ···xin
· · ·

Definition 3. The differential equation (45) is said to be nonlinearly selfad-
joint if there exists a substitution

ν = φ(x, y) 6= 0 (50)

such that
F̃∗
∣∣∣
ν=φ(x,y)

= λF (51)

for some undetermined coefficient λ = λ(x, y, · · · ). If ν = φ(y) in (50) and
(51), the equation (45) is called quasi self-adjoint. If ν = y, we say that the
equation (45) is strictly self-adjoint.

Now we shall obtain the adjoint equation to the eq. (1). For this purpose we
write (1) in the form (45), where

F := yxx + y−1y2
x + 3x−1yx,= 0. (52)

Then the corresponding formal Lagrangian (46) is given by

L := ν
(
yxx + y−1y2

x + 3x−1yx
)

= 0 (53)

and the Euler operator (49) assumes the following form:

δL

δy
=
∂L

∂y
−Dx

∂L

∂yx
+D2

x

∂L

∂yxx
. (54)
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We calculate explicitly the Euler operator (54) applied to L determined by
(53). In this way we obtain the adjoint equation (48) to (1):

F∗ = ν
(
y2
xy
−2 + 3x−2 − 2yxxy

−1
)

+ νx
(
−2yxy

−1 − 3x−1
)

+ νxx = 0. (55)

The main result in this section can be stated as follows.

Proposition 3. The equation (1) is nonlinearly self-adjoint, with the sub-
stitution given by

φ(x, y) = y
(
k1x+ k2x

3
)
, (56)

where k1, k2 are arbitrary constants.

Proof. Substituting in (55), and then in (52), ν = φ(x, y) and its respective
derivatives, and comparing the corresponding coefficients we get five equa-
tions:

−φy =λ, (57a)
−y−1φ+ φy =0, (57b)
−y−1φx + φxy =0, (57c)

3x−2φ− 3x−1φx + φxx =0, (57d)
y−2φ− y−1φy + yφyy =0. (57e)

We observe that (57c) and (57e) are obtaned from (57b) by differentiation
with respect to x and y. Therefore we have to study only Eqs. (57b) and
(57d). Solving for φ in (57b) we obtain

φ(x, y) = c1(x)y, (58)

where c1(x) is arbitrary function. Using (58) into (57d) we get 3x−2c1(c) −
3x−1c1x + c1xx = 0, thus solving for c1(x) we have c1(x) = k1x + k2x

3, then,
substituting in (58) the statement in the theorem is obtained.

7. Conservation laws

In this section we shall establish some conservation laws for the equation (1)
using the conservation theorem of N. Ibragimov in [13]. Since the Eq. (1) is
of second order, the formal Lagrangian contains derivatives up to order two.
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Thus, the general formula in [13] for the component of the conserved vector
is reduced to

Cx = W j

[
∂L

∂yx
−Dx

(
∂L

∂yxx

)]
+Dx[W

j]

[
∂L

∂yxx

]
, (59)

where
W j = ηj − ξjyx

j = 1, · · · , 5 the formal Lagrangian (53)

L := ν
(
yxx + y−1y2

x + 3x−1yx
)

and ηj, ξj are the infinitesimals of a Lie point symmetry admitted by Eq.
(1), given in (4). Using (1), (4) and (56) into (59) we obtain the following
conservation vectors for each symmetry stated in (4).

Cx
1 = ν

(
xy−1y2

x − yx
)

+ νx(xyx),

Cx
2 = ν

(
−x3y−1y2

x − 3x2yx
)

+ νx(x
3yx),

Cx
3 = ν(−6y2yx − 3xyy2

x − 3x−1y3)− νx(y3 + xy2yx), (60)

Cx
4 = ν(−3x3yy2

x − 3x2yxy
2)) + νx(x

3y2yx),

Cx
5 = ν(3yx + 3x−1y)− νx(y),

where ν = y (k1x+ k2x
3) and νx = y (k1 + 3k2x

2) .

