References
Alkhalil, A., Pillai, A. D., Bokhari, A. A., Vaidya, A. B., & Desai, S.
A. (2009). Complex inheritance of the plasmodial surface anion channel
in a Plasmodium falciparum genetic cross. Mol Microbiol, 72 (2),
459-469. doi:10.1111/j.1365-2958.2009.06661.x
Beck, J. R., Muralidharan, V., Oksman, A., & Goldberg, D. E. (2014).
PTEX component HSP101 mediates export of diverse malaria effectors into
host erythrocytes. Nature, 511 (7511), 592-595.
doi:10.1038/nature13574
Bhattacharjee, S., Speicher, K. D., Stahelin, R. V., Speicher, D. W., &
Haldar, K. (2012a). PI(3)P-independent and -dependent pathways function
together in a vacuolar translocation sequence to target malarial
proteins to the host erythrocyte. Mol Biochem Parasitol, 185 (2),
106-113. doi:10.1016/j.molbiopara.2012.07.004
Bhattacharjee, S., Stahelin, R. V., & Haldar, K. (2012b). Host
targeting of virulence determinants and phosphoinositides in blood stage
malaria parasites. Trends Parasitol, 28 (12), 555-562.
doi:10.1016/j.pt.2012.09.004
Bhattacharjee, S., Stahelin, R. V., Speicher, K. D., Speicher, D. W., &
Haldar, K. (2012c). Endoplasmic reticulum PI(3)P lipid binding targets
malaria proteins to the host cell. Cell, 148 (1-2), 201-212.
doi:10.1016/j.cell.2011.10.051
Boddey, J. A., Hodder, A. N., Gunther, S., Gilson, P. R., Patsiouras,
H., Kapp, E. A., . . . Cowman, A. F. (2010). An aspartyl protease
directs malaria effector proteins to the host cell. Nature,
463 (7281), 627-631. doi:10.1038/nature08728
Bushell, E., Gomes, A. R., Sanderson, T., Anar, B., Girling, G., Herd,
C., . . . Billker, O. (2017). Functional Profiling of a Plasmodium
Genome Reveals an Abundance of Essential Genes. Cell, 170 (2),
260-272 e268. doi:10.1016/j.cell.2017.06.030
Chatterjee, S., Singh, S., Sohoni, R., Singh, N. J., Vaidya, A., Long,
C., & Sharma, S. (2000). Antibodies against ribosomal phosphoprotein P0
of Plasmodium falciparum protect mice against challenge with Plasmodium
yoelii. Infect Immun, 68 (7), 4312-4318.
doi:10.1128/iai.68.7.4312-4318.2000
Comeaux, C. A., Coleman, B. I., Bei, A. K., Whitehurst, N., &
Duraisingh, M. T. (2011). Functional analysis of epigenetic regulation
of tandem RhopH1/clag genes reveals a role in Plasmodium falciparum
growth. Mol Microbiol, 80 (2), 378-390.
doi:10.1111/j.1365-2958.2011.07572.x
Counihan, N. A., Chisholm, S. A., Bullen, H. E., Srivastava, A.,
Sanders, P. R., Jonsdottir, T. K., . . . de Koning-Ward, T. F. (2017).
Plasmodium falciparum parasites deploy RhopH2 into the host erythrocyte
to obtain nutrients, grow and replicate. Elife, 6 .
doi:10.7554/eLife.23217
Das, S., Basu, H., Korde, R., Tewari, R., & Sharma, S. (2012a). Arrest
of nuclear division in Plasmodium through blockage of erythrocyte
surface exposed ribosomal protein P2. PLoS Pathog, 8 (8),
e1002858. doi:10.1371/journal.ppat.1002858
Das, S., Sudarsan, R., Sivakami, S., & Sharma, S. (2012b). Erythrocytic
stage-dependent regulation of oligomerization of Plasmodium ribosomal
protein P2. J Biol Chem, 287 (49), 41499-41513.
