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Abstract 

Viral suppressors of RNA silencing (VSRs) are proteins that interfere with anti-viral defense 

mechanisms and promote infection. For plant viruses, VSRs can be encoded in viral genomes 

and satellite molecules, and play a role in the virus life cycle and aid in overcoming host 

defenses. However, a comprehensive review of VSRs and their role in the spread of plant 

pathogens worldwide, has not been performed. Here we provide a comprehensive and updated 

synthesis of the role of VSRs in pathogenesis of Solanaceous plants, a family with many crop 

and medicinal plants. We focus on (1) VSR diversity and the mechanisms used to suppress anti-

viral defense, (2) the role of VSRs in viral pathogenesis other than interfering with host RNA-

silencing, and (3) co-evolution between VSRs and plant host proteins. Our review shows that 

VSRs promote disease development by altering multiple steps in the viral pathogenicity process, 

and documents various counter-defense mechanisms. Specially, a breadth of evidence suggests 

VSRs induce suppression of antiviral silencing, abrogation of phytohormone signaling, and R-

gene mediated host defense. We also discuss how identifying and characterizing novel 

interactions between VSRs and Solanaceous host factors may be leveraged for developing 

sustainable pathogen and pest management strategies. 

 

Keywords: viral suppressors, phytohormones, ubiquitin-proteasome, R-gene, herbivores, 
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1. Introduction 

Crop plants in the Solanaceae family are grown worldwide and include tomato (Solanum 

lycopersicum), potato (S. tuberosum), and pepper (Capsicum annum) (Olmstead et al., 2008; 

Gebhardt, 2016). However, productivity of crops in this family are threatened by over 40 viral 

genera (Haňcinský et al., 2020). Plant viruses infecting Solanaceous hosts include species of 

Begomovirus (e.g., Tomato leaf curl virus), Potyvirus (e.g., Potato virus Y), Tospovirus (e.g., 

Tomato spotted wilt virus), Nepovirus (e.g., Tomato ring spot virus), Tombusvirus (e.g., Tomato 

bushy stunt virus), Tobamovirus (e.g., Tomato mosaic virus), and Cucumoviruses (e.g., Tomato 

aspermy virus; Cucumber mosaic virus). In response to these pathogens, Solanaceous plants have 

evolved multi-layered defenses including RNA silencing, viral degradation, and phytohormone-

mediated defense (Incarbone and Dunoyer, 2013). However, RNA silencing is the primary and 

critical antiviral strategy that has been shown to be conserved across nearly all crop species.  

In addition to acting as defenses against viruses, RNA silencing plays a role in regulating 

gene expression related to plant growth and development. Host RNA silencing can be grouped in 

at least three partially overlapping pathways: (i) siRNA-mediated cytoplasmic gene silencing 

(post-transcriptional gene silencing), (ii) microRNA-mediated silencing that regulates messenger 

RNA expression, and (iii) DNA methylation-dependent gene silencing (transcriptional gene 

silencing) (Baulcombe, 2004) (Fig. 1). During post-transcriptional gene silencing, long dsRNAs 

are cleaved by Dicer like proteins into duplex siRNAs, which interact with Argonaut proteins 

and RNA-induced silencing complexes for homology dependent degradation of target molecules 

(Vaucheret et al., 2001; Khvorova et al., 2003; Zhang et al., 2016). miRNAs are generated by the 

same mechanism, but the process starts in the nucleus (Liu and Chen, 2016; Liu et al., 2017). 

These defenses have evolved throughout the plant kingdom to promote tolerance to pathogens.  
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To cause successful infections, viruses must counteract defensive plant responses. Viral 

genomes encode proteins that aid in overcoming host defense along with proteins required for 

replication and translation (Basu et al., 2014; Csorba et al., 2015; Cheng and Wang, 2017; Islam 

et al., 2019; Wu et al., 2019; Ziegler-Graff, 2020). Viral proteins that specifically interfere with 

RNA silencing based host defenses are called suppressors of RNA silencing (VSRs). Due to their 

small genome size, viruses use several strategies to maximize the coding capacity of the genome. 

For example, virus encoded proteins are often multi-functional, and this is true for VSR proteins, 

which often play key roles in controlling the virus life cycle while also breaking down host 

defensive responses. However, the diversity and multi-functionality of VSRs in Solanaceous 

plants have not been extensively reviewed.  

Here we address knowledge gaps regarding VSRs by reviewing: (1) VSR diversity and the 

mechanisms they use to suppress anti-viral defense, (2) the role of VSRs in viral pathogenesis, 

and (3) co-evolutionary dynamics mediated by VSRs. We then highlight research needs related 

to VSRs in Solanaceous crops, and research that could aid in improving management of viral 

diseases by manipulating plant and virus signaling. We focus our review first on VSRs encoded 

by four genera that include pathogens with a broad host range in Solanaceae (Table 1): (1) 

Begomoviruses, (2) Potyviruses, (3) Cucomovirus, and (4) Orthotospovirus. We then compare 

these with VSRs encoded by three genera that have a narrow host range in Solanaceae and are 

often challenging to manage: (1) Nepovirus, (2) Tobamovirus, and (3)  Tombusvirus (Kubota et 

al., 2003; Feng et al., 2011; Ghoshal and Sanfaçon, 2014; Ocampo Ocampo et al., 2016; Bera et 

al., 2017; Basu et al., 2018; Bera et al., 2018; Gnanasekaran et al., 2019) (Table 1). Overall, our 

review identifies key functions of VSRs and how these functions may aid in future management 

of plant disease. 
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2. Diversity of VSRs and the mechanisms used for RNA silencing 

2.1. VSRs encoded by Begomoviruses  

Begomoviruses are whitefly-transmitted ssDNA viruses in the family Geminiviridae that 

consist of circular single-stranded DNA genomes (2.5-3kb) with overlapping open reading 

frames. Begomoviruses have the smallest known genome that can replicate independently in the 

nucleus and have bi-directional transcription. Begomoviruses encode multiple structurally and 

functionally different VSR proteins that suppress host gene silencing (Rojas et al., 2001; Zrachya 

et al., 2007). For example, Tomato yellow leaf curl virus V2 inhibits gene silencing 3 protein 

(SlSGS3), a key component of the host viral silencing machinery (Glick et al., 2008; Kumakura 

et al., 2009). In contrast, Tomato yellow leaf curl China virus V2 suppresses RNA silencing by 

sequestering siRNA molecules and inhibiting methylation-mediated gene silencing, a part of 

transcriptional gene silencing pathways (Zhang et al., 2012; Wang et al., 2014; Wang et al., 

2018; Wang et al., 2019). VSRs also serve as transcriptional activators of viral and host genes to 

suppress transcriptional and post-transcriptional gene silencing (Dong et al., 2003; Wang et al., 

2003, 2005; Luna et al., 2012; Jackel et al., 2015). For example, AC2 of Tomato leaf curl virus 

aids in silencing suppression by blocking methylation or by suppressing plant defense machinery 

(Ramesh et al., 2017; Basu et al., 2018), while AL2 encoded by Tomato golden mosaic virus 

induces calmodulin-like protein (rgsCaM), a regulator of RNA silencing (Chung et al., 2014).   