8. Classification of Lie algebra

Generically a Finite dimensional Lie algebra in a field of characteristic 0 is
classify by the Levi’s theorem, which claims that any finite dimensional Lie
algebra can be write as a semidirect product of a semisimple Lie algebra and
a Solvable Lie algebra, the solvable Lie algebra is the Radical of that Algebra.
In other words, there exist two important classes of Lie algebras, The solvable
and the semisimple. In each classes mention above there are some particular
classes that have other classification, for example in the solvable one, we have
the nilpotent Lie algebra.
According the Lie group symmetry of generators given in the table 1. We have
a five dimensional Lie algebra. First of all, we remember some basic criteria
to classify a Lie algebra, In the case of Solvable and semisimple Lie algebra.
We will denote K(., .) the Cartan-Killing form. The next propositions can
be found in [14].
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Proposition 4. (Cartan’s theorem) A Lie algebra is semisimple if and only
if its Killing form is nondegenerate.

Proposition 5. A Lie subalgebra g is solvable if and only if K(X, Y ) = 0
for all X ∈ [g, g] and Y ∈ g. Other way to write that is K(g, [g, g]) = 0.

We also need the next statements to make the classification.

Definition 4. Let g be a finite-dimensional Lie algebra over an arbitrary field
k. Choose a basis ej, 1 ≤ i ≤ n, in g where n = dim g and set [ei, ej] = Ck

ijek.
Then the coefficients Ck

ij are called structure constants.

Proposition 6. Let g1 and g2 be two Lie algebras of dimension n. Suppose
each has a basis with respect to which the structure constant are the same.
Then g1 and g2 are isomorphic.

Let g the Lie algebra related to the symmetry group of infinitesimal gener-
ators of the equation (1) as stated by the table of the commutators, it is
enough to consider the next relations:
[Π1,Π2] = 2Π2, [Π1,Π4] = 2Π4, [Π2,Π3] = −2Π4, [Π3,Π5] = −2Π3,
[Π4,Π5] = −2Π4. Using that we calculate Cartan-Killing form K as follows.

K =


8 0 0 0 4
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
4 0 0 0 8

 ,
which the determinant vanishes, and thus by Cartan criterion it is not semisim-
ple, (see Proposition 4). Since a nilpotent Lie álgera has a Cartan-Killing
form that is identically zero, we conclude, using the counter-reciprocal of the
last claim, that the Lie algebra g is not nilpotent. We verify that the Lie
algebra is solvable using the Cartan criteria to solvability, (Proposition 5),
and then we have a solvable nonnilpotent Lie algebra. The Nilradical of the
Lie algebra g is generated by Π2,Π3,Π4, that is, we have a Solvable Lie alge-
bra with three dimensional Nilradical. Let m the dimension of the Nilradical
M of a Solvable Lie agebra, In this case, in fith dimensional Lie algebra we
have that 3 ≤ m ≤ 5. Mubarakzyanov in [15] classified the 5-dimensional
solvable nonlilpotent Lie algebras, in particular the solvable nonnilpotent Lie
algebra with three dimensional Nilradical, this Nilradical is isomorphic to h3
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the Heisenberg Lie algebra. Tnen, by the Proposition 6, and consequently
we establish a isomorphism of Lie algebras with g and the Lie algebra g5,34.
In summery we have the next proposition.

Proposition 7. The 5-dimensional Lie algebra g related to the symmetry
group of the equation (1) is a solvable nonnilpotent Lie algebra with three
dimensional Nilridical. Besides that Lie algebra is isomorphich with g5,34 in
the Mubarakzyanov’s classification.

9. Conclusion

Using the Lie symmetry group (see Proposition 1), we calculated the optimal
algebra (see Proposition 2). Making use of these operators, it was possible
to characterize all invariant solutions as it was shown in Table 3.
It has been shown the variational symmetries for (1), as it was shown in
(43) with its corresponding conservation laws (44) and all this was using
Noether’s theorem, but non-trivial conservation laws were also calculated
using the Ibragimov’s method as it was shown in (60) using the nonlinearly
self-adjoint of the equation (1) as announced in the Proposition 3.
The Lie algebra associated to the equation (1) is a solvable nonnilpotent
Lie algebra with three dimensional Nilridical. Besides that Lie algebra is
isomorphich with g5,34 in the Mubarakzyanov’s classification (see Proposition
7). Therefore, the goal initially proposed was achieved.
For future works, An line of work would be to use the Lie symmetry group to
calculate the λ-symmetries of (1), and, thus, explore more conservation laws
for (1) and the equivalence group theory could be also considered to obtain
preliminary classifications associated to a complete classification of (1).
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