doi:10.1074/jbc.M112.384388
Desai, S. A. (2012). Ion and nutrient uptake by malaria
parasite-infected erythrocytes. Cell Microbiol, 14 (7), 1003-1009.
doi:10.1111/j.1462-5822.2012.01790.x
Desai, S. A. (2014a). Why do malaria parasites increase host erythrocyte
permeability? Trends Parasitol, 30 (3), 151-159.
doi:10.1016/j.pt.2014.01.003
Desai, S. A., & Miller, L. H. (2014b). Malaria: Protein-export pathway
illuminated. Nature, 511 (7511), 541-542. doi:10.1038/nature13646
Diaconu, M., Kothe, U., Schlunzen, F., Fischer, N., Harms, J. M.,
Tonevitsky, A. G., . . . Wahl, M. C. (2005). Structural basis for the
function of the ribosomal L7/12 stalk in factor binding and GTPase
activation. Cell, 121 (7), 991-1004.
doi:10.1016/j.cell.2005.04.015
Francisco-Velilla, R., & Remacha, M. (2010). In vivo formation of a
stable pentameric (P2alpha/P1beta)-P0-(P1alpha/P2beta) ribosomal stalk
complex in Saccharomyces cerevisiae. Yeast, 27 (9), 693-704.
doi:10.1002/yea.1765
Garten, M., Nasamu, A. S., Niles, J. C., Zimmerberg, J., Goldberg, D.
E., & Beck, J. R. (2018). EXP2 is a nutrient-permeable channel in the
vacuolar membrane of Plasmodium and is essential for protein export via
PTEX. Nat Microbiol, 3 (10), 1090-1098.
doi:10.1038/s41564-018-0222-7
Goldberg, D. E., & Cowman, A. F. (2010). Moving in and renovating:
exporting proteins from Plasmodium into host erythrocytes. Nat Rev
Microbiol, 8 (9), 617-621. doi:10.1038/nrmicro2420
Gonzalo, P., & Reboud, J. P. (2003). The puzzling lateral flexible
stalk of the ribosome. Biol Cell, 95 (3-4), 179-193.
doi:10.1016/s0248-4900(03)00034-0
Goswami, A., Singh, S., Redkar, V. D., & Sharma, S. (1997).
Characterization of P0, a ribosomal phosphoprotein of Plasmodium
falciparum. Antibody against amino-terminal domain inhibits parasite
growth. J Biol Chem, 272 (18), 12138-12143.
doi:10.1074/jbc.272.18.12138
Grela, P., Li, XP., Horbowicz, P. et al. (2017). Human ribosomal
P1-P2 heterodimer represents
an optimal docking site for ricin A chain with a prominent role for P1
C-terminus. Sci
Rep 7, 5608 . doi.org/10.1038/s41598-017-05675-5
Gruring, C., Heiber, A., Kruse, F., Flemming, S., Franci, G., Colombo,
S. F., . . . Spielmann, T. (2012). Uncovering common principles in
protein export of malaria parasites. Cell Host Microbe, 12 (5),
717-729. doi:10.1016/j.chom.2012.09.010
Gupta, A., Balabaskaran-Nina, P., Nguitragool, W., Saggu, G. S.,
Schureck, M. A., & Desai, S. A. (2018). CLAG3 Self-Associates in
Malaria Parasites and Quantitatively Determines Nutrient Uptake Channels
at the Host Membrane. mBio, 9 (3). doi:10.1128/mBio.02293-17
Haase, S., Herrmann, S., Gruring, C., Heiber, A., Jansen, P. W., Langer,
C., . . . Spielmann, T. (2009). Sequence requirements for the export of
the Plasmodium falciparum Maurer’s clefts protein REX2. Mol
Microbiol, 71 (4), 1003-1017. doi:10.1111/j.1365-2958.2008.06582.x
Haldar, K. (2016)b. Protein trafficking in
apicomplexan parasites: crossing the vacuolar Rubicon. Curr Opin
Microbiol, 32 , 38-45. doi:10.1016/j.mib.2016.04.013
Haldar, K., Samuel, B. U., Mohandas, N., Harrison, T., & Hiller, N. L.