VSRs such as AC4 and C4 also function as transcriptional and post-transcriptional gene 

silencing suppressors that interact with single stranded si-/miRNAs (Chellappan et al., 2005a, 

2005b) or AGO4 (Vinutha et al., 2018). AC4, for example, functions up- and downstream of 

the unwinding of siRNA strands and inhibits siRNA incorporation into the RNA-induced 
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silencing complex (Amin et al., 2011; Hanley-Bowdoin et al., 2013; Ramesh et al., 2017). 

Transient expression of βC1 monopartite viruses also have strong post-transcriptional gene 

silencing suppressor activity, as they bind to both ssDNAs and dsDNAs irrespective of size or 

sequence specificity (Cui et al., 2005; Kon et al., 2007; Shukla et al., 2013; Li et al., 2014). 

 

2.2. VSRs encoded by Potyviruses 

Potyviruses (family Potyviridae) are aphid-transmitted positive sense RNA viruses (Revers 

and García, 2015) that cause epidemic outbreaks in several crops (Parizad et al., 2017, 2018, 

2019; Moratalla-lópez et al., 2021; Movi et al., 2022). A non-structural protein, HCPro, was the 

first VSR identified encoded by a Potyvirus. HCPro targets RNA silencing pathways by binding 

to virus-derived siRNA (Kasschau and Carrington, 1998; Del Toro et al., 2014). HCPro also 

regulates AGO1 function by inducing miR168, a microRNA that targets AGO mRNA (Várallyay 

and Havelda, 2013). Aside from HCPro, VPg acts as a VSR for potyviruses. Like begomovirus 

protein V2, VPg also interacts with SGS3, the cofactor of RDR6, to initiate its degradation by 

the proteasome and autophagy pathway (Cheng and Wang, 2017); this interaction appears to be 

evolutionarily conserved across the Potyviridae (Rajamäki et al., 2014; Cheng and Wang, 2017). 

 

2.3. VSRs encoded by Cucomovirus 

Cucumoviruses from Bromoviridae (e.g., Cucumber mosaic virus) have segmented, 

tripartite linear, positive sense ssRNA genomes comprised of RNA1 (3.4 kb), RNA2 (3.1 kb), 

RNA3 (2.2 kb), each of which has a 3¢ tRNA-like structure and a 5¢ cap. The CMV 2b protein 

encoded by RNA2 binds strongly to host-derived siRNA duplexes (e.g., miR171) and efficiently 

suppresses RDR6-mediated post-transcriptional gene silencing (Diaz-Pendon et al., 2007; Ye et 
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al., 2009; Wang et al., 2011). CMV 2b also interacts with various protein components of RNA 

silencing machinery, such as AGO1 and AGO4 (Baumberger and Baulcombe, 2005; González et 

al., 2010; Harvey et al., 2011; Hamera et al., 2012) (Fig. 1). CMV 2b protein blocks AGO1 

mediated cleavage associated with both miRNA and siRNA pathways (Zhang et al., 2006), and 

suppresses AGO4 mediated systemic silencing and DNA methylation (Ye et al., 2009). CMV 2b 

was further reported to decrease accumulation of 21-24 nt vsiRNAs generated by DCL4, DCL2, 

and DCL3 through RDR1-dependent non-cell-autonomous antiviral silencing (Diaz-Pendon et 

al., 2007). Besides CMV 2b, Tomato aspermy virus (TAV) encoded 2b protein suppress post-

transcriptional gene silencing by directly binding to siRNA duplexes (Chen et al., 2008). TAV 

2b was also found to suppress the accumulation of both 5¢ secondary siRNAs and host RDR6-

specific mRNAs but has no control over the regulation of 3¢ secondary siRNAs (Zhang et al., 

2008).  

 

2.4. VSRs encoded by Tospoviruses 

Tomato spotted wilt virus from Tospoviridae is a devastating tospovirus with a genome 

containing three negative-sense ssRNA (Margaria and Rosa, 2015). Non-structural proteins  

encoded by RNA (Parrella et al., 2003) blocks this antiviral silencing by binding with dsRNA in 

a size-independent manner or by interacting with SGS3 (Chen et al., 2022). Unlike other VSRs, 

non-structural proteins exhibit antiviral silencing in a dose dependent manner (Takeda et al., 

2002; Bucher et al., 2003; Hedil et al., 2015; Ocampo Ocampo et al., 2016). Tomato spotted wilt 

virus non-structural proteins can inactivate RNA silencing by interacting with small and long 

dsRNAs (ds-miRNA and -siRNA precursors) through the dsRNA binding motif and inferring 

their cleavage by dicer-likes and uploading into RNA-induced silencing complexes (Schnettler et 

al., 2010). Tomato spotted wilt virus non-structural proteins also inhibits siRNA sequestration by  
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binding to an evolutionary conserved WG/GW motif of AGO1 (Giner et al., 2010; Hedil et al., 

2015). Besides Tomato spotted wilt virus, non-structural proteins of another tospovirus, Tomato 

yellow ring virus also blocks local and systemic silencing and sequesters both long and short 

double stranded RNAs (Hedil et al., 2015). Unlike Tomato spotted wilt virus, non-structural 

proteins of Tomato yellow ring virus possess NTPase/phosphatase activity and higher systemic 

RNA silencing activity although expressed at a very low level (Hedil et al., 2015). 

 

2.5. VSRs encoded by other viral genera 

Tomato ring spot virus is transmitted by a nematode, Xiphinema americanum and belongs 

to the family Secoviridae (Genus: nepovirus) (Brown et al., 1993). The genome consists of 

bipartite ssRNAs that encode two polypeptides and are cleaved by proteases. Tomato ring spot 

virus coat protein exhibits VSR activity by interacting with AGO1 and destabilizing them by 

reducing the steady levels of AGO1 in the presence of Tomato ring spot virus coat protein 

(Karran and Sanfačon, 2014). Tomato ring spot virus is also associated with temperature-

dependent recovery by decreasing translation of viral RNA genome and reducing levels of viral 

proteins (Ghoshal and Sanfaçon, 2014). Tomato ring spot virus X4 protein (encoded by RNA2) 

has a diverse sequence across nepovirus species and was reported to possess silencing suppressor 

activity in some Tomato ring spot virus species (Jafarpour and Sanfaçon, 2009). 

Tomato bushy stunt virus from the tombusvirus genus (family: Tombusviridae) has a (+) 

ssRNA genome (4.8 kb) with 5 open reading frames and is passively transmitted by wind and by 

mites, aphids, and the fungus Olpidium brassicae. Tomato bushy stunt virus encodes P19 protein 

sequesters siRNA duplexes of specific size with high affinity, particularly 21 nt dssiRNA with 2 

nt, 3′ overhangs (Hsieh et al., 2009; Danielson and Pezacki, 2013). Because of its unique small 
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RNA-ligand binding property, this protein prevents entry of the specific siRNA into the RNA-

induced silencing complex by competing with AGO1, but fails to destabilize programmed RNA-

induced silencing complexes (Silhavy et al., 2002; Lakatos et al., 2006) (Fig. 1).  

P19 has strong affinity for DCL4, a major enzyme involved in plant defense through post-

transcriptional gene silencing (Dunoyer et al., 2005; Deleris et al., 2006). In addition to siRNA 

duplexes, P19 has high affinity for miRNA duplexes of 23 nt (Chapman et al., 2004; Chen et al., 

2008; Nasheri et al., 2011). P19 also adopt alternative strategies to suppress RNA silencing in 

hosts. For example, expression of P19 during infection induces host miRNA, miR168, which 

downregulates AGO1 (Várallyay et al., 2010) (Fig. 1 A, B). Because of the ability of P19 to 

sequester small RNA duplexes, it is a tool for capturing small RNAs in various heterologous 

systems with more complex RNA silencing pathway (Danielson and Pezacki, 2013). 

