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Abstract

In this paper, we consider two singular planar differential systems which can

describe the evolution of the optical pulse width and chirp for the so-called

dispersion-managed solitons. Based on the method of third order approximation

in combination with some quantitative information obtained by the upper-lower

solutions method and the averaging method, some results on the existence and

Lyapunov stability of the periodic solutions are obtained. Moreover, the formula

of the first twist coefficient and a stability criterion of a nonlinear differential

equation are also established.
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1. Introduction and main results

In data communication systems, due to the widespread use of internet, there

is increasing demand to achieve high data transmitting rate in a fiber cable. For

this purpose, an approach is to make use of nonlinear light wave communica-

tions with suitable periodic to compensate for dispersive and loss effects. The

transmission of the optical pulse in a fiber cable is described by the following
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equation (see [16, 28, 29])

iΦz −
η(z)Φtt

2
+ θ(t)|Φ|2Φ = iW (z)Φ,

where Φ is the complex valued function of the electric field, η(z) models the

dispersion, θ(t) models the nonlinear refractive response, W (z) accounts for the

effective loss or gain along the fiber, z is the longitudinal coordinate of the fiber

line and t is the time. In this paper, it is assumed that the optical fiber has a

periodic structure such that the coefficients are periodic. Choose

Φ(z, t) = ω(z, t)e

∫ z

0

W (s)ds
,

which can remove the right hand side term of the above equation to obtain the

following Schrödinger equation

iωz + l(z)ωtt +m(z)|ω|2ω = 0, (1.1)

where l,m are T -periodic functions. It is universally accepted that the central

part of the desired pulse shaped solution to the above equation is described to

leading order by

ω(z, t) =
P
(

t
u(z)

)√
u(z)

e

(
i
v(z)

u(z)
t2
)
,

where u and v describe the optical pulse width and the chirp of the breathing

central part of the optical soliton, P is an input pulse with

P (x) = µ0e
−x

2

2 .

Then, substituting the above ansatz into the following action functional of the

equation (1.1)

J(ω, ω̃) =

∫ [
il(z)

2
(ωω̃z − ω̃ωz)|ωt|2 −

m(z)

2
|ω|4

]
dtdz,

we can get the following singular planar differential system (see [1] for the de-

tailed derivation)  u′ = 4l(z)v,

v′ =
µ1l(z)

u3
− µ2m(z)

u2
,

(1.2)
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here µ1 and µ2 are constants with

µ1 =

∫
|P ′(x)|2dx∫
x2|P (x)|2dx

, µ2 =

∫
|P (x)|4dx

4
∫
x2|P (x)|2dx

.

In physical applications, one of the main objectives is to study the dynamical

behaviors of the system (1.2), including the dynamics properties of periodic

solutions. During the past few years, the existence of periodic solutions of the

system (1.2) has been studied by a combined variational-topological approach

[14], direct calculation and estimates [17], the averaging method and the implicit

function theorem [18]. Here, we refer the reader to the classical monograph [33]

for a more detailed description of the existence results in [14, 17, 18]. But as far

as we know, there are no analytic results available about the Lyapunov stability

of periodic solutions of the system (1.2) up to now. Motivated by this, in this

paper, we study the Lyapunov stability of periodic solutions of the following

more general singular planar differential system u′ = g(t)v,

v′ =
h(t)

ul
− p(t)

uα

(1.3)

and the singular planar differential system with a small parameter u′ = g(t)v,

v′ =
h(t)

ul
− εp(t)

uα
,

(1.4)

where l, α > 0, g, h and p are T -periodic functions, ε is a small parameter.

Obviously, the system (1.2) is a particular case of the above two systems. More-

over, the similar systems like (1.3) and (1.4) also have applications in some

other physical contexts, such as molecular dynamics [24] and the Bose-Einstein

condensates with a periodic control of the scattering length [2, 22].

Since the case l < α may lead to unstable periodic solutions (see [11, 18]).

Therefore, throughout this paper, we always assume that 0 < α < l and denote

κ by

κ =
1

l − α
.
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Moreover, for a given T -periodic function g, we denote

g∗ = sup
t∈[0,T ]

g(t), g∗ = inf
t∈[0,T ]

g(t), ḡ =
1

T

∫ T

0

g(s)ds.

Now, we state the stability result for the system (1.3).