(2001)a. Transport mechanisms in Plasmodium-infected
erythrocytes: lipid rafts and a tubovesicular network. Int J
Parasitol, 31 (12), 1393-1401. doi:10.1016/s0020-7519(01)00251-x
Hanson, C. L., Videler, H., Santos, C., Ballesta, J. P., & Robinson, C.
V. (2004). Mass spectrometry of ribosomes from Saccharomyces cerevisiae:
implications for assembly of the stalk complex. J Biol Chem,
279 (41), 42750-42757. doi:10.1074/jbc.M405718200
Heiber, A., Kruse, F., Pick, C., Gruring, C., Flemming, S., Oberli, A.,
. . . Spielmann, T. (2013). Identification of new PNEPs indicates a
substantial non-PEXEL exportome and underpins common features in
Plasmodium falciparum protein export. PLoS Pathog, 9 (8),
e1003546. doi:10.1371/journal.ppat.1003546
Hiller, N. L., Bhattacharjee, S., van Ooij, C., Liolios, K., Harrison,
T., Lopez-Estrano, C., & Haldar, K. (2004). A host-targeting signal in
virulence proteins reveals a secretome in malarial infection.Science, 306 (5703), 1934-1937. doi:10.1126/science.1102737
Ho, C. M., Beck, J. R., Lai, M., Cui, Y., Goldberg, D. E., Egea, P. F.,
& Zhou, Z. H. (2018). Malaria parasite translocon structure and
mechanism of effector export. Nature, 561 (7721), 70-75.
doi:10.1038/s41586-018-0469-4
Hsiao, C. H., Luisa Hiller, N., Haldar, K., & Knoll, L. J. (2013). A
HT/PEXEL motif in Toxoplasma dense granule proteins is a signal for
protein cleavage but not export into the host cell. Traffic,
14 (5), 519-531. doi:10.1111/tra.12049
Ito, D., Schureck, M. A., & Desai, S. A. (2017). An essential
dual-function complex mediates erythrocyte invasion and channel-mediated
nutrient uptake in malaria parasites. Elife, 6 .
doi:10.7554/eLife.23485
Jani, D., Nagarkatti, R., Beatty, W., Angel, R., Slebodnick, C.,
Andersen, J., . . . Rathore, D. (2008). HDP-a novel heme detoxification
protein from the malaria parasite. PLoS Pathog, 4 (4), e1000053.
doi:10.1371/journal.ppat.1000053
Jimenez-Diaz, A., Remacha, M., Ballesta, J. P., & Berlanga, J. J.
(2013). Phosphorylation of initiation factor eIF2 in response to stress
conditions is mediated by acidic ribosomal P1/P2 proteins in
Saccharomyces cerevisiae. PLoS One, 8 (12), e84219.
doi:10.1371/journal.pone.0084219
Kaneko, O., Yim Lim, B. Y., Iriko, H., Ling, I. T., Otsuki, H.,
Grainger, M., . . . Torii, M. (2005). Apical expression of three
RhopH1/Clag proteins as components of the Plasmodium falciparum RhopH
complex. Mol Biochem Parasitol, 143 (1), 20-28.
doi:10.1016/j.molbiopara.2005.05.003
Kang, C. H., Lee, Y. M., Park, J. H., Nawkar, G. M., Oh, H. T., Kim, M.
G., . . . Lee, S. Y. (2016). Ribosomal P3 protein AtP3B of Arabidopsis
acts as both protein and RNA chaperone to increase tolerance of heat and
cold stresses. Plant Cell Environ, 39 (7), 1631-1642.
doi:10.1111/pce.12742
Kirk, K. (2015). Ion Regulation in the Malaria Parasite. Annu Rev
Microbiol, 69 , 341-359. doi:10.1146/annurev-micro-091014-104506
Lauer, S. A., Rathod, P. K., Ghori, N., & Haldar, K. (1997). A membrane
network for nutrient import in red cells infected with the malaria
parasite. Science, 276 (5315), 1122-1125.
doi:10.1126/science.276.5315.1122
Lobo, C. A., Kar, S. K., Ravindran, B., Kabilan, L., & Sharma, S.
