References
1. Liu Y, Chen S, Zühlke L, Black GC, Choy MK, Li N, et al. Global birth
prevalence of congenital heart defects 1970-2017: updated systematic
review and meta-analysis of 260 studies. Int J Epidemiol.
2019;48(2):455-63.
2. Lawoko S, Soares JJ. Quality of life among parents of children with
congenital heart disease, parents of children with other diseases and
parents of healthy children. Qual Life Res. 2003;12(6):655-66.
3. Wlodarczyk BJ, Palacios AM, Chapa CJ, Zhu H, George TM, Finnell RH.
Genetic basis of susceptibility to teratogen induced birth defects. Am J
Med Genet C Semin Med Genet. 2011;157C(3):215-26.
4. Gittenberger-de Groot AC, Bartelings MM, Deruiter MC, Poelmann RE.
Basics of cardiac development for the understanding of congenital heart
malformations. Pediatr Res. 2005;57(2):169-76.
5. Keyte A, Hutson MR. The neural crest in cardiac congenital anomalies.
Differentiation. 2012;84(1):25-40.
6. Steegers-Theunissen RP, Boers GH, Trijbels FJ, Eskes TK. Neural-tube
defects and derangement of homocysteine metabolism. N Engl J Med.
1991;324(3):199-200.
7. Verkleij-Hagoort A, Bliek J, Sayed-Tabatabaei F, Ursem N, Steegers E,
Steegers-Theunissen R. Hyperhomocysteinemia and MTHFR polymorphisms in
association with orofacial clefts and congenital heart defects: a
meta-analysis. Am J Med Genet A. 2007;143A(9):952-60.
8. Boot MJ, Steegers-Theunissen RP, Poelmann RE, van Iperen L,
Gittenberger-de Groot AC. Cardiac outflow tract malformations in chick
embryos exposed to homocysteine. Cardiovasc Res. 2004;64(2):365-73.
9. Jenkins KJ, Correa A, Feinstein JA, Botto L, Britt AE, Daniels SR, et
al. Noninherited risk factors and congenital cardiovascular defects:
current knowledge: a scientific statement from the American Heart
Association Council on Cardiovascular Disease in the Young: endorsed by
the American Academy of Pediatrics. Circulation. 2007;115(23):2995-3014.
10. Martens DS, Plusquin M, Gyselaers W, De Vivo I, Nawrot TS. Maternal
pre-pregnancy body mass index and newborn telomere length. BMC Med.
2016;14(1):148.
11. Bijnens EM, Zeegers MP, Derom C, Martens DS, Gielen M, Hageman GJ,
et al. Telomere tracking from birth to adulthood and residential traffic
exposure. BMC Med. 2017;15(1):205.
12. Babizhayev MA, Savel’yeva EL, Moskvina SN, Yegorov YE. Telomere
length is a biomarker of cumulative oxidative stress, biologic age, and
an independent predictor of survival and therapeutic treatment
requirement associated with smoking behavior. Am J Ther.
2011;18(6):e209-26.
13. Aoulad Fares D, Schalekamp-Timmermans S, Nawrot TS,
Steegers-Theunissen RPM. Preconception telomere length as a novel
maternal biomarker to assess the risk of spina bifida in the offspring.
Birth Defects Res. 2020;112(9):645-51.
14. Verkleij-Hagoort AC, Verlinde M, Ursem NT, Lindemans J, Helbing WA,
Ottenkamp J, et al. Maternal hyperhomocysteinaemia is a risk factor for
congenital heart disease. Bjog. 2006;113(12):1412-8.
15. Cawthon RM. Telomere length measurement by a novel monochrome
multiplex quantitative PCR method. Nucleic Acids Res. 2009;37(3):e21.
16. Zhao S, Fernald RD. Comprehensive algorithm for quantitative
real-time polymerase chain reaction. J Comput Biol. 2005;12(8):1047-64.
17. Martens D. Telomere biology in early life and its environmental
determinants. Hasselt: University of Hasselt; 2018.
18. Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, et
al. Obesity, cigarette smoking, and telomere length in women. Lancet.
2005;366(9486):662-4.
19. Daniali L, Benetos A, Susser E, Kark JD, Labat C, Kimura M, et al.
Telomeres shorten at equivalent rates in somatic tissues of adults. Nat
Commun. 2013;4:1597.
20. Fani L, Hilal S, Sedaghat S, Broer L, Licher S, Arp PP, et al.
Telomere Length and the Risk of Alzheimer’s Disease: The Rotterdam
Study. J Alzheimers Dis. 2020;73(2):707-14.
21. Muezzinler A, Zaineddin AK, Brenner H. A systematic review of
leukocyte telomere length and age in adults. Ageing Res Rev.
2013;12(2):509-19.
22. Herrera E, Samper E, Blasco MA. Telomere shortening in mTR-/-
embryos is associated with failure to close the neural tube. Embo J.
1999;18(5):1172-81.
23. Groenen PM, Peer PG, Wevers RA, Swinkels DW, Franke B, Mariman EC,
et al. Maternal myo-inositol, glucose, and zinc status is associated
with the risk of offspring with spina bifida. Am J Obstet Gynecol.
2003;189(6):1713-9.
24. Steegers-Theunissen RP, Twigt J, Pestinger V, Sinclair KD. The
periconceptional period, reproduction and long-term health of offspring:
the importance of one-carbon metabolism. Hum Reprod Update.
2013;19(6):640-55.
25. Entringer S, de Punder K, Buss C, Wadhwa PD. The fetal programming
of telomere biology hypothesis: an update. Philos Trans R Soc Lond B
Biol Sci. 2018;373(1741).
26. Booth SA, Charchar FJ. Cardiac telomere length in heart development,
function, and disease. Physiol Genomics. 2017;49(7):368-84.
27. Factor-Litvak P, Susser E, Kezios K, McKeague I, Kark JD, Hoffman M,
et al. Leukocyte Telomere Length in Newborns: Implications for the Role
of Telomeres in Human Disease. Pediatrics. 2016;137(4).
28. Broer L, Codd V, Nyholt DR, Deelen J, Mangino M, Willemsen G, et al.
Meta-analysis of telomere length in 19,713 subjects reveals high
heritability, stronger maternal inheritance and a paternal age effect.
Eur J Hum Genet. 2013;21(10):1163-8.
29. Fragkiadaki P, Tsoukalas D, Fragkiadoulaki I, Psycharakis C,
Nikitovic D, Spandidos DA, et al. Telomerase activity in pregnancy
complications (Review). Mol Med Rep. 2016;14(1):16-21.
30. Ghanchi A, Derridj N, Bonnet D, Bertille N, Salomon LJ, Khoshnood B.
Children Born with Congenital Heart Defects and Growth Restriction at
Birth: A Systematic Review and Meta-Analysis. Int J Environ Res Public
Health. 2020;17(9).
31. van Dijk MR, Oostingh EC, Koster MPH, Willemsen SP, Laven JSE,
Steegers-Theunissen RPM. The use of the mHealth program Smarter
Pregnancy in preconception care: rationale, study design and data
collection of a randomized controlled trial. BMC Pregnancy and
Childbirth. 2017;17(1):46.