Tomato mosaic virus from Virgaviridae encodes a replication-associated protein (Rep) that 

can suppress post-transcriptional gene silencing (Kubota et al., 2003). However, while Tomato 

mosaic virus Rep inhibited post-transcriptional gene silencing in inoculated leaves, Rep failed to 

suppress Tomato mosaic virus-specific post-transcriptional gene silencing in hosts that already 

had established infections (Kubota et al., 2003). Thus, Tomato mosaic virus Rep suppress the use 

of Tomato mosaic virus-specific small RNAs and make them unavailable for being used for the 

homology dependent cleavage of Tomato mosaic virus RNA (Fig. 1) (Tamai et al., 2010).  

 

3. Role of VSRs in pathogenesis 

Successful pathogenesis occurs when a virus overcomes host defenses, replicates, and 

spreads through the plant and to the next host (Mandadi and Scholthof, 2013; Garciá and Pallás, 

2015). VSRs can also play an important role in multiple aspects of pathogenesis due to multi-
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functionality (Garciá and Pallás, 2015). In this section (Table 1), we highlight various ways 

VSRs can promote pathogenesis in addition to suppressing RNA silencing, and highlight limits 

in research on the multifunctionality of VSR, which identifies critical research gaps.  

 

3.1. VSR interacts with host proteins and hormones to alter plant immunity  

3.1.1. Begomovirus C2, C4, V2, and βC1  

The N-terminal of Tomato leaf curl Java virus V2 protein contains nuclear export signals 

that promote viral movement from the nucleus to the plasmodesmata (Sharma et al., 2011), 

while the C-terminal affects viral pathogenicity and hypersensitive response (Sharma and 

Ikegami, 2010). Tomato yellow leaf curl virus V2 aggregates also bind to viral DNA molecule 

for nucleo-cytoplasmic shuttling, which drives Tomato yellow leaf curl virus infection (Moshe 

et al., 2015). Tomato yellow leaf curl virus V2 protein interacts with papain-like cysteine 

proteases and interferes with their ability to induce host defenses (Bar-Ziv et al., 2012).  

Tomato leaf curl New Delhi virus AC2 protein causes deregulation of host miRNAs 

involved in the regulation of transcriptions factors associated with development processes in 

tomato (Kumar and Naqvi, 2016). Tomato leaf curl New Delhi virus AC2 also suppresses 

hypersensitive response in both tomato and N. benthamiana (Hussain et al., 2007). AL2 

protein encoded by Tomato golden mosaic virus interacts and inactivates host Sucrose Non-

Fermenting1 (SNF1)-related kinase 1 (SnRK1) and Adenosine kinase (ADK), responsible for 

viral genome methylation, an epigenetic defense against Tomato golden mosaic virus (Wang 

et al., 2003; Wang et al., 2005; Raja et al., 2008). Both SnRK1 and ADK are important host 

factors that maintain host methylation cycles through regulation of host metabolism and S-

adenosyl methionine (SAM) dependent methylation, respectively.  
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The sequences of various C4 genes vary across geminivirus family. C4 of Tomato leaf curl 

virus when expressed transgenically can induce symptom expression (Rigden et al., 1994; Krake 

et al., 1998). Beet curly top virus (BCTV) C4, which share no sequence homology with Tomato 

leaf curl virus C4, can function as pathogenicity determinant and contribute to enhanced phloem 

cell division and elongation (Pooma and Petty, 1996; Latham et al., 1997). The presence of 

conserved N-myristoylation domains in AC4 proteins determine its membrane binding, 

pathogenicity and disease symptom expression (Fondong et al., 2007; Rosas-Diaz et al., 2018).  

Transgenic overexpression of Tomato yellow leaf curl China virus βC1 also induces 

developmental abnormality in leaves by decreasing miR165/166 levels and by enhancing the 

transcription factors that are responsible for maintaining abaxial and adaxial leaf polarity (Yang 

et al., 2008). βC1 also suppress methylation through interaction and inactivation of S-adenosyl 

homocysteine hydrolase, an essential enzyme involved in the methyl cycle (Yang et al., 2011).  

Geminiviral suppressors obstruct phytohormone biosynthesis or signaling pathways that are 

necessary to regulate homeostatic balance between growth and virus induced stress in plants. For 

example, the C2 protein of Tomato yellow leaf curl virus interacts through an evolutionary 

conserved mechanism with the ubiquitination domain of RPS27A (a ribosomal protein) and 

inhibits the degradation of JAZ1 protein, which represses jasmonic acid signaling and terpene 

biosynthesis (Luan et al., 2013). Similarly, Tomato yellow leaf curl virus C2 protein interacts 

with the catalytic subunit of constitutive photomorphogenesis 9 signalosomemulti-subunit 

protein complex, affecting its ability to regulate E3 ubiquitin ligase and impair jasmonic acid 

signaling (Lozano-Durán et al., 2011; Rosas-Díaz et al., 2016). Thus, C2 of begomoviruses 

attenuate jasmonic acid pathway through transcriptional repression of jasmonic acid-responsive 
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genes or interacting with ubiquitin and subverting JAZ1-MYC mediated jasmonic acid response 

(Lozano-Durán et al., 2011; Rosas-Díaz et al., 2016; Li et al., 2019; Ziegler-Graff, 2020).   

Another plant hormone, Brassinosteroid associated with other phytohormones to promote 

plant growth and defense (Belkhadir and Jaillais, 2015). However, AC4 from Tomato leaf curl 

virus-Australia interacts with a novel shaggy-like kinase in tomato (SlSK) through 12 amino 

acids present in the C-terminal to interfere with brassinosteroid (Piroux et al., 2007; Dogra et al., 

2009); Fig. 2B). Tomato yellow leaf curl China virus βC1 also interacts with asymmetric leaves 

(AS1) to attenuate jasmonic acid defense (Fu et al., 2007; Yang et al., 2008) (Fig. 2A). Tomato 

yellow leaf curl China virus βC1 can also interact with helix-loop-helix transcription factors to 

reduce terpene and glucosinolate biosynthesis and phytohormones (Li et al., 2014) (Fig. 2A).   

 

3.1.2. Potyvirus HCPro and VPg 

HCPro uses autoproteolytic activity to cleave the viral polyprotein through its C-terminus 

and initiate viral infection (Carrington et al., 1989). Recently, AGO1 was shown to be recruited 

by HCPro, which causes the production of stable virus particles and results in systemic infection 

(Pollari et al., 2020). HCPro is also active in specific protein-protein and protein-RNA 

interactions that affect plant metabolism and virus multiplication (Whitham and Wang, 2004; Du 

et al., 2011). Evidence reveals HCPro interacts with the plant’s cytoplasmic exoribonuclease 4 

(Xrn4), another major cellular antiviral mechanism involved in RNA decay and VSR activity (Li 

and Wang, 2018). HCPro also causes viral symptoms by inducing the production of reactive 

oxygen species and by reducing antioxidant accumulation (Ivanov et al., 2016; De et al., 2018; 

Mäkinen and De, 2019). Recently, Yang et al., (2020) showed HCPro directly interacts with 

catalase 1 (CAT1) and catalase 3 (CAT3) in the cytoplasm of tobacco plants (Supplementary 
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Table 1). As a result, H2O2 was produced to help viral infection, and a reactive oxygen butst 

induced systemic cell death in infected plants. Similarly, VPg, apart from acting as a VSR, plays 

a role in viral translation and systemic movement (Eskelin et al., 2011). A recent article 

demonstrated that a multiprotein complex consisting of HCPro and VPg recruits a host protein, 

Varicose, which assists in initiating systemic infection in the plant (De et al., 2020).  