Theorem 1.1. Assume that g, h, p ∈ C(R/TZ,R+),

g(t) ≥ 4g0, ∀t ∈ R (1.5)

and

h∗g∗

h∗g∗
<

(
5(l + α+ 1)2

3(l2 + lα+ α2 + 3l + 3α+ 2)

) 2
7

, (1.6)

where

g0 =

(
T ḡ

π

)2
(p∗)κ(l+1)

(h∗)κ(α+1)
[l − αγκ(l+1)], γ =

h∗p∗
h∗p∗

.

Then there exists a constant γ0 ∈ (0, 1) such that the system (1.3) has a stable

T -periodic solution (u, v) if γ > γ0.

The proof of Theorem 1.1 will be presented in Section 3 by a stability cri-

terion which will be obtained in Section 2 combined with some quantitative

information obtained by the upper-lower solutions method on the reversed or-

der. This is a kind of global result, because the upper-lower solutions method

provides us the explicit bounds of the periodic solutions.

We are now ready to state the stability result for the system (1.4).

Theorem 1.2. Assume that g, h ∈ C(R/TZ,R+), p̄ > 0,

l

α
≥ h̄p∗

p̄h∗
(1.7)

and

2l2 + 2α2 + 7lα+ l + α > 1. (1.8)

Then the system (1.4) has a stable T -periodic solution
(
u, v
)

if ε is small enough.

The proof of Theorem 1.2 will be given in Section 4 by the method of third

order approximation in combination with some asymptotic information obtained

4



by the averaging method. This is a kind of perturbative result, because the aver-

aging method provides us the asymptotic information of the periodic solutions.

Theorem 1.1 and 1.2 can directly apply to the system (1.2), as the following

corollary shows.

Corollary 1.3. For the system (1.2), we have the following two results:

(1) Assume that l,m ∈ C(R/TZ,R+),

l∗

l∗
<
(5

3

) 1
7

and

l(t) ≥ 16

(
T l̄

π

)2
(µ2m

∗)4

(µ1l∗)3

[
3− 2

(
l∗m∗
l∗m∗

)4]
, ∀t ∈ R.

Then there exists a constant γ0 ∈ (0, 1) such that the system (1.2) has a

stable T -periodic solution if

l∗m∗
l∗m∗

> γ0.

(2) Assume that l ∈ C(R/TZ,R+), m̄ > 0, and

l̄m∗

m̄l∗
≤ 3

2
.

Then the system (1.2) has a stable T -periodic solution if µ0 is small e-

nough.

The method of third order approximation was established by Ortega [23]

and Zhang [36] for the second order conservative systems. During the past

few years, some progress has been made on this topic, we just refer the reader

to [4, 5, 9, 34, 37] for regular differential equations, [7, 8, 19, 20, 31, 32, 35]

for singular differential equations and [21] for a piecewise smooth dynamical

system. Obviously, the method of third order approximation cannot be directly

applied to the system (1.3) and (1.4). To do this, we will establish the formula of

the first twist coefficient for their equivalent equations in Section 2. Moreover,

a stability criterion is also obtained. It is worth noting that the first twist
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coefficient of such nonlinear differential equation presented in this paper is the

first one available in the literature.

Finally, we note that the study on the existence and dynamical behaviors of

periodic solutions of the first order singular planar differential systems is more

recent and there are still few works in the literature up to now. See [3, 13, 26]

and the references therein. To give more detail, Cheng and Cui [3] used Leray-

Schauder alternative principle, Manásevich-Mawhin continuation theorem and

fixed point theorem in cones to study the existence of positive periodic solutions

of the Basener-Ross system. In [13], a generalized version of the Poincaré-

Birkhoff theorem has been applied to study the existence of periodic solutions

for a singular Hamiltonian system by Fonda and Sfecci. The existence of periodic

solutions of the Steen’s planar system has been studied in [26] by the Poincaré-

Bohl theorem. To the best of our knowledge, the corresponding analytic results

about the Lyapunov stability of periodic solutions of the first order singular

planar differential systems has not been established in the literature up to now.

Therefore, the results of this paper will fill, at least partially, this gap.

2. The first twist coefficient and a stability criterion

From the first equation of systems (1.3) and (1.4), we have

v =
u′

g(t)
.

Then elimination of v in the second equation of systems (1.3) and (1.4) lead to

the following two singular differential equations(
u′

g(t)

)′
− h(t)

ul
+
p(t)

uα
= 0 (2.1)

and (
u′

g(t)

)′
− h(t)

ul
+
εp(t)

uα
= 0. (2.2)

It is easy to see that the periodic solutions of equations (2.1) and (2.2)

correspond to the periodic solutions of systems (1.3) and (1.4), respectively.
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Therefore, we need to study the Lyapunov stability of the above two equations

firstly.

