References
Alkhalil, A., Pillai, A. D., Bokhari, A. A., Vaidya, A. B., & Desai, S. A. (2009). Complex inheritance of the plasmodial surface anion channel in a Plasmodium falciparum genetic cross. Mol Microbiol, 72 (2), 459-469. doi:10.1111/j.1365-2958.2009.06661.x
Beck, J. R., Muralidharan, V., Oksman, A., & Goldberg, D. E. (2014). PTEX component HSP101 mediates export of diverse malaria effectors into host erythrocytes. Nature, 511 (7511), 592-595. doi:10.1038/nature13574
Bhattacharjee, S., Speicher, K. D., Stahelin, R. V., Speicher, D. W., & Haldar, K. (2012a). PI(3)P-independent and -dependent pathways function together in a vacuolar translocation sequence to target malarial proteins to the host erythrocyte. Mol Biochem Parasitol, 185 (2), 106-113. doi:10.1016/j.molbiopara.2012.07.004
Bhattacharjee, S., Stahelin, R. V., & Haldar, K. (2012b). Host targeting of virulence determinants and phosphoinositides in blood stage malaria parasites. Trends Parasitol, 28 (12), 555-562. doi:10.1016/j.pt.2012.09.004
Bhattacharjee, S., Stahelin, R. V., Speicher, K. D., Speicher, D. W., & Haldar, K. (2012c). Endoplasmic reticulum PI(3)P lipid binding targets malaria proteins to the host cell. Cell, 148 (1-2), 201-212. doi:10.1016/j.cell.2011.10.051
Boddey, J. A., Hodder, A. N., Gunther, S., Gilson, P. R., Patsiouras, H., Kapp, E. A., . . . Cowman, A. F. (2010). An aspartyl protease directs malaria effector proteins to the host cell. Nature, 463 (7281), 627-631. doi:10.1038/nature08728
Bushell, E., Gomes, A. R., Sanderson, T., Anar, B., Girling, G., Herd, C., . . . Billker, O. (2017). Functional Profiling of a Plasmodium Genome Reveals an Abundance of Essential Genes. Cell, 170 (2), 260-272 e268. doi:10.1016/j.cell.2017.06.030
Chatterjee, S., Singh, S., Sohoni, R., Singh, N. J., Vaidya, A., Long, C., & Sharma, S. (2000). Antibodies against ribosomal phosphoprotein P0 of Plasmodium falciparum protect mice against challenge with Plasmodium yoelii. Infect Immun, 68 (7), 4312-4318. doi:10.1128/iai.68.7.4312-4318.2000
Comeaux, C. A., Coleman, B. I., Bei, A. K., Whitehurst, N., & Duraisingh, M. T. (2011). Functional analysis of epigenetic regulation of tandem RhopH1/clag genes reveals a role in Plasmodium falciparum growth. Mol Microbiol, 80 (2), 378-390. doi:10.1111/j.1365-2958.2011.07572.x
Counihan, N. A., Chisholm, S. A., Bullen, H. E., Srivastava, A., Sanders, P. R., Jonsdottir, T. K., . . . de Koning-Ward, T. F. (2017). Plasmodium falciparum parasites deploy RhopH2 into the host erythrocyte to obtain nutrients, grow and replicate. Elife, 6 . doi:10.7554/eLife.23217
Das, S., Basu, H., Korde, R., Tewari, R., & Sharma, S. (2012a). Arrest of nuclear division in Plasmodium through blockage of erythrocyte surface exposed ribosomal protein P2. PLoS Pathog, 8 (8), e1002858. doi:10.1371/journal.ppat.1002858
Das, S., Sudarsan, R., Sivakami, S., & Sharma, S. (2012b). Erythrocytic stage-dependent regulation of oligomerization of Plasmodium ribosomal protein P2. J Biol Chem, 287 (49), 41499-41513. doi:10.1074/jbc.M112.384388
Desai, S. A. (2012). Ion and nutrient uptake by malaria parasite-infected erythrocytes. Cell Microbiol, 14 (7), 1003-1009. doi:10.1111/j.1462-5822.2012.01790.x
Desai, S. A. (2014a). Why do malaria parasites increase host erythrocyte permeability? Trends Parasitol, 30 (3), 151-159. doi:10.1016/j.pt.2014.01.003
Desai, S. A., & Miller, L. H. (2014b). Malaria: Protein-export pathway illuminated. Nature, 511 (7511), 541-542. doi:10.1038/nature13646
Diaconu, M., Kothe, U., Schlunzen, F., Fischer, N., Harms, J. M., Tonevitsky, A. G., . . . Wahl, M. C. (2005). Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation. Cell, 121 (7), 991-1004. doi:10.1016/j.cell.2005.04.015
