References
Abarca, E., Vázquez-Suñé, E., Carrera, J., Capino, B., Gámez, D. & Batlle, F. (2006). Optimal design of measures to correct seawater intrusion. Water Resource Research, 42. http://dx.doi.org/10.1029/2005WR004524.
Aller, L., Bennett, T., Lehr, J.H., Petty, R.J., & Hackett, G. (1987). DRASTIC: A Standardized System for Evaluating Groundwater Pollution Potential Using Hydrogeologic Settings. Environmental Protection Agency NWWA/EPA Series EPA-600/2-87-035. Dublin, Ireland: National Water Well Association.
Allouche, N., Maanan, M., Gontara, M., Rollo, N. & Jmal, I. (2017) A global risk approach to assessing groundwater vulnerability. Environmental Modelling and Software, Elsevier, 88, pp. 168-182. ⟨hal-01512478⟩
Anghileri, D., Pianosi, F. & Soncini-Sessa, R. (2014) Trend detection in seasonal data: From hydrology to water resources. Journal of Hydrology, -. 10.1016/j.jhydrol.2014.01.022.
Azimi, S., Moghaddam, M.A. & Monfared, S.A.H. (2018). Spatial assessment of the potential of groundwater quality using fuzzy AHP in GIS. Arabian Journal of Geosciences, 11(7), p. 142.
Babiker, I. S., Mohamed, M. A., Hiyama, T., & Kato, K. (2005). A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, Central Japan. Science of the Total Environment, 345, pp. 127–140.
Bernard-Jannin, L., Sun, X., Teissier, S., Sauvage, S., & Sanchez-Perez, J.M. (2017). Spatiotemporal analysis of factors controlling nitrate dynamics and potential denitrification hot spots and hot moments in groundwater of an alluvial floodplain. Ecological Engineering, 103, pp. 372–384.
Bobba, A.G. (2002). Numerical modelling of salt-water intrusion due to human activities and sea-level change in the Godavari Delta, India. Hydrological Science Journal, 47, S67-S80.
Bordbar, M., Neshat, A., & Javadi, S. (2019) Modification of the GALDIT framework using statistical and entropy models to assess coastal aquifer vulnerability. Hydrological Sciences Journal, 64(9), pp. 1117-1128. 10.1080/02626667.2019.1620951
Bordbar, M., Neshat, A., Javadi, S., Pradhan, B., & Aghamohammadi, H. (2020). Meta-heuristic algorithms in optimizing GALDIT framework: A comparative study for coastal aquifer vulnerability assessment. Journal of Hydrology, 585, p. 124768. 10.1016/j.jhydrol.2020.124768.
Botero-Acosta, A. & Donado, L.D. (2015). Laboratory scale simulation of hydraulic barriers to seawater intrusion in confined coastal aquifers considering the effects of stratification. Process and Environment Science, 25, pp. 36-43.
Carretero, S., Rapaglia, J., Bokuniewicz, H., & Kruse, E. (2013). Impact of sea-level rise on saltwater intrusion length into the coastal aquifer, Partido de La Costa, Argentina. Continental Shelf Research, 61-62, pp. 62-70.
Chachadi, G. & Lobo-Ferreira, J.P., (2001). Sea water intrusion vulnerability mapping of aquifers using the GALDIT method. COASTIN Newsletter, 4, 7-9p.
Chamine, H.I. (2015). Water Resources Meet Sustainability: New Trends in Environmental Hydrogeology and Groundwater Engineering. Environmental Earth Sciences, 73, pp. 2513–2520. 10.1007/s12665-014-3986-y.
Chang, N.-B. (2010). Effects of urbanization on groundwater: An engineering case-based approach for sustainable development. 10.1061/9780784410783.
Chang, S.W., Chung, I.-M., Kim, M.-G., Tolera, M. & Koh, G.-W. (2019) Application of GALDIT in Assessing the Seawater Intrusion Vulnerability of Jeju Island, South Korea. Water, 11, p. 1824. 10.3390/w11091824
Chun, J.A., Lim, C., Kim, D. & Kim, J.S. (2018) Assessing Impacts of Climate Change and Sea-Level Rise on Seawater Intrusion in a Coastal Aquifer. Water, 10, p. 357. 10.3390/w10040357
Civita, M. (1994) Le Carte della vulnerabilità degli acquiferi all’inquinamento: teoria&pratica [Aquifer vulnerability to pollution maps: theory and practice]. Pitagora, Bologna, Italy.
Gogu, R.C. & Dassargues, A. (2000), Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environmental Geology, 39(6), pp. 549-559.