(1994). Novel proteins of Plasmodium falciparum identified by
differential immunoscreening using immune and patient sera. Infect
Immun, 62 (2), 651-656. doi:10.1128/IAI.62.2.651-656.1994
Marti, M., Good, R. T., Rug, M., Knuepfer, E., & Cowman, A. F. (2004).
Targeting malaria virulence and remodeling proteins to the host
erythrocyte. Science, 306 (5703), 1930-1933.
doi:10.1126/science.1102452
Martinez-Azorin, F., Remacha, M., & Ballesta, J. P. (2008). Functional
characterization of ribosomal P1/P2 proteins in human cells.Biochem J, 413 (3), 527-534. doi:10.1042/BJ20080049
Mishra, P., Choudhary, S., Mukherjee, S., Sengupta, D., Sharma, S., &
Hosur, R. V. (2015). Molten globule nature of Plasmodium falciparum P2
homo-tetramer. Biochem Biophys Rep, 1 , 97-107.
doi:10.1016/j.bbrep.2015.03.010
Mishra, P., Das, S., Panicker, L., Hosur, M. V., Sharma, S., & Hosur,
R. V. (2012). NMR insights into folding and self-association of
Plasmodium falciparum P2. PLoS One, 7 (5), e36279.
doi:10.1371/journal.pone.0036279
Mishra, P., Dmello, C., Sengupta, D., Chandrabhan Singh, S., Kirkise,
N., Hosur, R. V., & Sharma, S. (2020). Molecular study of binding of
Plasmodium ribosomal protein P2 to erythrocytes. Biochimie, 176 ,
181-191. doi:10.1016/j.biochi.2020.07.007
Mishra, P., Rajagopal, S., Sharma, S., & Hosur, R. V. (2014a). The
C-terminal domain of eukaryotic acidic ribosomal P2 proteins is
intrinsically disordered with conserved structural propensities.Protein Pept Lett, 22 (3), 212-218.
doi:10.2174/0929866521666141121160523
Mishra, P., Sharma, S., & Hosur, R. V. (2014b). Residue level
description of in vivo self-association of Plasmodium falciparum P2.J Biomol Struct Dyn, 32 (4), 602-612.
doi:10.1080/07391102.2013.782827
Mitamura, T., Hanada, K., Ko-Mitamura, E. P., Nishijima, M., & Horii,
T. (2000). Serum factors governing intraerythrocytic development and
cell cycle progression of Plasmodium falciparum. Parasitol Int,
49 (3), 219-229. doi:10.1016/s1383-5769(00)00048-9
Nguitragool, W., Bokhari, A. A., Pillai, A. D., Rayavara, K., Sharma,
P., Turpin, B., . . . Desai, S. A. (2011). Malaria parasite clog genes
determine channel-mediated nutrient uptake by infected red blood cells.Cell, 145 (5), 665-677. doi:10.1016/j.cell.2011.05.002
Nusspaumer, G., Remacha, M., & Ballesta, J. P. (2000). Phosphorylation
and N-terminal region of yeast ribosomal protein P1 mediate its
degradation, which is prevented by protein P2. EMBO J, 19 (22),
6075-6084. doi:10.1093/emboj/19.22.6075
Osborne, A. R., Speicher, K. D., Tamez, P. A., Bhattacharjee, S.,
Speicher, D. W., & Haldar, K. (2010). The host targeting motif in
exported Plasmodium proteins is cleaved in the parasite endoplasmic
reticulum. Mol Biochem Parasitol, 171 (1), 25-31.