Francisco-Velilla, R., & Remacha, M. (2010). In vivo formation of a stable pentameric (P2alpha/P1beta)-P0-(P1alpha/P2beta) ribosomal stalk complex in Saccharomyces cerevisiae. Yeast, 27 (9), 693-704. doi:10.1002/yea.1765
Garten, M., Nasamu, A. S., Niles, J. C., Zimmerberg, J., Goldberg, D. E., & Beck, J. R. (2018). EXP2 is a nutrient-permeable channel in the vacuolar membrane of Plasmodium and is essential for protein export via PTEX. Nat Microbiol, 3 (10), 1090-1098. doi:10.1038/s41564-018-0222-7
Goldberg, D. E., & Cowman, A. F. (2010). Moving in and renovating: exporting proteins from Plasmodium into host erythrocytes. Nat Rev Microbiol, 8 (9), 617-621. doi:10.1038/nrmicro2420
Gonzalo, P., & Reboud, J. P. (2003). The puzzling lateral flexible stalk of the ribosome. Biol Cell, 95 (3-4), 179-193. doi:10.1016/s0248-4900(03)00034-0
Goswami, A., Singh, S., Redkar, V. D., & Sharma, S. (1997). Characterization of P0, a ribosomal phosphoprotein of Plasmodium falciparum. Antibody against amino-terminal domain inhibits parasite growth. J Biol Chem, 272 (18), 12138-12143. doi:10.1074/jbc.272.18.12138
Grela, P., Li, XP., Horbowicz, P. et al. (2017). Human ribosomal P1-P2 heterodimer represents
an optimal docking site for ricin A chain with a prominent role for P1 C-terminus. Sci
Rep  7,  5608 . doi.org/10.1038/s41598-017-05675-5
Gruring, C., Heiber, A., Kruse, F., Flemming, S., Franci, G., Colombo, S. F., . . . Spielmann, T. (2012). Uncovering common principles in protein export of malaria parasites. Cell Host Microbe, 12 (5), 717-729. doi:10.1016/j.chom.2012.09.010
Gupta, A., Balabaskaran-Nina, P., Nguitragool, W., Saggu, G. S., Schureck, M. A., & Desai, S. A. (2018). CLAG3 Self-Associates in Malaria Parasites and Quantitatively Determines Nutrient Uptake Channels at the Host Membrane. mBio, 9 (3). doi:10.1128/mBio.02293-17
Haase, S., Herrmann, S., Gruring, C., Heiber, A., Jansen, P. W., Langer, C., . . . Spielmann, T. (2009). Sequence requirements for the export of the Plasmodium falciparum Maurer’s clefts protein REX2. Mol Microbiol, 71 (4), 1003-1017. doi:10.1111/j.1365-2958.2008.06582.x
Haldar, K. (2016)b. Protein trafficking in apicomplexan parasites: crossing the vacuolar Rubicon. Curr Opin Microbiol, 32 , 38-45. doi:10.1016/j.mib.2016.04.013
Haldar, K., Samuel, B. U., Mohandas, N., Harrison, T., & Hiller, N. L. (2001)a. Transport mechanisms in Plasmodium-infected erythrocytes: lipid rafts and a tubovesicular network. Int J Parasitol, 31 (12), 1393-1401. doi:10.1016/s0020-7519(01)00251-x
Hanson, C. L., Videler, H., Santos, C., Ballesta, J. P., & Robinson, C. V. (2004). Mass spectrometry of ribosomes from Saccharomyces cerevisiae: implications for assembly of the stalk complex. J Biol Chem, 279 (41), 42750-42757. doi:10.1074/jbc.M405718200
Heiber, A., Kruse, F., Pick, C., Gruring, C., Flemming, S., Oberli, A., . . . Spielmann, T. (2013). Identification of new PNEPs indicates a substantial non-PEXEL exportome and underpins common features in Plasmodium falciparum protein export. PLoS Pathog, 9 (8), e1003546. doi:10.1371/journal.ppat.1003546
Hiller, N. L., Bhattacharjee, S., van Ooij, C., Liolios, K., Harrison, T., Lopez-Estrano, C., & Haldar, K. (2004). A host-targeting signal in virulence proteins reveals a secretome in malarial infection.Science, 306 (5703), 1934-1937. doi:10.1126/science.1102737
Ho, C. M., Beck, J. R., Lai, M., Cui, Y., Goldberg, D. E., Egea, P. F., & Zhou, Z. H. (2018). Malaria parasite translocon structure and mechanism of effector export. Nature, 561 (7721), 70-75. doi:10.1038/s41586-018-0469-4