Gontara, M., Allouche, N., Jmal, I. & Bouri, S. (2016) Sensitivity analysis for the GALDIT method based on the assessment of vulnerability to pollution in the northern Sfax coastal aquifer, Tunisia. Arabian Journal of Geosciences, 9, 10.1007/s12517-016-2437-3.
Gorgij, A.D. & Moghaddam, A.A. (2016). Vulnerability Assessment of saltwater intrusion using simplified GAPDIT method: a case study of Azarshahr Plain Aquifer, East Azerbaijan, Iran. Arabian Journal of Geosciences, 9. 10.1007/s12517-015-2200-1.
Gundogdu, K.S., & Guney, I. (2007). Spatial analyses of groundwater levels using universal kriging. Journal of Earth System Science, 116(1), pp. 49-55.
Hallal, D., Khelfi, M.E.A., Zahouani, S., Benamghar, A., Haddad, O., Ammari, A., & Lobo-Ferreira, J. (2019). Application of the GALDIT method combined with geostatistics at the Bouteldja aquifer (Algeria). Environmental Earth Sciences, 78. 10.1007/s12665-018-8005-2.
Howard, K. (2002). Urban Groundwater Issues—An Introduction. 8. 10.1007/978-94-010-0409-1_1.
Jang, S., Hamm, SY., Yoon, H., Kim, G.-B., Park, J.-H. & Kim, M.S. (2015) Predicting long-term change of groundwater level with regional climate model in South Korea. Geosciences Journal, 19, pp. 503–513. 10.1007/s12303-015-0002-9
Kazakis, N., Spiliotis, M., Pliakas, F.-K., & Papadopoulos, B. (2017) A fuzzy multicriteria categorization of the GALDIT method to assess seawater intrusion vulnerability of coastal aquifers. Science of the Total Environment, 621. 10.1016/j.scitotenv.2017.11.235.
Kim, I.-H. & Yang, J.-S. (2018) Prioritizing countermeasures for reducing seawater-intrusion area by considering regional characteristics using SEAWAT and a multi-criteria decision-making method. Hydrological Processes, 32. 10.1002/hyp.13283.
Kim, K.-Y., Seong, H. J., Kim, T. H., Park, K.-H., Woo, N., Park, Y.-S., Koh, G.-W.& Park, W.-B. (2006). Tidal effects on variations of fresh-saltwater interface and groundwater flow in a multilayered coastal aquifer on a volcanic island (Jeju Island, Korea). Journal of Hydrology, 330, pp. 525-542. 10.1016/j.jhydrol.2006.04.022.
Klassen, J. & Allen, Diana. (2017). Assessing the Risk of Saltwater Intrusion in Coastal Aquifers. Journal of Hydrology, 551, 10.1016/j.jhydrol.2017.02.044.
Korea Hydrographic and Oceanographic Agency. http://www.khoa.go.kr (accessed on 22 Feburary 2021)
Kuan, W. K., Jin, G., Xin, P., Robinson, C., Gibbes, B., & Li, L. (2012) Tidal influence on seawater intrusion in unconfined coastal aquifers. Water Resources Research, 48, W02502, 10.1029/2011WR010678.
Langevin, C.D. & Zygnerski, M. (2013). Effect of sea-level rise on salt water intrusion near a coastal well field in Southeastern Florida. Groundwater, 51, pp. 781-803.
Lee, J.-Y., Yi, M.-J., Song, S.-H., & Lee, G.-S. (2008) Evaluation of seawater intrusion on the groundwater data obtained from the monitoring network in Korea. Water International, 33(1), pp. 127-146. 10.1080/02508060801927705
Loáiciga, H.A., Pingel, T.J., & Garcia, E.S. (2012) Seawater intrusion by sea-level rise: scenarios for the 21st century. Groundwater, 50, pp. 37-47.
Lodwick, W., Monson, W., & Svoboda, L. (1990). Attribute error and sensitivity analysis of map operations in geographical information systems. International Journal of Geographical Information Science, 4, pp. 413-428. 10.1080/02693799008941556.
Luoma, J., Ruutu, S., King, A.W., & Tikkanen, H. (2017) Time delays, competitive interdependence, and firm performance. Strategic Management Journal, 38, pp. 506-525. https://doi.org/10.1002/smj.2512
Luyun, R., Momii, K., &Nakagawa, K. (2011). Effects of recharge wells and flow barriers on seawater intrusion. Ground Water, 49, pp. 239-249.
Mahrez, B., Klebingat, S., Houha, B, & Houria, K. (2018). GIS-based GALDIT method for vulnerability assessment to seawater intrusion of the Quaternary coastal Collo aquifer (NE-Algeria). Arabian Journal of Geosciences, 11. 10.1007/s12517-018-3400-2.
Ministry of Oceans and Fisheries. (2003). Coast condition survey report-West coast, Ministry of Oceans and Fisheries.