doi:10.1016/j.molbiopara.2010.01.003
Pachlatko, E., Rusch, S., Muller, A., Hemphill, A., Tilley, L., Hanssen,
E., & Beck, H. P. (2010). MAHRP2, an exported protein of Plasmodium
falciparum, is an essential component of Maurer’s cleft tethers.Mol Microbiol, 77 (5), 1136-1152.
doi:10.1111/j.1365-2958.2010.07278.x
Remacha, M., Jimenez-Diaz, A., Santos, C., Briones, E., Zambrano, R.,
Rodriguez Gabriel, M. A., . . . Ballesta, J. P. (1995). Proteins P1, P2,
and P0, components of the eukaryotic ribosome stalk. New structural and
functional aspects. Biochem Cell Biol, 73 (11-12), 959-968.
doi:10.1139/o95-103
Remacha, M., Santos, C., Bermejo, B., Naranda, T., & Ballesta, J. P.
(1992). Stable binding of the eukaryotic acidic phosphoproteins to the
ribosome is not an absolute requirement for in vivo protein synthesis.J Biol Chem, 267 (17), 12061-12067. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/1601875
Rodriguez-Mateos, M., Garcia-Gomez, J. J., Francisco-Velilla, R.,
Remacha, M., de la Cruz, J., & Ballesta, J. P. (2009). Role and
dynamics of the ribosomal protein P0 and its related trans-acting factor
Mrt4 during ribosome assembly in Saccharomyces cerevisiae. Nucleic
Acids Res, 37 (22), 7519-7532. doi:10.1093/nar/gkp806
Russo, I., Babbitt, S., Muralidharan, V., Butler, T., Oksman, A., &
Goldberg, D. E. (2010). Plasmepsin V licenses Plasmodium proteins for
export into the host erythrocyte. Nature, 463 (7281), 632-636.
doi:10.1038/nature08726
Santos, C., & Ballesta, J. P. (1994)a. Ribosomal
protein P0, contrary to phosphoproteins P1 and P2, is required for
ribosome activity and Saccharomyces cerevisiae viability. J Biol
Chem, 269 (22), 15689-15696. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/8195220
Santos, C., & Ballesta, J. P. (1995)b. The highly
conserved protein P0 carboxyl end is essential for ribosome activity
only in the absence of proteins P1 and P2. J Biol Chem, 270 (35),
20608-20614. doi:10.1074/jbc.270.35.20608
Saridaki, T., Frohlich, K. S., Braun-Breton, C., & Lanzer, M. (2009).
Export of PfSBP1 to the Plasmodium falciparum Maurer’s clefts.Traffic, 10 (2), 137-152. doi:10.1111/j.1600-0854.2008.00860.x
Sherling, E. S., Knuepfer, E., Brzostowski, J. A., Miller, L. H.,
Blackman, M. J., & van Ooij, C. (2017). The Plasmodium falciparum
rhoptry protein RhopH3 plays essential roles in host cell invasion and
nutrient uptake. Elife, 6 . doi:10.7554/eLife.23239
Singh, S., Sehgal, A., Waghmare, S., Chakraborty, T., Goswami, A., &
Sharma, S. (2002). Surface expression of the conserved ribosomal protein
P0 on parasite and other cells. Mol Biochem Parasitol, 119 (1),
121-124. doi:10.1016/s0166-6851(01)00394-2
Spillman, N. J., Beck, J. R., & Goldberg, D. E. (2015). Protein export
into malaria parasite-infected erythrocytes: mechanisms and functional
consequences. Annu Rev Biochem, 84 , 813-841.
doi:10.1146/annurev-biochem-060614-034157
Spycher, C., Rug, M., Klonis, N., Ferguson, D. J., Cowman, A. F., Beck,
H. P., & Tilley, L. (2006). Genesis of and trafficking to the Maurer’s
clefts of Plasmodium falciparum-infected erythrocytes. Mol Cell
Biol, 26 (11), 4074-4085. doi:10.1128/MCB.00095-06
Staines, H. M., Dee, B. C., O’Brien, M., Lang, H. J., Englert, H.,
Horner, H. A., . . . Kirk, K. (2004). Furosemide analogues as potent
inhibitors of the new permeability pathways of Plasmodium
falciparum-infected human erythrocytes. Mol Biochem Parasitol,
133 (2), 315-318. doi:10.1016/j.molbiopara.2003.10.009
Sudarsan, R., Chopra, R. K., Khan, M. A., & Sharma, S. (2015).