Hsiao, C. H., Luisa Hiller, N., Haldar, K., & Knoll, L. J. (2013). A HT/PEXEL motif in Toxoplasma dense granule proteins is a signal for protein cleavage but not export into the host cell. Traffic, 14 (5), 519-531. doi:10.1111/tra.12049
Ito, D., Schureck, M. A., & Desai, S. A. (2017). An essential dual-function complex mediates erythrocyte invasion and channel-mediated nutrient uptake in malaria parasites. Elife, 6 . doi:10.7554/eLife.23485
Jani, D., Nagarkatti, R., Beatty, W., Angel, R., Slebodnick, C., Andersen, J., . . . Rathore, D. (2008). HDP-a novel heme detoxification protein from the malaria parasite. PLoS Pathog, 4 (4), e1000053. doi:10.1371/journal.ppat.1000053
Jimenez-Diaz, A., Remacha, M., Ballesta, J. P., & Berlanga, J. J. (2013). Phosphorylation of initiation factor eIF2 in response to stress conditions is mediated by acidic ribosomal P1/P2 proteins in Saccharomyces cerevisiae. PLoS One, 8 (12), e84219. doi:10.1371/journal.pone.0084219
Kaneko, O., Yim Lim, B. Y., Iriko, H., Ling, I. T., Otsuki, H., Grainger, M., . . . Torii, M. (2005). Apical expression of three RhopH1/Clag proteins as components of the Plasmodium falciparum RhopH complex. Mol Biochem Parasitol, 143 (1), 20-28. doi:10.1016/j.molbiopara.2005.05.003
Kang, C. H., Lee, Y. M., Park, J. H., Nawkar, G. M., Oh, H. T., Kim, M. G., . . . Lee, S. Y. (2016). Ribosomal P3 protein AtP3B of Arabidopsis acts as both protein and RNA chaperone to increase tolerance of heat and cold stresses. Plant Cell Environ, 39 (7), 1631-1642. doi:10.1111/pce.12742
Kirk, K. (2015). Ion Regulation in the Malaria Parasite. Annu Rev Microbiol, 69 , 341-359. doi:10.1146/annurev-micro-091014-104506
Lauer, S. A., Rathod, P. K., Ghori, N., & Haldar, K. (1997). A membrane network for nutrient import in red cells infected with the malaria parasite. Science, 276 (5315), 1122-1125. doi:10.1126/science.276.5315.1122
Lobo, C. A., Kar, S. K., Ravindran, B., Kabilan, L., & Sharma, S. (1994). Novel proteins of Plasmodium falciparum identified by differential immunoscreening using immune and patient sera. Infect Immun, 62 (2), 651-656. doi:10.1128/IAI.62.2.651-656.1994
Marti, M., Good, R. T., Rug, M., Knuepfer, E., & Cowman, A. F. (2004). Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science, 306 (5703), 1930-1933. doi:10.1126/science.1102452
Martinez-Azorin, F., Remacha, M., & Ballesta, J. P. (2008). Functional characterization of ribosomal P1/P2 proteins in human cells.Biochem J, 413 (3), 527-534. doi:10.1042/BJ20080049
Mishra, P., Choudhary, S., Mukherjee, S., Sengupta, D., Sharma, S., & Hosur, R. V. (2015). Molten globule nature of Plasmodium falciparum P2 homo-tetramer. Biochem Biophys Rep, 1 , 97-107. doi:10.1016/j.bbrep.2015.03.010
Mishra, P., Das, S., Panicker, L., Hosur, M. V., Sharma, S., & Hosur, R. V. (2012). NMR insights into folding and self-association of Plasmodium falciparum P2. PLoS One, 7 (5), e36279. doi:10.1371/journal.pone.0036279
Mishra, P., Dmello, C., Sengupta, D., Chandrabhan Singh, S., Kirkise, N., Hosur, R. V., & Sharma, S. (2020). Molecular study of binding of Plasmodium ribosomal protein P2 to erythrocytes. Biochimie, 176 , 181-191. doi:10.1016/j.biochi.2020.07.007
Mishra, P., Rajagopal, S., Sharma, S., & Hosur, R. V. (2014a). The C-terminal domain of eukaryotic acidic ribosomal P2 proteins is intrinsically disordered with conserved structural propensities.Protein Pept Lett, 22 (3), 212-218. doi:10.2174/0929866521666141121160523
Mishra, P., Sharma, S., & Hosur, R. V. (2014b). Residue level description of in vivo self-association of Plasmodium falciparum P2.J Biomol Struct Dyn, 32 (4), 602-612. doi:10.1080/07391102.2013.782827