In order to apply the method of third order approximation to the equations

(2.1) and (2.2), we will establish the formula of the first twist coefficient for the

following more general equation(
u′

g(t)

)′
+ f(t, u) = 0, (2.3)

where g ∈ C(R/TZ,R+) and f ∈ C0,4(R/TZ×R,R). The third order approxi-

mation of the above equation is(
u′

g(t)

)′
+ a(t)u+ b(t)u2 + c(t)u3 + o(u3) = 0, (2.4)

where

a(t) =
∂f

∂u

∣∣∣∣
u=ϕ(t)

, b(t) =
1

2

∂2f

∂u2

∣∣∣∣
u=ϕ(t)

, c(t) =
1

6

∂3f

∂u3

∣∣∣∣
u=ϕ(t)

and ϕ is a T -periodic solution of (2.3). Obviously, a, b, c ∈ C(R/TZ,R). By [5,

(3.10)] or [6, Theorem 2.2], we know that if∫ T

0

g(t)dt ·
∫ T

0

a+(t)dt ≤ 4, (2.5)

then the following linearized equation of (2.4)(
u′

g(t)

)′
+ a(t)u = 0 (2.6)

is elliptic, here

a+(t) = max{0, a(t)}.

Under the change of time

s = τ(t) =

∫ t

0

g(s)ds,

equation (2.4) becomes

x′′ + ã(s)x+ b̃(s)x2 + c̃(s)x3 + o(x3) = 0, (2.7)

where x(s) = u(τ−1(s)) and

ã(s) =
a(τ−1(s))

g(τ−1(s))
, b̃(s) =

b(τ−1(s))

g(τ−1(s))
, c̃(s) =

c(τ−1(s))

g(τ−1(s))
,
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which are T̃ -periodic with

T̃ = τ(T ) =

∫ T

0

g(t)dt = T ḡ.

Then, by [23, 36], the first twist coefficient of the equation (2.7) is

β =

∫∫
[0,T̃ ]2

b̃(s)b̃(ν)r3(s)r3(ν)χθ(|φ̃(s)− φ̃(ν)|)dsdν

− 3

8

∫ T̃

0

c̃(s)r4(s)ds,

(2.8)

where r is a T̃ -periodic solution of the following equation

r′′ + ã(s)r =
1

r3
,

φ̃ and χθ are defined by

φ̃(t) =

∫ t

0

1

r2(s)
ds

and

χθ(ξ) =
3 cos(ξ − θ

2 )

16 sin( θ2 )
+

cos 3(ξ − θ
2 )

16 sin( 3θ
2 )

, ξ ∈ [0, θ],

with θ = T̃ % and % is the rotation number of the following equation

x′′ + ã(s)x = 0.

Obviously, the time rescaling does not change the sign of the first twist

coefficient of the equation (2.4). Substituting s = τ(t) and ν = τ(s) into (2.8),

then the first twist coefficient of the equation (2.4) can be written as, up to a

positive factor,

β =

∫∫
[0,T ]2

b(t)b(s)R3(t)R3(s)χθ(|φ(t)− φ(s)|)dtds

− 3

8

∫ T

0

c(t)R4(t)dt,

where R(t) = r(τ(t)) and φ(t) = φ̃(τ(t)).

If the linear equation (2.6) is elliptic and β 6= 0, then the T -periodic solution

ϕ of (2.3) is of twist type. According to Moser’s invariant curve theorem [27],

the twist periodic solution is Lyapunov stable.

Moreover, we obtain the following stability criterion.
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Theorem 2.1. Suppose that ϕ is a T -periodic solution of (2.3) such that

(A1) 0 < a∗ ≤ a∗ ≤ g∗
(

π

2T ḡ

)2

;

(A2) c∗ > 0;

(A3) 10a
3
2
∗
|b|2

∗
g

7
2
∗ > 9(a∗)

5
2 c∗(g∗)

7
2 ,

Then ϕ is of twist type.

Proof. By the fact that τ−1(s) is increasing in s and T̃ = τ(T ) = 2T ḡ, we get

ã∗ = sup
s∈[0,T̃ ]

a(τ−1(s))

g(τ−1(s))
= sup
t∈[0,T ]

a(t)

g(t)
≤ a∗

g∗
,

ã∗ = inf
s∈[0,T̃ ]

a(τ−1(s))

g(τ−1(s))
= inf
t∈[0,T ]

a(t)

g(t)
≥ a∗
g∗
.