Mondal, I., Bandyopadhyay, J., & Chowdhury, P. (2019). A GIS based DRASTIC model for assessing groundwater vulnerability in Jangalmahal area, West Bengal, India. Sustainable Water Resources Management, 5, pp. 557–573.
Napolitano, P. & Fabbri, A.G. (1996) Single Parameter Sensitivity Analysis for Aquifer Vulnerability Assessment Using DRASTIC and SINTACS. In: Kovar, K. and Nachtnebel, H.P., Eds., HydrolGis Application of Geographic Information Systems in Hydrology and Water Resources Management, IAHS Publication, Wallingford, pp. 559-566.
National Geographic Information Institute. http://www.ngii.go.kr ((accessed on 22 Feburary 2021)
National Groundwater Information Center. http://www.gims.go.kr (accessed on 22 Feburary 2021)
National Research Council, (1993). Ground water vulnerability assessment: Predicting relative contamination potential under conditions of uncertainty, National Academy Press, Washington, DC, pp. 42-63.
Nicholls, R. J., Nicholls, P.P.W., Burkett, V., Colin D.W., & Hay, J. (2008). Climate Change and Coastal Vulnerability Assessment: Scenarios for Integrated Assessment. Sustainability Science, 3, pp. 89–102. 10.1007/s11625-008-0050-4
Pool, M. & Carrera, J. (2010). Dynamics of negative hydraulic barriers to prevent seawater intrusion. Hydrogeology Journal, 18, pp. 95-105.
Rasmussen, P., Sonnenborg, T.O., Goncear, G. & Hinsby, K. (2013). Assessing impacts of climate change, sea level rise, and drainage canals on saltwater intrusion to coastal aquifer. Hydrology and Earth System Sciences, 17, pp. 421-443.
Rasmussen, P., Sonnenborg, T.O., Goncear, G., & Hinsby, K. (2013) Assessing impacts of climate change, sea level rise, and drainage canals on saltwater intrusion to coastal aquifer. Hydrology and Earth System Science, 17, pp. 421-443.
Ray, S.S. & Ray, A., (2019). Major ground water development issues in South Asia: an overview. In: Ground Water Development-Issues and Sustainable Solutions. Springer, Singapore, pp. 3–11.
Recinos, N., Kallioras, A., Pliakas, F.-K. & Schüth, C. (2014). Application of GALDIT index to assess the intrinsic vulnerability to seawater intrusion of coastal granular aquifers. Environmental Earth Sciences, 73. 10.1007/s12665-014-3452-x.
Saidi, S., Bouri S., & Dhia, H.B. (2011) Sensitivity analysis in groundwater vulnerability assessment based on GIS in the Mahdia-Ksour Essaf aquifer, Tunisia: a validation study. Hydrological Sciences Journal, 56(2), pp. 288-304. 10.1080/02626667.2011.552886
Saidi, S., Bouri, S., & Dhia, H.B. (2013). Groundwater management based on GIS techniques, chemical indicators and vulnerability to seawater intrusion modelling: application to the Mahdia–Ksour Essaf aquifer, Tunisia. Environmental Earth Sciences, 70, pp. 1551–1568. 10.1007/s12665-013-2241-2
Sefelnasr, A. & Sherif, M. (2014) Impacts of seawater rise on seawater intrusion in the Nile Delta aquifer. Egypt. Groundwater, 52, pp. 264-276.
Sherif, M.M. & Singh, V.P. (1999). Effect of climate change on seawater intrusion in coastal aquifers. Hydrological Processes, 13, pp. 1277-1287.
Shin, J. & Hwang, S. (2020) A Borehole-Based Approach for Seawater Intrusion in Heterogeneous Coastal Aquifers, Eastern Part of Jeju Island, Korea. Water, 12, p. 609. 10.3390/w12020609
Sriapai, T., Walsri, C., Phueakphum, D. & Fuenkajorn, K. (2012). Physical model simulations of seawater intrusion in unconfined aquifer. Songklanakarin Journal of Science and Technology, 34, pp. 679-687.
Sun, Y., Kang, S., Li, F., & Zhang, L. (2009) Comparison of interpolation methods for depth to groundwater and its temporal and spatial variations in the Minqin oasis of northwest China. Environmental Modelling & Software, 24(10), pp. 1163-1170.
Todd, D. K. & Mays L. W. (2005). Groundwater Hydrology (3rd edition). John Wiley & Sons, Inc., New York, USA.
Uricchio, V.F., Giordano, R., & Lopez, N. (2004). A fuzzy knowledge-based decision support system for groundwater pollution risk evaluation. Journal of Environmental Management, 73(3), pp. 189–197.