Mitamura, T., Hanada, K., Ko-Mitamura, E. P., Nishijima, M., & Horii, T. (2000). Serum factors governing intraerythrocytic development and cell cycle progression of Plasmodium falciparum. Parasitol Int, 49 (3), 219-229. doi:10.1016/s1383-5769(00)00048-9
Nguitragool, W., Bokhari, A. A., Pillai, A. D., Rayavara, K., Sharma, P., Turpin, B., . . . Desai, S. A. (2011). Malaria parasite clog genes determine channel-mediated nutrient uptake by infected red blood cells.Cell, 145 (5), 665-677. doi:10.1016/j.cell.2011.05.002
Nusspaumer, G., Remacha, M., & Ballesta, J. P. (2000). Phosphorylation and N-terminal region of yeast ribosomal protein P1 mediate its degradation, which is prevented by protein P2. EMBO J, 19 (22), 6075-6084. doi:10.1093/emboj/19.22.6075
Osborne, A. R., Speicher, K. D., Tamez, P. A., Bhattacharjee, S., Speicher, D. W., & Haldar, K. (2010). The host targeting motif in exported Plasmodium proteins is cleaved in the parasite endoplasmic reticulum. Mol Biochem Parasitol, 171 (1), 25-31. doi:10.1016/j.molbiopara.2010.01.003
Pachlatko, E., Rusch, S., Muller, A., Hemphill, A., Tilley, L., Hanssen, E., & Beck, H. P. (2010). MAHRP2, an exported protein of Plasmodium falciparum, is an essential component of Maurer’s cleft tethers.Mol Microbiol, 77 (5), 1136-1152. doi:10.1111/j.1365-2958.2010.07278.x
Remacha, M., Jimenez-Diaz, A., Santos, C., Briones, E., Zambrano, R., Rodriguez Gabriel, M. A., . . . Ballesta, J. P. (1995). Proteins P1, P2, and P0, components of the eukaryotic ribosome stalk. New structural and functional aspects. Biochem Cell Biol, 73 (11-12), 959-968. doi:10.1139/o95-103
Remacha, M., Santos, C., Bermejo, B., Naranda, T., & Ballesta, J. P. (1992). Stable binding of the eukaryotic acidic phosphoproteins to the ribosome is not an absolute requirement for in vivo protein synthesis.J Biol Chem, 267 (17), 12061-12067. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/1601875
Rodriguez-Mateos, M., Garcia-Gomez, J. J., Francisco-Velilla, R., Remacha, M., de la Cruz, J., & Ballesta, J. P. (2009). Role and dynamics of the ribosomal protein P0 and its related trans-acting factor Mrt4 during ribosome assembly in Saccharomyces cerevisiae. Nucleic Acids Res, 37 (22), 7519-7532. doi:10.1093/nar/gkp806
Russo, I., Babbitt, S., Muralidharan, V., Butler, T., Oksman, A., & Goldberg, D. E. (2010). Plasmepsin V licenses Plasmodium proteins for export into the host erythrocyte. Nature, 463 (7281), 632-636. doi:10.1038/nature08726
Santos, C., & Ballesta, J. P. (1994)a. Ribosomal protein P0, contrary to phosphoproteins P1 and P2, is required for ribosome activity and Saccharomyces cerevisiae viability. J Biol Chem, 269 (22), 15689-15696. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8195220
Santos, C., & Ballesta, J. P. (1995)b. The highly conserved protein P0 carboxyl end is essential for ribosome activity only in the absence of proteins P1 and P2. J Biol Chem, 270 (35), 20608-20614. doi:10.1074/jbc.270.35.20608
Saridaki, T., Frohlich, K. S., Braun-Breton, C., & Lanzer, M. (2009). Export of PfSBP1 to the Plasmodium falciparum Maurer’s clefts.Traffic, 10 (2), 137-152. doi:10.1111/j.1600-0854.2008.00860.x
Sherling, E. S., Knuepfer, E., Brzostowski, J. A., Miller, L. H., Blackman, M. J., & van Ooij, C. (2017). The Plasmodium falciparum rhoptry protein RhopH3 plays essential roles in host cell invasion and nutrient uptake. Elife, 6 . doi:10.7554/eLife.23239
Singh, S., Sehgal, A., Waghmare, S., Chakraborty, T., Goswami, A., & Sharma, S. (2002). Surface expression of the conserved ribosomal protein P0 on parasite and other cells. Mol Biochem Parasitol, 119 (1), 121-124. doi:10.1016/s0166-6851(01)00394-2
