References
Abarca, E., Vázquez-Suñé, E., Carrera, J., Capino, B., Gámez, D. &
Batlle, F. (2006). Optimal design of measures to correct seawater
intrusion. Water Resource Research, 42.
http://dx.doi.org/10.1029/2005WR004524.
Aller, L., Bennett, T., Lehr, J.H., Petty, R.J., & Hackett, G. (1987).
DRASTIC: A Standardized System for Evaluating Groundwater Pollution
Potential Using Hydrogeologic Settings. Environmental Protection Agency
NWWA/EPA Series EPA-600/2-87-035. Dublin, Ireland: National Water Well
Association.
Allouche, N., Maanan, M., Gontara, M., Rollo, N. & Jmal, I. (2017) A
global risk approach to assessing groundwater vulnerability.
Environmental Modelling and Software, Elsevier, 88, pp. 168-182.
⟨hal-01512478⟩
Anghileri, D., Pianosi, F. & Soncini-Sessa, R. (2014) Trend detection
in seasonal data: From hydrology to water resources. Journal of
Hydrology, -. 10.1016/j.jhydrol.2014.01.022.
Azimi, S., Moghaddam, M.A. & Monfared, S.A.H. (2018). Spatial
assessment of the potential of groundwater quality using fuzzy AHP in
GIS. Arabian Journal of Geosciences, 11(7), p. 142.
Babiker, I. S., Mohamed, M. A., Hiyama, T., & Kato, K. (2005). A
GIS-based DRASTIC model for assessing aquifer vulnerability in
Kakamigahara Heights, Gifu Prefecture, Central Japan. Science of the
Total Environment, 345, pp. 127–140.
Bernard-Jannin, L., Sun, X., Teissier, S., Sauvage, S., &
Sanchez-Perez, J.M. (2017). Spatiotemporal analysis of factors
controlling nitrate dynamics and potential denitrification hot spots and
hot moments in groundwater of an alluvial floodplain. Ecological
Engineering, 103, pp. 372–384.
Bobba, A.G. (2002). Numerical modelling of salt-water intrusion due to
human activities and sea-level change in the Godavari Delta, India.
Hydrological Science Journal, 47, S67-S80.
Bordbar, M., Neshat, A., & Javadi, S. (2019) Modification of the GALDIT
framework using statistical and entropy models to assess coastal aquifer
vulnerability. Hydrological Sciences Journal, 64(9), pp. 1117-1128.
10.1080/02626667.2019.1620951
Bordbar, M., Neshat, A., Javadi, S., Pradhan, B., & Aghamohammadi, H.
(2020). Meta-heuristic algorithms in optimizing GALDIT framework: A
comparative study for coastal aquifer vulnerability assessment. Journal
of Hydrology, 585, p. 124768. 10.1016/j.jhydrol.2020.124768.
Botero-Acosta, A. & Donado, L.D. (2015). Laboratory scale simulation of
hydraulic barriers to seawater intrusion in confined coastal aquifers
considering the effects of stratification. Process and Environment
Science, 25, pp. 36-43.
Carretero, S., Rapaglia, J., Bokuniewicz, H., & Kruse, E. (2013).
Impact of sea-level rise on saltwater intrusion length into the coastal
aquifer, Partido de La Costa, Argentina. Continental Shelf Research,
61-62, pp. 62-70.
Chachadi, G. & Lobo-Ferreira, J.P., (2001). Sea water intrusion
vulnerability mapping of aquifers using the GALDIT method. COASTIN
Newsletter, 4, 7-9p.
Chamine, H.I. (2015). Water Resources Meet Sustainability: New Trends in
Environmental Hydrogeology and Groundwater Engineering. Environmental
Earth Sciences, 73, pp. 2513–2520. 10.1007/s12665-014-3986-y.
Chang, N.-B. (2010). Effects of urbanization on groundwater: An
engineering case-based approach for sustainable development.
10.1061/9780784410783.
Chang, S.W., Chung, I.-M., Kim, M.-G., Tolera, M. & Koh, G.-W. (2019)
Application of GALDIT in Assessing the Seawater Intrusion Vulnerability
of Jeju Island, South Korea. Water, 11, p. 1824. 10.3390/w11091824
Chun, J.A., Lim, C., Kim, D. & Kim, J.S. (2018) Assessing Impacts of
Climate Change and Sea-Level Rise on Seawater Intrusion in a Coastal
Aquifer. Water, 10, p. 357. 10.3390/w10040357
Civita, M. (1994) Le Carte della vulnerabilità degli acquiferi
all’inquinamento: teoria&pratica [Aquifer vulnerability to pollution
maps: theory and practice]. Pitagora, Bologna, Italy.
Gogu, R.C. & Dassargues, A. (2000), Current trends and future
challenges in groundwater vulnerability assessment using overlay and
index methods. Environmental Geology, 39(6), pp. 549-559.