HCPro of TuMV suppresses salicylic acid mediated defense signaling by interacting with a 

Arabidopsis thaliana homologue of Salicylic Acid-Binding Protein 3 (SABP3). By limiting the 

production of salicylic acid, HCPro weakens host defenses to facilitate viral infection (Poque et 

al., 2018). However, another study with HCPro of Tobacco vein banding mosaic virus showed 

the induction of salicylic acid and associated host defense response (Yang et al., 2016). From 

these studies, it can be concluded that the function of salicylic acid in potyvirus infection is 

dependent on specific plant-potyvirus interactions. A putative Chenopodium quinoa VSR found 

in Chenopodium quinoa (CqCA1) also interacts with HCPro (Poque et al., 2018), suggesting a 

conserved interaction. Further, TuMV HCPro affect jasmonic acid-regulated gene expression in 

plants (Endres et al., 2010). Apart from salicylic acid and jasmonic acid, HCPro was also found 

to induce auxin accumulation in plants leading to abnormal growth (Yang et al., 2020b).  

 

3.1.3. Cucomovirus 2b protein 

Cucumber mosaic virus (CMV) 2b protein plays a role in systemic and small viral 

movements (Ziebell et al., 2011; Zhou et al., 2014). Stabilization of C terminal of CMV  2b 

protein maintains the CMV2b-siRNA-ribonucleoprotein complex structure that is necessary for 

infectivity and viral spread (Gellért et al., 2012). Alanine scanning mutagenesis had identified 

conserved amino acid residues in CMV 2b protein that were responsible for cell-to-cell and long-
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distance movement and silencing suppressor activity (Nemes et al., 2014). There are also reports 

of interaction between CMV 2b and Arabidopsis catalase 3 (CAT3) that causes necrotic spots in 

systemic leaves (Nakahara and Masuta, 2014). 

Tomato aspermy virus 2b binds primarily to duplex siRNAs in a length specific manner 

and can also bind to miRNA duplexes and single stranded RNAs of various length (Rashid et al., 

2008). The N-terminal (12 amino acid) of Tomato aspermy virus 2b protein play an essential role 

in recombination with 2b proteins of CMV 2b, and is key for the systemic infection of host 

plants (Shi and Palukaitis, 2011). The ability of 2b protein of CMV and TAV to interact with 

miRNAs were also revealed by spatial and temporal changes in various miRNAs and their target 

mRNA expressions in response to viral infection in tomato (Feng et al., 2011). The CMV 2b 

protein promotes cell to cell movement of pseudorecombinant viruses and plays a vital role in 

hypersensitive cell-death and virus resistance (Shi et al., 2003); these mechanisms were further 

demonstrated as both activities were abolished through mutation in the functional domain  (Li et 

al., 1999). 

During CMV  infection, 2b protein binds to JAZ1 to inhibit degradation and induction of 

jasmonic acid (Ziegler-Graff, 2020) (Fig. 2A). Constitutive expression of Fny- CMV 2b protein 

downregulates 90% of jasmonic acid-regulated genes without affecting jasmonic acid 

biosynthesis (Lewsey et al., 2010). CMV 2b protein also interferes with salicylic acid signaling 

by interacting with rgs-CaM (Ji and Ding, 2001; Lewsey et al., 2010; Jeon et al., 2017) (Fig. 2B; 

Supplementary Table 1). Wu et al., (2017) investigated how CMV 2b protein can repress host 

JAZ1 protein, a repressor for MYC transcription factors. In non-stressed hosts, levels of 

jasmonic acid favor JAZ1 accumulation and suppress jasmonic acid signals. However, under the 
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influence of biotic stressors (herbivores), increased jasmonic acid levels facilitate the degradation 

of JAZ1 through 26S proteosomal machinery (Fig. 2A). 

 

3.1.4. Tospovirus non-structural protein 

VSR non-structural protein (NSs) plays an important role in viral infection and movement 

within the Tospoviridae family (Takeda et al., 2002). This VSR also maintains pathogenicity in 

other heterologous viruses that are deficient in functional suppressors (Ocampo Ocampo et al., 

2016). Non-structural proteins also induce development of systemic infection and Tomato 

spotted wilt virus induced symptoms expression through inhibition of host plant antiviral 

silencing (Garcia-Ruiz et al., 2018). Similarly, Tomato spotted wilt virus non-structural proteins 

promote persistent infection and vector-borne transmission by western flower thrips 

(Frankliniella occidentalis) (Margaria et al., 2014). Moreover, non-structural proteins interact 

with transcription factors to subvert jasmonic acid-mediated defense against western flower thrip 

vectors. 

 

3.1.5. Tombusvirus P19 protein  

Various mutations in the siRNA binding site of P19 generates a multitude of symptoms in 

host plants that compromise systemic silencing, but mutations in other sites cause developmental 

defects (Hsieh et al., 2009). For example, silencing efficiency of siRNAs on target mRNA affect 

mismatches, where mutations in the central region produced stronger symptoms compared to 

mutations in the periphery. The generation of P19 mutants, and symptoms expressed by mutants, 

are also dependent on host physiology due to compromised host-dependent siRNA sequestration 

(Hsieh et al., 2009). P19 interferes with HEN-1 mediated methylation of miRNAs and decreases 
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endogenous miRNA stability (Lózsa et al., 2008). P19 also interacts with uncharacterized plant 

RNA binding ALY proteins (involved in nucleo-cytosolic mRNA transport and influence growth 

and development of plant) through its RNA binding domain and alter the localization of ALY 

from nucleus to cytoplasm (Uhrig et al., 2004; Canto et al., 2006). Moreover, ectopic expression 

of the VSR TBSV P19 in hosts results in mis-regulation of miR167 targeting Auxin response 

factor 8 (ARF 8) (Jay et al., 2011)(Fig. 2B; Supplementary Table 1) and causes abnormalities. 

 

3.1.6. Replication protein of Tomato mosaic virus (ToMV) 

Tomato mosaic virus Rep plays an important role in movement and encapsidation of the 

Tomato mosaic virus genome.  In addition, Tomato mosaic virus Rep also interacts with host 

plant factors that drive  symptom development (e.g., chloroplast ferredoxin I in tobacco, NAC 

domain transcription factors in Arabidopsis, various other cellular proteins from tomato) 

(Ishibashi et al., 2010; Sun et al., 2013). Membrane bound Tomato mosaic virus Rep also plays a 

critical role in guanylation of nascent RNAs to form 5¢ cap. 5¢ capping through guanylation is 

required for the stability of nascent RNA undergoing elongation and protein synthesis.  