Spillman, N. J., Beck, J. R., & Goldberg, D. E. (2015). Protein export into malaria parasite-infected erythrocytes: mechanisms and functional consequences. Annu Rev Biochem, 84 , 813-841. doi:10.1146/annurev-biochem-060614-034157
Spycher, C., Rug, M., Klonis, N., Ferguson, D. J., Cowman, A. F., Beck, H. P., & Tilley, L. (2006). Genesis of and trafficking to the Maurer’s clefts of Plasmodium falciparum-infected erythrocytes. Mol Cell Biol, 26 (11), 4074-4085. doi:10.1128/MCB.00095-06
Staines, H. M., Dee, B. C., O’Brien, M., Lang, H. J., Englert, H., Horner, H. A., . . . Kirk, K. (2004). Furosemide analogues as potent inhibitors of the new permeability pathways of Plasmodium falciparum-infected human erythrocytes. Mol Biochem Parasitol, 133 (2), 315-318. doi:10.1016/j.molbiopara.2003.10.009
Sudarsan, R., Chopra, R. K., Khan, M. A., & Sharma, S. (2015). Ribosomal protein P2 localizes to the parasite zoite-surface and is a target for invasion inhibitory antibodies in Toxoplasma gondii and Plasmodium falciparum. Parasitol Int, 64 (1), 43-49. doi:10.1016/j.parint.2014.08.006
Szuster-Ciesielska, A., Wawiorka, L., Krokowski, D., Grankowski, N., Jarosz, L., Lisiecka, U., & Tchorzewski, M. (2019). Immunogenic Evaluation of Ribosomal P-Protein Antigen P0, P1, and P2 and Pentameric Protein Complex P0-(P1-P2)2 of Plasmodium falciparum in a Mouse Model.J Immunol Res, 2019 , 9264217. doi:10.1155/2019/9264217
Tamez, P. A., Bhattacharjee, S., van Ooij, C., Hiller, N. L., Llinas, M., Balu, B., . . . Haldar, K. (2008). An erythrocyte vesicle protein exported by the malaria parasite promotes tubovesicular lipid import from the host cell surface. PLoS Pathog, 4 (8), e1000118. doi:10.1371/journal.ppat.1000118
Tarr, S. J., Cryar, A., Thalassinos, K., Haldar, K., & Osborne, A. R. (2013). The C-terminal portion of the cleaved HT motif is necessary and sufficient to mediate export of proteins from the malaria parasite into its host cell. Mol Microbiol, 87 (4), 835-850. doi:10.1111/mmi.12133
Tchorzewski, M., Krokowski, D., Rzeski, W., Issinger, O. G., & Grankowski, N. (2003). The subcellular distribution of the human ribosomal ”stalk” components: P1, P2 and P0 proteins. Int J Biochem Cell Biol, 35 (2), 203-211. doi:10.1016/s1357-2725(02)00133-4
Uchiumi, T., & Kominami, R. (1992). Direct evidence for interaction of the conserved GTPase domain within 28 S RNA with mammalian ribosomal acidic phosphoproteins and L12. J Biol Chem, 267 (27), 19179-19185. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/1527039
Volarevic, S., Stewart, M. J., Ledermann, B., Zilberman, F., Terracciano, L., Montini, E., . . . Thomas, G. (2000). Proliferation, but not growth, blocked by conditional deletion of 40S ribosomal protein S6. Science, 288 (5473), 2045-2047. doi:10.1126/science.288.5473.2045
Wan, F., Anderson, D. E., Barnitz, R. A., Snow, A., Bidere, N., Zheng, L., . . . Lenardo, M. J. (2007). Ribosomal protein S3: a KH domain subunit in NF-kappaB complexes that mediates selective gene regulation.Cell, 131 (5), 927-939. doi:10.1016/j.cell.2007.10.009
Wool, I. G. (1996). Extraribosomal functions of ribosomal proteins.Trends Biochem Sci, 21 (5), 164-165. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8871397
Zhang, M., Wang, C., Otto, T. D., Oberstaller, J., Liao, X., Adapa, S. R., . . . Adams, J. H. (2018). Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis.Science, 360 (6388). doi:10.1126/science.aap7847
Zinker, S., & Warner, J. R. (1976). The ribosomal proteins of Saccharomyces cerevisiae. Phosphorylated and exchangeable proteins.J Biol Chem, 251 (6), 1799-1807. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/767341