Ribosomal protein P2 localizes to the parasite zoite-surface and is a
target for invasion inhibitory antibodies in Toxoplasma gondii and
Plasmodium falciparum. Parasitol Int, 64 (1), 43-49.
doi:10.1016/j.parint.2014.08.006
Szuster-Ciesielska, A., Wawiorka, L., Krokowski, D., Grankowski, N.,
Jarosz, L., Lisiecka, U., & Tchorzewski, M. (2019). Immunogenic
Evaluation of Ribosomal P-Protein Antigen P0, P1, and P2 and Pentameric
Protein Complex P0-(P1-P2)2 of Plasmodium falciparum in a Mouse Model.J Immunol Res, 2019 , 9264217. doi:10.1155/2019/9264217
Tamez, P. A., Bhattacharjee, S., van Ooij, C., Hiller, N. L., Llinas,
M., Balu, B., . . . Haldar, K. (2008). An erythrocyte vesicle protein
exported by the malaria parasite promotes tubovesicular lipid import
from the host cell surface. PLoS Pathog, 4 (8), e1000118.
doi:10.1371/journal.ppat.1000118
Tarr, S. J., Cryar, A., Thalassinos, K., Haldar, K., & Osborne, A. R.
(2013). The C-terminal portion of the cleaved HT motif is necessary and
sufficient to mediate export of proteins from the malaria parasite into
its host cell. Mol Microbiol, 87 (4), 835-850.
doi:10.1111/mmi.12133
Tchorzewski, M., Krokowski, D., Rzeski, W., Issinger, O. G., &
Grankowski, N. (2003). The subcellular distribution of the human
ribosomal ”stalk” components: P1, P2 and P0 proteins. Int J
Biochem Cell Biol, 35 (2), 203-211. doi:10.1016/s1357-2725(02)00133-4
Uchiumi, T., & Kominami, R. (1992). Direct evidence for interaction of
the conserved GTPase domain within 28 S RNA with mammalian ribosomal
acidic phosphoproteins and L12. J Biol Chem, 267 (27),
19179-19185. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/1527039
Volarevic, S., Stewart, M. J., Ledermann, B., Zilberman, F.,
Terracciano, L., Montini, E., . . . Thomas, G. (2000). Proliferation,
but not growth, blocked by conditional deletion of 40S ribosomal protein
S6. Science, 288 (5473), 2045-2047.
doi:10.1126/science.288.5473.2045
Wan, F., Anderson, D. E., Barnitz, R. A., Snow, A., Bidere, N., Zheng,
L., . . . Lenardo, M. J. (2007). Ribosomal protein S3: a KH domain
subunit in NF-kappaB complexes that mediates selective gene regulation.Cell, 131 (5), 927-939. doi:10.1016/j.cell.2007.10.009
Wool, I. G. (1996). Extraribosomal functions of ribosomal proteins.Trends Biochem Sci, 21 (5), 164-165. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/8871397
Zhang, M., Wang, C., Otto, T. D., Oberstaller, J., Liao, X., Adapa, S.
R., . . . Adams, J. H. (2018). Uncovering the essential genes of the
human malaria parasite Plasmodium falciparum by saturation mutagenesis.Science, 360 (6388). doi:10.1126/science.aap7847
Zinker, S., & Warner, J. R. (1976). The ribosomal proteins of
Saccharomyces cerevisiae. Phosphorylated and exchangeable proteins.J Biol Chem, 251 (6), 1799-1807. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/767341