Tomato mosaic virus infection in tomato induced levels of trans‐acting (ta)‐siRNAs that 

regulate the Aux response factors (Yifhar et al., 2012) (Fig. 2B). Tomato ringspot virus CP in 

tobacco induces NahG expression and breaks down salicylic acid into catechol (Fig. 2B), which 

can result in increased lesion size, facilitating the spread of this virus efficiently and systemically 

(Jovel et al., 2011). Furthermore, salicylic acid has been reported to work upstream of siRNA 

pathway and amplify siRNA signaling in plants (Alazem and Lin, 2015). VSRs play a vital role 

in tuning these interactions to facilitate viral infection. Although, more studies need to be done to 

identify the protein/s that connects siRNA pathway to salicylic acid.  
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3.2. Role of VSRs in vector transmission 

VSRs play a role in altering susceptibility of Solanaceous hosts to both vectors and non-

vector herbivores by interfering with phytohormone signaling and volatiles emitted (Tungadi et 

al., 2017; Ziegler-Graff, 2020). In the following sections, we briefly discuss the role of VSRs in 

affecting vector fitness and behavior, and effects on pathogen transmission that build on a 

previous review (Ray and Casteel, 2022). 

 

3.2.1. Begomovirus 

βC1 interferes with feeding behavior of the vector whitefly by interfering with 3 different 

host factors: AS1, MYC2 and SKP1 (Yang et al., 2008; Li et al., 2014; Jia et al., 2016) (Fig. 2A). 

Conversely, accumulation of βC1 in the phloem of infected hosts and binding with transcription 

factor WRKY20 deter non-vector herbivores, but favor whitefly vectors (Zhao et al., 2019). 

βC1 favors herbivore insects by inhibiting glucosinolate mediated anti-herbivore defense 

(Hopkins et al., 2009). Another monopartite VSR, C2 was reported to improve the performance 

of whiteflies by inhibiting jasmonic acid-signaling and terpene biosynthesis and by subverting 

ubiquitination (Luan et al., 2014; Rosas-Díaz et al., 2016; Li et al., 2019) (Fig. 2A).  

 

3.2.2. Potyvirus 

HCPro acts as a bridge between virions and receptor proteins in aphid stylets  (Blanc et al., 

1997; Dombrovsky et al., 2007). From the insect vectors’ aspect, there is little information on the 

receptors that bind to HCPro (Dombrovsky et al., 2007). However, HCPro manipulates aphid 

biology; Potato virus Y HCPro in transgenic N. benthamiana was reported to enhance the growth 
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of vector M. persicae (Westwood et al., 2014). In contrast, it has been revealed that transiently 

expressed Turnip mosaic virus HCPro decreased aphid fecundity on N. benthamiana leaves 

(Casteel et al., 2014). Moreover, Casteel et al. (2014) also showed a decrease in aphid fecundity 

in the presence of ectopically expressed VPg protein. 

 

3.2.3. Cucomovirus 

2b protein encoded by CMV  releases volatiles that provide a favorable environment for 

both aphid vectors and parasitoids (Lewsey et al., 2010; Wu et al., 2017). CMV  2b protein also  

facilitates aphid invasion on plants by inhibiting the AGO1 mediated biosynthesis of an aphid 

repelling glucosinolate, 4-methoxy-indole-3-yl-methylglucosinolate by interfering with AGO1 

(Westwood et al., 2013). CMV 2b protein affect attractiveness and fecundity of the vector green 

pea aphid (Myzus persicae) and indirectly affect virus transmission by suppressing jasmonic acid 

mediated defense signaling (Mauck et al., 2010; Ziebell et al., 2011).  

 

3.2.4. Other virus genera 

Non-structural proteins of Tomato spotted wilt virus alters preference of vector western 

flower thrips and increases their performance (Wu et al., 2019). Tomato spotted wilt virus non-

structural proteins enhance plant attractiveness to thrips by interacting with various MYC 

transcription factors and inhibiting jasmonic acid-signaling (Wu et al., 2019) (Fig. 2A). Besides 

thrips, Tomato spotted wilt virus infected plants have enhanced performance and fecundity to 

two-spotted spider mite, T. urticae (Nachappa et al., 2013). Currently, it is not known if the coat 

protein (VSR) of Nepovirus affects the behavior of its vector. 

 



19 
 

4. Co-evolutionary dynamics between VSRs and host proteins   

VSR is a critical pathogenesis factor and due to its role in suppressing host defense response can 

coevolve with the plant. To understand what is driving the evolution of VSRs, the gene-for-gene 

model can be implemented here, first described in the flax-flax rust system (Flor, 1955). With the 

gene-for-gene model, the interaction of specific plant and virus factors can cause an incompatible 

interaction and trigger a hypersensitive response which limits the infection (Fraile and García-

Arenal, 2010). The hypersensitive response is often associated with an increase in salicylic acid 

leading to cell death and limiting the infection (Radojičić et al., 2018). Here, we point to studies 

where different factors from plants directly or indirectly detect VSR and trigger hypersensitive 

responses. We also highlight some known counter-defense strategies employed by viruses, 

allowing VSR to function without inducing a defense response. 

 

4.1. Begomovirus 

Begomoviral VSRs function as elicitors and pathogenicity determinants. For example, V2 

protein of Tomato leaf curl Java virus, Cotton leaf curl Kokhran virus, and Papaya leaf curl 

virus elicit hypersensitive responses in N. benthamina and tomato (Mubin et al., 2010; Sharma 

and Ikegami, 2010). To counter the plant defense response, C2 protein neutralizes the effect of 

V2 protein and ensures efficient viral infection (Mubin et al., 2010). 

 Another VSR protein, AC4, from different geminivirus infect a range of hosts possess a N-

myristoylation motif (conserved and consensus), responsible for membrane binding, elicitor of 

disease symptoms and pathogenicity determinant (Fondong et al., 2007). AV2 protein of Tomato 

leaf curl Palampur virus induces genes associated with salicylic acid-signaling in tomato 

(Roshan et al., 2020). Moreover, some recent findings suggest a role of C2 from Tomato yellow 
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leaf curl-Sardinia virus as a virulent factor that exhibits hypersensitive response in plants. The 

C2 protein of Tomato yellow leaf curl Sardinia virus acts as a pathogenicity determinant and a 

16-amino acid domain is responsible for inducing a hypersensitive response in plants (Matić et 

al., 2016; Guerrero et al., 2020). Interestingly, the same study showed lack of hypersensitive 

response during Tomato yellow leaf curl Sardinia virus infection suggesting the presence of 

some other viral protein that counterattacks the host defensive response (Matić et al., 2016). 

 

4.2. Potyvirus  

HCPro can act as an elicitor of R gene-driven effector triggered immunity as per the gene-

for-gene. This is the case for Potato virus Y, which induces hypersensitive responses that restrict 

the virus in necrotic local lesions in potato cultivars. These cultivars possess dominant resistance 

genes Nctbr and Nytbr (Moury et al., 2011), which may recognize similar structural determinants 

in the central region of HCPro of Potato virus Y0 (Nytbr) and Potato virus YC (Nctbr) strains (Tian 

and Valkonen, 2013; Tian and Valkonen, 2015). Nevertheless, resistance-breaking Potato virus 

Y isolates (Potato virus YN) can overcome Nytbr  mediated resistance through some residues in the 

C‐terminal part of the HCPro (K400 and E419) causing induction of alternative defense response of 

vein necrosis in tobacco infected by Potato virus Y isolates (Tribodet et al., 2005; Faurez et al., 

2012). Overall, the data suggest alterations in HCPro from mutations can overcome R gene-

mediated resistance, affecting functional interactions with other host factors and inducing 

alternative defense responses (Tian and Valkonen, 2013; Tian and Valkonen, 2015). 