Gontara, M., Allouche, N., Jmal, I. & Bouri, S. (2016) Sensitivity
analysis for the GALDIT method based on the assessment of vulnerability
to pollution in the northern Sfax coastal aquifer, Tunisia. Arabian
Journal of Geosciences, 9, 10.1007/s12517-016-2437-3.
Gorgij, A.D. & Moghaddam, A.A. (2016). Vulnerability Assessment of
saltwater intrusion using simplified GAPDIT method: a case study of
Azarshahr Plain Aquifer, East Azerbaijan, Iran. Arabian Journal of
Geosciences, 9. 10.1007/s12517-015-2200-1.
Gundogdu, K.S., & Guney, I. (2007). Spatial analyses of groundwater
levels using universal kriging. Journal of Earth System Science, 116(1),
pp. 49-55.
Hallal, D., Khelfi, M.E.A., Zahouani, S., Benamghar, A., Haddad, O.,
Ammari, A., & Lobo-Ferreira, J. (2019). Application of the GALDIT
method combined with geostatistics at the Bouteldja aquifer (Algeria).
Environmental Earth Sciences, 78. 10.1007/s12665-018-8005-2.
Howard, K. (2002). Urban Groundwater Issues—An Introduction. 8.
10.1007/978-94-010-0409-1_1.
Jang, S., Hamm, SY., Yoon, H., Kim, G.-B., Park, J.-H. & Kim, M.S.
(2015) Predicting long-term change of groundwater level with regional
climate model in South Korea. Geosciences Journal, 19, pp. 503–513.
10.1007/s12303-015-0002-9
Kazakis, N., Spiliotis, M., Pliakas, F.-K., & Papadopoulos, B. (2017) A
fuzzy multicriteria categorization of the GALDIT method to assess
seawater intrusion vulnerability of coastal aquifers. Science of the
Total Environment, 621. 10.1016/j.scitotenv.2017.11.235.
Kim, I.-H. & Yang, J.-S. (2018) Prioritizing countermeasures for
reducing seawater-intrusion area by considering regional characteristics
using SEAWAT and a multi-criteria decision-making method. Hydrological
Processes, 32. 10.1002/hyp.13283.
Kim, K.-Y., Seong, H. J., Kim, T. H., Park, K.-H., Woo, N., Park, Y.-S.,
Koh, G.-W.& Park, W.-B. (2006). Tidal effects on variations of
fresh-saltwater interface and groundwater flow in a multilayered coastal
aquifer on a volcanic island (Jeju Island, Korea). Journal of Hydrology,
330, pp. 525-542. 10.1016/j.jhydrol.2006.04.022.
Klassen, J. & Allen, Diana. (2017). Assessing the Risk of Saltwater
Intrusion in Coastal Aquifers. Journal of Hydrology, 551,
10.1016/j.jhydrol.2017.02.044.
Korea Hydrographic and Oceanographic Agency. http://www.khoa.go.kr
(accessed on 22 Feburary 2021)
Kuan, W. K., Jin, G., Xin, P., Robinson, C., Gibbes, B., & Li,
L. (2012) Tidal influence on seawater intrusion in unconfined coastal
aquifers. Water Resources Research, 48, W02502, 10.1029/2011WR010678.
Langevin, C.D. & Zygnerski, M. (2013). Effect of sea-level rise on salt
water intrusion near a coastal well field in Southeastern Florida.
Groundwater, 51, pp. 781-803.
Lee, J.-Y., Yi, M.-J., Song, S.-H., & Lee, G.-S. (2008) Evaluation of
seawater intrusion on the groundwater data obtained from the monitoring
network in Korea. Water International, 33(1), pp. 127-146.
10.1080/02508060801927705
Loáiciga, H.A., Pingel, T.J., & Garcia, E.S. (2012) Seawater intrusion
by sea-level rise: scenarios for the 21st century. Groundwater, 50, pp.
37-47.
Lodwick, W., Monson, W., & Svoboda, L. (1990). Attribute error and
sensitivity analysis of map operations in geographical information
systems. International Journal of Geographical Information Science, 4,
pp. 413-428. 10.1080/02693799008941556.
Luoma, J., Ruutu, S., King, A.W., & Tikkanen, H. (2017) Time delays,
competitive interdependence, and firm performance. Strategic Management
Journal, 38, pp. 506-525. https://doi.org/10.1002/smj.2512
Luyun, R., Momii, K., &Nakagawa, K. (2011). Effects of recharge wells
and flow barriers on seawater intrusion. Ground Water, 49, pp. 239-249.
Mahrez, B., Klebingat, S., Houha, B, & Houria, K. (2018). GIS-based
GALDIT method for vulnerability assessment to seawater intrusion of the
Quaternary coastal Collo aquifer (NE-Algeria). Arabian Journal of
Geosciences, 11. 10.1007/s12517-018-3400-2.