Analogously, we have

|b̃|∗ ≥
|b|∗
g∗

, c̃∗ ≥
c∗
g∗
, c̃∗ ≤ c∗

g∗
.

Using the above inequalities, we notice that if (A1)-(A3) hold, then we have

(i) 0 < ã∗ ≤ ã∗ < ( π
2T̃

)2;

(ii) c̃∗ > 0;

(iii) 10(ã∗)
3
2 |b̃|2∗ > 9(ã∗)

5
2 c̃∗.

Then, by [31, Theorem 3.1], we know that the trivial solution x = 0 of (2.7) is

of twist type. By the fact that the time rescaling does not affect the stability

of equation (2.4), we conclude that the trivial solution u = 0 of (2.4) is also of

twist type, that is, ϕ is of twist type.

Here, we should point out that the Theorem 3.1 in [31] deals with the 2π-

periodic equations, but, we find that the assumptions (i)-(iii) of Theorem 3.1 in

[31] remain unchanged for an arbitrary period T when we check the details of

its proof. Therefore, we can use it directly in the above proof.
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3. Proof of Theorem 1.1

In this section, we will give the proof of Theorem 1.1 by the stability criterion

obtained in Section 2 and the upper-lower solutions method on the reversed

order [12, 30]. The proof falls naturally into three steps.

Step 1: Existence and the explicit bounds.

Based on the upper-lower solutions method on the reversed order, we ob-

tain the following results about the existence and explicit bounds of periodic

solutions of the system (1.3).

Lemma 3.1. Suppose that g, h, p ∈ C(R/TZ,R+) and

g(t) ≥ g0, ∀t ∈ R. (3.1)

Then the system (1.3) has a T -periodic solution (u, v) such that(h∗
p∗
)κ
< u(t) <

(h∗
p∗

)κ
, ∀t ∈ R. (3.2)

Proof. By the same change of time s = τ(t) which was defined in Section 2, we

can rewrite the equation (2.1) as

y′′(s) +
1

g̃(s)

(
− h̃(s)

yl(s)
+

p̃(s)

yα(s)

)
= 0, (3.3)

where

y(s) = u(τ−1(s)), h̃(s) = h(τ−1(s)),

p̃(s) = p(τ−1(s)), g̃(s) = g(τ−1(s))

are T̃ -periodic with T̃ = T ḡ. It is noticeable that

ψ1(s) =
( h̃∗
p̃∗
)κ

and

ψ2(s) =
( h̃∗
p̃∗

)κ
are constant strict upper and lower solution of the equation (3.3) with the

reserved order ψ2 > ψ1, respectively. Set

F (s, y) =
1

g̃(s)

(
− h̃(s)

yl(s)
+

p̃(s)

yα(s)

)
.
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By the upper-lower solutions method on the reversed order, we get that the

equation (3.3) has a T̃ -periodic solution if

Fy(s, y) =
1

g̃(s)

(
lh̃(s)

yl+1(s)
− αp̃(s)

yα+1(s)

)
≤ 1

g̃(s)

(
lh̃(s)

ψl+1
1 (s)

− αp̃(s)

ψα+1
2 (s)

)
≤ 1

g̃∗

(
lh̃∗

(
h̃∗
p̃∗

)κ(l+1)

− αp̃∗

(
h̃∗

p̃∗
)κ(α+1)

)

≤ (
π

T̃
)2, for every y ∈ [ψ1, ψ2]. (3.4)

By the facts that τ−1(s) is increasing in s, τ−1(0) = 0 and τ−1(T̃ ) = T , we

have

h̃∗ = sup
s∈[0,T̃ ]

h(τ−1(s)) = sup
s∈[0,T ]

h(t) = h∗

and

h̃∗ = inf
s∈[0,T̃ ]

h(τ−1(s)) = inf
s∈[0,T ]

h(t) = h∗.

Similarly, we have p̃∗ = p∗, p̃∗ = p∗ and g̃∗ = g∗. Then, (3.4) becomes

lh∗(p∗)κ(l+1)

(h∗)κ(l+1)
− α(p∗)

κ(l+1)

(h∗)κ(α+1)
≤ g∗

(
π

T ḡ

)2

. (3.5)

A simple calculation shows that (3.5) is equivalent to (3.1). Thus, if (3.1) holds,

then (3.3) has a T̃ -periodic solution y such that

( h̃∗
p̃∗
)κ

= ψ1(s) < y(s) < ψ2(s) =
( h̃∗
p̃∗

)κ
.