VPg till now had not been reported to elicit a defense response against viruses in plants. 

However, VPg reduced aphid performance possibly mediated by the defense response which is 

in line with 6K1 protein that also reduced aphid performance, and later detailed investigation 
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showed phytohormones mediated defense response by 6K1 (Casteel et al., 2014; Bera et al., 

2022). Due to the critical role of VPg in the viral genome translation, it has been targeted for 

breeding recessive resistance in plants (Moury and Verdin, 2012). Recessive resistance is defined 

as a lack of susceptibility in plants. In other words, the absence of host proteins are critical for 

virus infection (Fraile and García-Arenal, 2010). A recessive resistance gene, pvr2, was 

identified in pepper plants that code for translation initiation factor (eIF4e). VPg was found to 

interact directly with eIF4e that is vital for virus translation (Kang et al., 2005; Charron et al., 

2008). Mutations in the pvr2 gene encoding for the eIF4e protein interferes with VPg binding, 

resulting in resistance against potyviruses (Charron et al., 2008). However, VPg mutants restore 

the compatible interaction with eIF4e and break the host resistance conferred by the recessive 

gene (Gebre-Selassie et al., 1985). Moreover, recessive resistance was found to be highly durable 

for more than 50 years in pepper cultivars, suggesting most of the mutations in VPg was lethal 

and may have impaired its multi-functionality (Moury and Verdin, 2012). 

 

4.3. Other viruses 

Several resistance genes have been identified (e.g. Tm-1 Tm-2, Tm-22, Tm-2α) in wild 

tomato species that confer resistance against tobamovirus species including Tobacco mosaic 

virus, Tomato mosaic virus, and Tomato mild mottle virus (Luria et al., 2017). Tm-1 resistant 

gene from resistant tomato species encode proteins that interact with Tobacco mosaic virus Rep 

(Ishibashi et al., 2007) and prevent the formation of replication complex between Tobacco 

mosaic virus Rep and membrane bound host proteins (TOM1, TOM2A and ARF8) to inhibit 

Tobacco mosaic virus replication (Ishibashi et al., 2012; Ishibashi and Ishikawa, 2013; Ishibashi 

et al., 2014). Another resistance gene Tm-2 in S. peruvianum confers a higher level of resistance 
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than Tm-1. The resistant gene Tm-22  was found more durable in conferring resistance than Tm-2 

(Lanfermeijer et al., 2005). The Tm-2 and the Tm-22 resistance genes are considered allelic 

(Pelham, 1966; Young and Tanksley, 1989) and encode a coiled-coil/nucleotide binding-

ARC/LRR protein class of plant resistance (R) genes (Lanfermeijer et al., 2003). Due to co-

evolution, resistance-breaking Tobacco mosaic virus also show two nucleotide substitutions in 

the rep protein responsible for overcoming host plant resistance (Strasser and Pfitzner, 2007). 

Interestingly, there are few studies that suggest the presence of avirulent factor associated 

with P19 (Tomato bushy stunt virus), 2b (Tomato aspermy virus), and non-structural proteins 

(Tomato spotted wilt virus). Depending on Nicotiana species, P19 upon agro-infiltration elicited 

defense responses, suggesting the presence of putative R-protein (Angel et al., 2011). Similarly, 

transient expression of TAV2b induced HR in Nicotiana species imply the presence of an R-

protein. However, in the presence of virus infection no HR was detected (Li et al., 1999). In 

resistant pepper, non-structural proteins of Tomato spotted wilt virus were recognized by R-

protein when ectopically expressed. The resistant breaking strains of Tomato spotted wilt virus 

were also reported that had mutations in non-structural proteins, impairing its RSS function 

however, resistance-breaking strains still suppressed RNA silencing indicating the presence of 

more than one VSR proteins in Tomato spotted wilt virus (de Ronde et al., 2013). 

 

5. Conclusion and Future directions  

Viral genomes are constantly evolving to optimize the number of coded proteins that can 

promote successful infection. Here we reviewed the multi-functionality associated with VSR 

proteins of some major viruses that affect Solanaceaous hosts. Apart from acting as a suppressor 

of RNA silencing, VSRs perform many critical functions in a viral life cycle and pathogenesis. 
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While synthesizing the available literature to understand the multi-functionality of VSR proteins 

in an ecological context, we found some knowledge gaps that suggest needed future research 

directions. This knowledge will help us to design and improve the strategies to manage plant 

viruses and their insect vectors efficiently (Wu and Ye, 2020) with the usage of fewer chemicals 

in agriculture leading to sustainable growth with less pollution (Parizad and Bera, 2021). 

Our review also suggests a need to better understand the additional functions of VSRs and 

if any are conserved across VSRs. For example, a holistic overview is missing about how VSRs 

modulate phytohormones such as jasmonic acid and related defense responses. Jasmonic acid is a 

part of the oxylipin signaling pathway and mediates volatile production and vector attraction. 

Downstream of jasmonic acid signaling has a role in biosynthesis of anti-herbivore metabolites, 

such as terpenoids, sesquiterpenes, and monoterpenes, functions to repel herbivores or to attract 

natural enemies. Indeed, we have shown how VSRs manipulate upstream and downstream of 

jasmonic acid, but there are limited studies that investigated all the jasmonic acid dependent 

signaling pathways simultaneously with focus on vector attraction and repulsion during the virus 

life cycle. It would be also interesting to see if the function of VSRs change in the presence of 

healthy as compared to viruliferous herbivores. Exploring the possibility of dynamic multi-

functionality of VSR to increase virus transmission will be an important direction in the future. 

A clear role of HCPro in manipulating the ethylene hormone pathway is limited. HCPro 

interacts with exoribonuclease, Xrn4, to neutralizes host defense (Li and Wang, 2018; 

Supplementary Table 1). Xrn4 is also a component of the ethylene response pathway which is 

inhibited in the presence of ethylene (Olmedo et al., 2006; Potuschak et al., 2006). This suggests 

the ethylene hormone assists in potyvirus infection and allows HCPro to be available for other 

purposes as Xrn4 is suppressed by ethylene. Indeed, studies show potyvirus infection induces 
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ethylene which in turn mediates potyvirus spread by aphid vectors and HCPro is also key for 

vector transmission (Casteel et al., 2015; Bak et al., 2019). Thhe ethylene pathway thus likely 

plays a central and indirect role in HCPro’s multifunctionality which needs to be investigated 

more to allow engineering of the ethylene pathway for sustainable virus and pest management in 

the coming years.  

The multi-functionality of VSR proteins should also make them a good target to generate 

resistant plants. Moreover, the role of VSR proteins as an elicitor of defense response may lead 

to more durable strategies to control viruses. However, studies reviewed here often reported 

resistance-breaking viral strains often had fitness costs that may disrupt the multi-functionality of 

a viral protein (May et al., 2020; Liu et al., 2021). Assessing potential “trade-offs” among 

different virus life history traits has been conducted for various coat protein mutations of 

tobamoviruses (Moreno-Pérez et al., 2016; Bera et al., 2017; Moreno-Pérez et al., 2022) and the 

same rationale can be applied for the multifunctional VSRs. VSR affects the virus accumulation 

in systemic leaves due to its’ role in systemic movement and vector transmission thus, trade-off 

between surviving in external environment and rate of multiplication. 