Ministry of Oceans and Fisheries. (2003). Coast condition survey
report-West coast, Ministry of Oceans and Fisheries.
Mondal, I., Bandyopadhyay, J., & Chowdhury, P. (2019). A GIS based
DRASTIC model for assessing groundwater vulnerability in Jangalmahal
area, West Bengal, India. Sustainable Water Resources Management, 5, pp.
557–573.
Napolitano, P. & Fabbri, A.G. (1996) Single Parameter Sensitivity
Analysis for Aquifer Vulnerability Assessment Using DRASTIC and SINTACS.
In: Kovar, K. and Nachtnebel, H.P., Eds., HydrolGis Application of
Geographic Information Systems in Hydrology and Water Resources
Management, IAHS Publication, Wallingford, pp. 559-566.
National Geographic Information Institute. http://www.ngii.go.kr
((accessed on 22 Feburary 2021)
National Groundwater Information Center. http://www.gims.go.kr (accessed
on 22 Feburary 2021)
National Research Council, (1993). Ground water vulnerability
assessment: Predicting relative contamination potential under conditions
of uncertainty, National Academy Press, Washington, DC, pp. 42-63.
Nicholls, R. J., Nicholls, P.P.W., Burkett, V., Colin D.W., & Hay, J.
(2008). Climate Change and Coastal Vulnerability Assessment: Scenarios
for Integrated Assessment. Sustainability Science, 3, pp. 89–102.
10.1007/s11625-008-0050-4
Pool, M. & Carrera, J. (2010). Dynamics of negative hydraulic barriers
to prevent seawater intrusion. Hydrogeology Journal, 18, pp. 95-105.
Rasmussen, P., Sonnenborg, T.O., Goncear, G. & Hinsby, K. (2013).
Assessing impacts of climate change, sea level rise, and drainage canals
on saltwater intrusion to coastal aquifer. Hydrology and Earth System
Sciences, 17, pp. 421-443.
Rasmussen, P., Sonnenborg, T.O., Goncear, G., & Hinsby, K. (2013)
Assessing impacts of climate change, sea level rise, and drainage canals
on saltwater intrusion to coastal aquifer. Hydrology and Earth System
Science, 17, pp. 421-443.
Ray, S.S. & Ray, A., (2019). Major ground water development issues in
South Asia: an overview. In: Ground Water Development-Issues and
Sustainable Solutions. Springer, Singapore, pp. 3–11.
Recinos, N., Kallioras, A., Pliakas, F.-K. & Schüth, C. (2014).
Application of GALDIT index to assess the intrinsic vulnerability to
seawater intrusion of coastal granular aquifers. Environmental Earth
Sciences, 73. 10.1007/s12665-014-3452-x.
Saidi, S., Bouri S., & Dhia, H.B. (2011) Sensitivity analysis in
groundwater vulnerability assessment based on GIS in the Mahdia-Ksour
Essaf aquifer, Tunisia: a validation study. Hydrological Sciences
Journal, 56(2), pp. 288-304. 10.1080/02626667.2011.552886
Saidi, S., Bouri, S., & Dhia, H.B. (2013). Groundwater management based
on GIS techniques, chemical indicators and vulnerability to seawater
intrusion modelling: application to the Mahdia–Ksour Essaf aquifer,
Tunisia. Environmental Earth Sciences, 70, pp. 1551–1568.
10.1007/s12665-013-2241-2
Sefelnasr, A. & Sherif, M. (2014) Impacts of seawater rise on seawater
intrusion in the Nile Delta aquifer. Egypt. Groundwater, 52, pp.
264-276.
Sherif, M.M. & Singh, V.P. (1999). Effect of climate change on seawater
intrusion in coastal aquifers. Hydrological Processes, 13, pp.
1277-1287.
Shin, J. & Hwang, S. (2020) A Borehole-Based Approach for Seawater
Intrusion in Heterogeneous Coastal Aquifers, Eastern Part of Jeju
Island, Korea. Water, 12, p. 609. 10.3390/w12020609
Sriapai, T., Walsri, C., Phueakphum, D. & Fuenkajorn, K. (2012).
Physical model simulations of seawater intrusion in unconfined aquifer.
Songklanakarin Journal of Science and Technology, 34, pp. 679-687.
Sun, Y., Kang, S., Li, F., & Zhang, L. (2009) Comparison of
interpolation methods for depth to groundwater and its temporal and
spatial variations in the Minqin oasis of northwest China. Environmental
Modelling & Software, 24(10), pp. 1163-1170.
Todd, D. K. & Mays L. W. (2005). Groundwater Hydrology (3rd edition).
John Wiley & Sons, Inc., New York, USA.
Uricchio, V.F., Giordano, R., & Lopez, N. (2004). A fuzzy
knowledge-based decision support system for groundwater pollution risk
evaluation. Journal of Environmental Management, 73(3), pp. 189–197.