Accordingly, we show that the equation (2.1) has a T -periodic solution u(t) =

y(τ(t)) such that (3.2) holds, that is, the system (1.3) has a T -periodic solution

(u, v).

Step 2: We show that u is Lyapunov stable.

We will apply Theorem 2.1 to prove that the T -periodic solution u of (2.1)

obtained in Lemma 3.1 is of twist type and therefore is Lyapunov stable.
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Lemma 3.2. Suppose that (1.5) and (1.6) hold. Then there exists a constant

γ0 ∈ (0, 1) such that for every γ > γ0, the T -periodic solution u of the equation

(2.1) obtained in Lemma 3.1 is of twist type.

Proof. We first compute the coefficients in (2.4) for the equation (2.1)

a(t) =
lh(t)

ul+1
− αp(t)

uα+1
,

b(t) =
−l(l + 1)h(t)

2ul+2
+
α(α+ 1)p(t)

2uα+2
, (3.6)

c(t) =
l(l + 1)(l + 2)h(t)

6ul+3
− α(α+ 1)(α+ 2)p(t)

6uα+3
. (3.7)

Taking into account (3.2), we have

a(t) >
lh(t)

(
h∗

p∗
)κ(l+1)

− αp(t)

(
h∗
p∗

)κ(α+1)

and

a(t) <
lh(t)

(
h∗
p∗

)κ(l+1)
− αp(t)

(
h∗

p∗
)κ(α+1)

. (3.8)

Then, we can verify that if

γ >
(α
l

) 1

κ(l + 1)
:= γ1,

then

a∗ >
lh∗

(
h∗

p∗
)κ(l+1)

− αp∗

(
h∗
p∗

)κ(α+1)

= h∗

[
l(
p∗
h∗

)κ(l+1) − α(
p∗

h∗
)κ(l+1)

]
= h∗(

p∗

h∗
)κ(l+1)

[
lγκ(l+1) − α

]
(3.9)

> 0.
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Combining (1.5) with (3.8), we have

a∗ <
lh∗

(h∗
p∗ )κ(l+1)

− αp∗

(h
∗

p∗
)κ(α+1)

=
lh∗(p∗)κ(l+1)

(h∗)κ(l+1)
− α(p∗)

κ(l+1)

(h∗)κ(α+1)

= h∗
(
p∗

h∗

)κ(l+1)(
l − αγκ(l+1)

)
(3.10)

≤ g∗(
π

2T ḡ
)2.

Then the above two inequalities show that (A1) of Theorem 2.1 is satisfied. By

the estimates (3.2) and (3.7), one can find that if

γ >

(
α(α+ 1)(α+ 2)

l(l + 1)(l + 2)

) 1

κ(l + 3)
:= γ2,

then

c∗ >
l(l + 1)(l + 2)h∗

6(
h∗

p∗
)κ(l+3)

− α(α+ 1)(α+ 2)p∗

6(
h∗
p∗

)κ(α+3)

= h∗

(
p∗

h∗

)κ(l+3)[ l(l + 1)(l + 2)

6
γκ(l+3) − α(α+ 1)(α+ 2)

6

]
(3.11)

> 0.

We thus get that (A2) of Theorem 2.1 holds. Analogously, we have

c∗ <
l(l + 1)(l + 2)h∗

6(
h∗
p∗

)k(l+3)
− α(α+ 1)(α+ 2)p∗

6(
h∗

p∗
)k(α+3)

= h∗
[
l(l + 1)(l + 2)

6

(
p∗

h∗

)κ(l+3)

− α(α+ 1)(α+ 2)

6

(
p∗
h∗

)k(l+3)]
= h∗

(
p∗

h∗

)k(l+3)[ l(l + 1)(l + 2)

6
− α(α+ 1)(α+ 2)

6
γκ(l+3)

]
. (3.12)

Substituting the estimates (3.2) into (3.6), we are able to obtain that if

γ >

(
α(α+ 1)

l(l + 1)

) 1

κ(l + 2)
:= γ3,
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then

b(t) < − l(l + 1)h∗

2(
h∗

p∗
)κ(l+2)

+
α(α+ 1)p∗

2(
h∗
p∗

)κ(α+2)

= h∗

(
− l(l + 1)

2
(
p∗
h∗

)κ(l+2) +
α(α+ 1)

2
(
p∗

h∗
)κ(l+2)

)
= h∗(

p∗

h∗
)κ(l+2)

(
− l(l + 1)