Recently some approaches were designed to induce plant defense by using siRNA targeting 

VSR proteins. Begomovirus resistant tomato plants were developed by utilizing siRNA targeting 

both AC2 and AC4 ORFs. For example, Singh et al., (2015) used partial AC2 and AC4 

sequences in RNAi vectors to silence AC2 and AC4 ORF of Tomtao leaf curl New Dehli virus 

and found relatively large amounts of Tomtao leaf curl New Dehli virus AC2 and AC4 specific 

transacting siRNAs. Artificial tasiRNAs also plays a key role in developing resistance against 

AC2 and AC4 suppressors of Tomtao leaf curl New Dehli virus (Singh et al., 2015). All these 

above studies suggest VSR proteins to be a good target to develop resistant crops. It can be 
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speculated that siRNA specific to VSR coding region creates a selection pressure on VSR 

proteins to mutate which can be non-functional, explaining the high efficiency of siRNA to 

produce virus-resistant crops. These kinds of research should be encouraged for other viruses 

that harbors VSR protein to produce virus-resistant crops. 

While categorizing the different functions of diverse VSR proteins from different virus 

genera, we found consensus functions of VSR proteins related to silencing suppressor activity 

and in modulating phytohormones and related responses that affect vector behavior. Numerous 

studies also showed phytohormones mediate multi-trophic interactions consisting of herbivores, 

vectors,  rhizobia etc, it is tempting to speculate that VSR proteins might indirectly affect other 

tropic levels by modulating the phytohormone pathways (Basu et al., 2021; Lee et al., 2021; 

Basu et al., 2022). Therefore, we would like to propose to focus more on unconventional 

interactions that might be mediated by VSR and are missed in control lab environment. 
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Figure Legends 

Fig. 1. Antiviral RNA silencing pathways in tomato, depicting three unique silencing pathways: 

(1) Post-transcriptional gene silencing (PTGS) for degradation of viral mRNAs, (2) siRNA-

directed methylation leading to transcriptional gene silencing (TGS) of the methylated DNA, and 

(3) Endogenous mRNA silencing by miRNAs. The figure also depicts the multiple mechanisms 

by which VSRs have evolved to suppress host-induced gene silencing. 

Fig. 2: Schematic diagram showing roles of different VSRs in interfering with phytohormone 

signaling pathways.   
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Table 1: Multifunctionality of different viral suppressors encoded by Solanaceae infecting viruses  

Pathogenicity step Viral 
silencing 

suppressor 

Virus genus References  

Translation and protien 
functions 

VPg Potyvirus Moury and Verdin, 2012; Charron et al., 
2008 

Replication Rep Tobamovirus Ishibashi et al., 2010; Sun et al., 2013 

Counter defense  

(JA-defense, SA-defense, 
RNA decay etc.) 

V2/AV2 

AC2/AL2/C2 

βC1 

NSs 

Coat protein  

HCPro 

2b 

Begomovirus 

Begomovirus 

Begomovirus 

Tospovirus 

Nepovirus 

Potyvirus 

Cucumovirus 

Roshan et al., 2020; 

Guerrero et al., 2020 

Gnanasekaran et al., 2019 

Wu and Ye, 2020; Du et al., 2020 

Jovel et al., 2007 

Endres et al., 2010; Yang et al., 2020b 

Jeon et al., 2017; Ziegler-Graff, 2020 

Cell-cell and Systemic 
movement 

V2/AV2 

βC1 

HCPro 

VPg 

2b 

Begomovirus 

Begomovirus 

Potyvirus 

Potyvirus 

Cucomovirus 

Zhao et al., 2020 

Gnanasekaran et al., 2019 

Pollari et al., 2020 

Eskelin et al., 2011; Du et al., 2020 

Nemes et al., 2014; Shi et al., 2003 

Symptoms AC2/AL2/C2 

C4/AC4 

Rep 

HCPro 

P19 

NSs 

Begomovirus 

Begomovirus 

Tobamovirus 

Potyvirus 

Tombusvirus 

Tospovirus 

Matić et al., 2016; Guerrero et al., 2020 

Fondong et al., 2007; Rosas-Diaz et al., 
2018 

Ishibashi et al., 2010; Sun et al., 2013 

De et al., 2018; Mäkinen and De, 2019 

Hsieh et al., 2009 

Garcia-Ruiz et al., 2018 

Vector 
performance/transmission 
and host to host movement 

βC1 

NSs 

HCPro 

2b 

Begomovirus 

Tospovirus 

Potyvirus   

Cucumovirus 

Zhao et al., 2019 

Wu et al., 2019 

Dombrovsky et al., 2007 

Mauck et al., 2010; Ziebell et al., 2011 
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Supplementary Table 1: Mode of action and multifunctionality of different viral suppressors encoded by Solanaceae infecting viruses 
 

Virus genus  Susceptible crops 
from Solanaceae  

VSR(s) Molecular mechanism of 
silencing suppressor activity 

Multifunctionality References  

Begomovirus  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tomato, pepper, 
Tobacco, eggplant 

V2/AV2 

 

 

 

 

 

 

 

 

 

 

 

AC2/AL2/C2 

 

 

 

 

Suppression of PTGS by 
inhibiting SGS3 activity,  

Sequestration of ds-siRNA (21 
to 24 nt) and ss-siRNAs (24 nt), 
suppression of TGS through 
interaction with AGO4 and 
Histone deacetylase 6.  
Differential interaction with 
RDR1. 

 

 

 

 

 

Suppression of silencing 
through interaction with AGO1 
and inactivation of miRNAs 

 

Suppression of TGS mediated 
host defense through 
inactivation of SnRK1 and ADK 
and, interaction with host 

Pre-coat protein, viral 
pathogenicity determinant, induce 
HR, interact with papain-like 
cysteine protease to block host 
defense response 

 

 

Interaction with Catalase 2 
enzyme for systemic spread, 
enhancement of SA-dependent 
defense signaling 

 

 

 

Transcriptional activator, 
pathogenicity determinant, 
suppress HR induced by NSP, 
deregulation of host miRNAs 
(miR319 and miR172) 
responsible for various 
development processes, disrupts 
host methylation cycle, 
interaction between AC2 and 

Hancˇinský et al., 
2020; Rojas et al., 
2001; Zrachya et 
al., 2007;  
Glick et al., 2008; 
Sharma and 
Ikegami, 2009, 
Zhang et al., 2012, 
Bar-Ziv et al., 
2012; Rojas et al., 
2012; Wang et al., 
2014, 2018, 2019 
Roshan et al., 
2018; 
Roshan et al., 
2020 
Basu et al., 2018 
 

Praveen et al., 
2007; Karjee et al., 
2008; Basu et al., 
2018; Kumar and 
Naqvi, 2016; 
Hussain et al., 
2007; Wang et al., 
2003, 2005; Raja et 
al., 2008; Chung et 
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satellite 
DNA β 

 

 

 

 

 

 

 

 

  

 

 

C4/AC4 

 

 

 

 

 

βC1 

rgsCAM, H3K9me2 host methyl 
transferase and Su(var)3-9 
homolog 4/Kryptonite 
(SUVH4/KYP). 