2
γκ(l+2) +

α(α+ 1)

2

)
< 0,

which yields

|b|∗ > h∗(
p∗

h∗
)κ(l+2)

(
l(l + 1)

2
γκ(l+2) − α(α+ 1)

2

)
. (3.13)

By virtue of (3.9), (3.10), (3.12) and (3.13), a simple computation shows that

the condition (A3) of Theorem 2.1 holds if

G1

(
γ
)
> G2

(
γ
)
, (3.14)

where

G1(γ) = 5(h∗g∗)
7
2 (lγκ(l+1) − α)

3
2

[
l(l + 1)γκ(l+2) − α(α+ 1)

]2
,

G2(γ) = 3(h∗g∗)
7
2 (l − αγκ(l+1))

5
2 [l(l + 1)(l + 2)− α(α+ 1)(α+ 2)γκ(l+3)].

Moreover, by (1.6), we get

G1(1)−G2(1) =5(h∗g∗)
7
2 (l − α)

3
2 (l(l + 1)− α(α+ 1))2

− 3(h∗g∗)
7
2 (l − α)

5
2 [l(l + 1)(l + 2)− α(α+ 1)(α+ 2)]

=5(h∗g∗)
7
2 (l − α)

7
2 ·[

(l + α+ 1)2 − 3

5
(
h∗g∗

h∗g∗
)

7
2 (l2 + lα+ α2 + 3l + 3α+ 2)

]
>0.

Then, by continuity, the above inequality shows that there exists a constant

γ4 ∈ (0, 1) such that (3.14) holds if

γ > γ4.
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Fix

γ0 = max{γ1, γ2, γ3, γ4},

then the relations (3.9), (3.10), (3.11) and (3.14) imply that all conditions of

Theorem 2.1 are satisfied if

γ > γ0.

Applying Theorem 2.1, we get that the T -periodic solution u of the equation

(2.1) obtained in Lemma 3.1 is of twist type if γ > γ0.

Step 3: We verify that v is Lyapunov stable.

Suppose that u(t) = u(t, u(0), u′(0)) is a stable T -periodic solution of the

equation (2.1) which was obtained in Lemma 3.2. Let u1(t) = u1(t, u1(0), u′1(0))

be a new solution of the equation (2.1). According to the definition of Lyapunov

stability, we know that for any given ε > 0, there exists a δ1 > 0 such that

|u(0)− u1(0)|+ |u′(0)− u′1(0)| < δ1, (3.15)

then

|u(t)− u1(t)|+ |u′(t)− u′1(t)| < g∗ε. (3.16)

By Lemma 3.1, we get that the system (1.3) has a T -periodic solution

(u(t), v(t)) =
(
u(t, u(0), v(0)), v(t, u(0), v(0))

)
with

v(t) =
u′(t)

g(t)
.

Let

(u1(t), v1(t)) =
(
u1(t, u1(0), v1(0)), v1(t, u1(0), v1(0))

)
be a new solution of the system (1.3). By the relation (3.15) and the following

facts

v(0) =
u′(0)

g(0)
and v1(0) =

u′1(0)

g(0)
,

we know that there exists a δ2 > 0 such that

|u(0)− u1(0)|+ |v(0)− v1(0)| < δ2,
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then by (3.16), we have

|v(t)− v1(t)| = 1

g(t)
|u′(t)− u′1(t)|

≤ 1

g∗
|u′(t)− u′1(t)|

<ε,

which means that the T -periodic solution v is Lyapunov stable.

Up to now, the proof of Theorem 1.1 is finished.

4. Proof of Theorem 1.2

In this section, by the third order approximation and the averaging method

[15, 18, 25], we will verify the correctness of the Theorem 1.2. The proof will

also be divided into three steps.

Step 1: Existence and some location information.

By the averaging method, we obtain the following result on the existence

and the asymptotic behavior of periodic solutions of the system (1.4).

Lemma 4.1. Suppose that h̄p̄ > 0. Then there exists a ε∗ > 0 such that for

0 < ε < ε∗, the system (1.3) has a T -periodic solution
(
u(t, ε), v(t, ε)

)
which

satisfies

lim
ε→0

(
εκu(t, ε), ε

κ(1−l)
2 v(t, ε)

)
= (µκ, 0), uniformly in t, (4.1)

where

µ =
h̄

p̄
.

Proof. To aplly the averaging theory, we rewrite the system (1.4) into a pertur-

bative system. Doing the rescaling of variables u = ε−κx,

v = ε
κ(l−1)

2 y,
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we can reform the system (1.3) as follows
x′ = εg(t)y,

y′ = ε

(
h(t)

xl
− p(t)

xα

)
.

(4.2)

Obviously, the averaged system of the above system is
ξ′ = εgη,

η′ = ε

(
h

ξl
− p

ξα

)
,

where ε = ε
κ(l+1)

2 . After some calculations, we notice that the above averaged

system has a unique constant solution

(ξ0, η0) = (µκ, 0) ,

which is non-degenerate. Then the averaging method (see [15, Section V.3] or

[18, Section 2]) shows that there exists ε∗ > 0 such that the system (4.2) has a

T -periodic solution
(
x(t, ε), y(t, ε)

)
for 0 < ε < ε∗ and

(
x(t, ε), y(t, ε)

)
→ (µκ, 0) , uniformly as ε→ 0+.

Going back to the original variables, we prove that there exists a ε∗ > 0 such

that for 0 < ε < ε∗, the system (1.3) has a T -periodic solution
(
u(t, ε), v(t, ε)

)
which satisfies (4.1).

Step 2: We show that u is Lyapunov stable.

We will prove that the T -periodic solution u obtained in Lemma 4.1 is Lya-

punov stable.

Lemma 4.2. Suppose that g, h ∈ C(R/TZ,R+), p̄ > 0, (1.7) and (1.8) hold.

Then the T -periodic solution u obtained in Lemma 4.1 is of twist type if ε is

small enough. Therefore, u is Lyapunov stable.

Proof. It is readily seen that the periodic solutions of the equation (2.2) corre-

sponds to the periodic solutions of the system (1.4). We will apply the method
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of third order approximation to the equation (2.2). We first compute the coef-

ficients in (2.4) for the equation (2.2)

a(t) =
lh(t)

ul+1
− εαp(t)

uα+1
,

b(t) =
εα(α+ 1)p(t)

2uα+2
− l(l + 1)h(t)

2ul+2

and

c(t) =
l(l + 1)(l + 2)h(t)

6ul+3
− εα(α+ 1)(α+ 2)p(t)

6uα+3
,

here u(t) = u(t, ε). By the limit (4.1), the calculations show that

lim
ε→0

a(t)ε−κ(l+1) =
lh(t)

µκ(l+1)
− αp(t)

µκ(α+1)
, (4.3)

lim
ε→0

b(t)ε−κ(l+2) =
α(α+ 1)p(t)

2µκ(α+2)
− l(l + 1)h(t)

2µκ(l+2)
(4.4)

and

lim
ε→0

c(t)ε−κ(l+3) =
l(l + 1)(l + 2)h(t)

6µκ(l+3)
− α(α+ 1)(α+ 2)p(t)

6µκ(α+3)
. (4.5)

Then by (1.7) and (4.3), we get

lim
ε→0

a(t)ε−κ(l+1) ≥ lh∗
µκ(l+1)

− αp∗

µκ(α+1)
≥ 0,

that is, a(t) ≥ 0. Then, by a simple computation, we obtain

lim
ε→0

ε−κ(l+1)

∫ T

0

g(t)dt ·
∫ T

0

a+(t)dt = T ḡ

∫ T

0

(
lh(t)

µκ(l+1)
− αp(t)

µκ(α+1)

)
dt

= T 2ḡ

(
lh̄

µκ(l+1)
− αp̄

µκ(α+1)

)
= T 2ḡ(l − α)

p̄κ(l+1)

h̄κ(α+1)
,

which leads to that (2.5) holds if ε is small enough. From this, we deduce that

the linearized equation of (2.2) is elliptic if ε is small enough.
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By the limit (4.3) and T̃ = Tg , we have

lim
ε→0

¯̃a

εκ(l+1)
= lim
ε→0

1

T̃ εκ(l+1)

∫ T̃

0

a(τ−1(s))

g(τ−1(s))
ds

= lim
ε→0

1

T̃ εκ(l+1)

∫ T

0

a(t)dt

=
1

T̃

∫ T

0

(
lh(t)

µκ(l+1)
− αp(t)

µκ(α+1)

)
dt

=
T

T̃

(
lh̄

µκ(l+1)
− αp̄

µκ(α+1)

)
=

(l − α)

g

p̄κ(l+1)

h̄κ(α+1)
. (4.6)

Applying [10, Corollary 4.1], as ‖ã‖ → 0+, we get

θ = T̃ ρ(ã) = T̃ (ã)
1
2 (1 +O(‖ã‖)),

R(t) = r(τ(t)) = (ã)−
1
4 (1 +O(‖ã‖)), uniformly in t.