 

Suppress silencing machinery 
via sequestering viral DNA 
through DNA binding Zn-finger 
motif present in them  

 

 

 

Suppress both TGS and PTGS 
through sequestration of 
miRNAs and siRNAs and, host 
AGO4 protein 

 

 

 

Suppression of both TGS and 
PTGS, non-specific binding with 
ssDNAs and dsDNAs and 
interference with host miRNA 
pathways, interaction and 
inactivation of SAHH (a methyl 
cycle maintenance enzyme), 
suppression of RDR6-SGS3 

methylation dependent host 
kinases inhibit transactivation of 
host genes through inactivating 
cellular transmethylation 
reaction. 

 

Interaction with CNS5 and 
inactivation of SCF-ubiquitin 
related cellular defense, suppress 
JA mediated defense through 
down regulation of JA genes  

 

 

Induces enhanced phloem cell 
division and elongation. Interact 
with shaggy-like kinase and 
interfere with brassinosteroid 
signaling, interact with BAM 1 and 
2 and inactivation of cell to cell 
spread of silencing  

 

Virus movement, pathogenicity 
determination, induce 
development abnormality in 
leaves through interaction with 
AS1, interfere with JA mediated 
defense response and Gibberellic 
acid signaling by degrading a JA-
receptor (SCFCOI1), abrogate host 
defense by interacting with Tm-1, 

al., 2014; Castillo-
Gonzalez et al., 
2015 

 

 

van Wezel et al., 
2002; Dong et al., 
2003; Trinks et al., 
2005;  

Lozano-Duran et 
al., 2011; Rosas-
Diaz et al., 2016 

 

Chellappan et al., 
2005a, b; Vinutha 
et al., 2018; Dogra 
et al., 2009; Rosas-
Dias et al., 2018 

 

 

Cui et al., 2005; 
Yang et al., 2008; 

Shukla et al., 2013;  
Li et al., 2014,  
Zhao et al., 2019, 

Kon et al., 2007; 
Jia et al., 2016; 
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mediated silencing through 
induction of host rgsCAM.  

interacts with WRKY20 to 
activate SA signaling. 

  

Voorburg et al., 
2020 

Tospovirus  Eggplant, Potato, 
Tobacco, Pepper, 
Tomato, 
Blackberry, 
Tomatillo,  

NSs NSs suppress both local and non-
cell autonomous systemic 
silencing Sequestration of 
siRNAs and precursor dsRNAs 
of miRNAs and siRNAs; local 
silencing through AGO1 binding 
via WG/GW motif. 

Pathogenicity determinant Alter 
vector thrips performance, 
inactivate JA signaling through 
interaction with JA-regulatory 
components (MYC2, 3 and 4)  

Takeda et al., 
2002;Ocampo et 
al., 2018; Wu et al., 
2017; Margaria et 
al., 2015; 
Schnettler et al., 
2010; de Ronde et 
al., 2014; Hedil et 
al., Hedil et al., 
2015 

 

Nepovirus Tomato, Potato, 
Blackberry, 
Tamarillo,  

Coat protein  

 

 

 

 

 

 

X4 protein 

RSS activity through interaction 
and destabilization of AGO1 
through WG/GW motif (AGO 
hook), contribute to temperature 
dependent recovery by 
suppressing the production of 
viral proteins through reduced 
translation by AGO1 dependent 
silencing (without reducing viral 
siRNA titer) 

PTGS suppression through 
unknown mechanism 

Encapsidation and breakdown of 
salicylic acid to catechol through 
induction of NahG expression   

Jovel et al., 2011; 
Karran and 
Sanfacon, 2014, 
Ghoshal and 
Sanfacon, 2014;  

 

 

 

Jafarpour and 
Sanfacon, 2009; 
Jafarpour 2010 

Tombusvirus  Eggplant, Pepper, 
Tomato 

P19 Very strong silencing suppressor 
for both local and systemic 
silencing.  

Interact and inactivate nucleo-
cytoplasmic protein ALY; 

Qui et al., 2002; 
Dunoyer et al., 
2004; Chen et al., 
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Molecular caliper; sequester 
siRNA (20-22 nt) and miRNA 
(23 nt) duplexes with very high 
affinity in size specific and 
sequence independent manner; 
P19 induces expression of 
miR168, which intern 
downregulate AGO1, interfere 
with HEN1 mediated 
methylation of miRNAs to 
decrease endogenous miRNA 
stability 

Misregulation of miR167 targeting 
ARF8  

2007, 2011; 
Chapman et al., 
2004; Chen et al., 
2008; Nasheri et 
al., 2011; Khan et 
al., 2011; 
Danielson and 
Pezaki, 2013; 
Varallayay et al., 
2011; Lozsa et al., 
2008; Catano et 
al.,2006; Uhrig et 
al., 2004; Lakatos 
et al., 2004 

Tobamovirus  Eggplant, Potato, 
Pepper, Tomato, 
Tamarillo 

Rep  Suppressor for both local and 
systemic silencing; PTGS 
suppression by working down 
stream of siRNA generation  

Suppress sequence specific RNA 
degradation by inhibiting 3’-
terminal ToMV siRNA 

 

ToMV replication, membrane 
binding and guanylation for 5’ 
capping of nascent RNA, interfere 
with auxin signaling 

Kubota et al., 
2003; Tamai et al., 
2013; Nishikiroi et 
al., 2012; Yifhar et 
al., 2012 

Cucumovirus  Broad host range 
infecting almost all 
plants in 
Solanaceae family 

2b 

 

 

 

 

 

Sequestration of siRNA 
duplexes with strong affinity, 
suppress RDR6 mediated PTGS 
virus infected cells, interact with 
AGO1 through PAZ domain and 
PIWI box and with AGO4 to 
inhibit PTGS.  

 

Pathogenicity determinant, induce 
HR, interfere with both SA, JA, 
ABA signaling and alter host 
susceptibility to herbivores 

 

 

 

Zhang et al., 2006; 
Goto et al., 2007; 
Gonzalez et al., 
2010; Hamera et 
al., 2012; Duan et 
al., 2012; Diaz-
Pendon et al., 
2007; Ye et al., 
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2007, 2009; Wang 
et al., 2011;  

Yifhar et al., 2012;  
Ziegler-Graff, 
2020 

Potyvirus Pepper, Potato, 
Tomato,  Tobacco, 
African eggplant, 
Cape gooseberry,  
Sweet pepino,  
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RNA silencing suppressor 
through different ways: Binding 
to vsiRNA and limiting RISC 
assembly by targeting multiple 
steps, Regulation of AGO1 
function.  

 

 

 

 

 

 

 

 

 

 

Autoproteolytic activity; AGO1 
recruitment and systemic infection; 
Inhibition of the host RNA decay 
mechanism through interaction 
with the plant exoribonuclease 4 
(Xrn4). 

 

Manifesting viral symptoms by 
inducing the reactive oxygen 
species (ROS) production; Helping 
viral infection by interaction with 
catalase 1 (CAT1) and catalase 3 
(CAT3) and producing H2O2; HR 
induction  

Suppression of SA-mediated 
defense responses (probable 
related host factors are (SA)-
binding proteins (SABPs); 
Affecting the JA-regulated gene 
expression in plants. 
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Mediates silencing suppressor 
activity through degradation of 
SGS3 along with RDR6  

Mediates interaction between virus 
and aphid resulting in efficient 
virus transmission, manipulation of 
the aphids’ biology.  

 

Viral translation and systemic 
movement; Interaction with eIF4E 
in CAP-dependent translation of 
viral genome. A multiprotein 
complex of HCPro, VPg and 
Varicose, assist in systemic 
infection.  
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