Combining the above two equalities with (4.6), we obtain

lim
ε→0

θ√
εκ(l+1)

= T
√
g(l − α)

√
p̄κ(l+1)

h̄κ(α+1)
(4.7)

and

lim
ε→0

ε
κ(l+1)

4 R(t) = 4

√
g

l − α
4

√
h̄κ(α+1)

p̄κ(l+1)
. (4.8)

Analysis similar to that in [8, Section 3] shows that

χθ(ι) =
5

12θ

(
1 +O(θ2)

)
=

5

12

¯̃a−
1
2

T̃
+O(¯̃a), as ¯̃a→ 0+. (4.9)

Fix

β1 =

∫∫
[0,T ]2

b(t)b(s)R3(t)R3(s)χθ(|ϕ(t)− ϕ(s)|)dtds

and

β2 =
3

8

∫ T

0

c(t)R4(t)dt.

Consider the following limit

lim
ε→0

β1
ε2κ

= lim
ε→0

∫∫
[0,T ]2

[
b(t)

εκ(l+2)

] [
b(s)

εκ(l+2)

] [
ε

3
4κ(l+1)R3(t)

]
×

[
ε

3
4κ(l+1)R3(s)

] [
ε

1
2κ(l+1)χθ(|ϕ(t)− ϕ(s)|)

]
dtds.

19



By inserting the limits (4.3)-(4.5), (4.7) and (4.8) into the above limit, we get

lim
ε→0

β1
ε2κ

=

∫∫
[0,T ]2

1

4

[
α(α+ 1)p(t)

µκ(α+2)
− l(l + 1)h(t)

µκ(l+2)

] [
α(α+ 1)p(s)

µκ(α+2)
− l(l + 1)h(s)

µκ(l+2)

]

×
(

ḡ

(l − α)

)3/2 [
h̄κ(α+1)

p̄κ(l+1)

]3/2
5

12T̃

√
ḡ

(l − α)

√
h̄κ(α+1)

p̄κ(l+1)
dtds

=
5

48T

ḡ

(l − α)2
h̄2κ(α+1)

p̄2κ(l+1)

∫∫
[0,T ]2

[
α(α+ 1)p(t)

µκ(α+2)
− l(l + 1)h(t)

µκ(l+2)

]
×
[
α(α+ 1)p(s)

µκ(α+2)
− l(l + 1)h(s)

µκ(l+2)

]
dtds

=
5

48T

ḡ

(l − α)2
h̄2κ(α+1)

p̄2κ(l+1)

[
α(α+ 1)T p̄

µκ(α+2)
− l(l + 1)T h̄

µκ(l+2)

]2
=

5T ḡ

48µ2κ
(l + α+ 1)2.

Similar arguments apply to β2 gives

lim
ε→0

β2
ε2κ

= lim
ε→0

∫ T

0

c(t)

εκ(l+3)
· εκ(l+1)R4(t)dt

=

∫ T

0

1

6

[
l(l + 1)(l + 2)h(t)

µκ(l+3)
− α(α+ 1)(α+ 2)p(t)

µκ(α+3)

]
· ḡ

l − α
h̄κ(α+1)

p̄κ(l+1)
dt

=
T ḡ

6(l − α)

h̄κ(α+1)

p̄κ(l+1)

[
l(l + 1)(l + 2)h̄

µκ(l+3)
− α(α+ 1)(α+ 2)p̄

µκ(α+3)

]
=

T

6(l − α)

[
l(l + 1)(l + 2)

µ2κ
− α(α+ 1)(α+ 2)

σ2κ

]
=

T ḡ

µ2κ

l2 + lα+ α2 + 3l + 3α+ 2

6
.

Then

lim
ε→0

β

ε2κ
= lim

ε→0

β1 − 3
8β2

ε2κ

≥ T ḡ

µ2κ

[
5(l + α+ 1)2

48
− l2 + lα+ α2 + 3l + 3α+ 2

16

]
=

T ḡ

48µ2κ
(2l2 + 2α2 + 7lα+ l + α− 1).

Therefore, if (1.8) holds, we have

lim
ε→0

β

ε2κ
> 0,

that is, β > 0 when ε is small enough.
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Step 3: We verify that v is Lyapunov stable.

Repeating the step 3 of the proof of Theorem 1.1, we can verify that v is

Lyapunov stable.

Up to now, the proof of Theorem 1.2 is completed.
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