
Asymptotic Behavior of the coupled
Klein-Gordon-Schrödinger systems on com-
pact manifolds

César A. Bortot, Thales M. Souza and Janaina P. Zanchetta

Abstract. This paper is concerned with a 2-dimensional Klein-Gordon-
Schrödinger system subject to two types of locally distributed damping
on a compact Riemannian manifold M without boundary. Making use
of unique continuation property, the observability inequalities, and the
smoothing effect due to Aloui, we obtain exponential stability results.

Mathematics Subject Classification. Primary 35L70; Secondary 35B40.

Keywords. Klein-Gordon-Schrodinger system; Exponential stability; Com-
pact manifolds; Differential equations on manifolds.

1. Introduction

The classical Klein-Gordon-Schrödinger system through Yukawa coupling,
given by 

iψt + ∆ψ = φψ in Ω× (0,∞)

φtt −∆φ+ µ2φ = |ψ|2 in Ω× (0,∞)

ψ(0) = ψ0, φ(0) = φ0, φt(0) = φ1 in Ω

(1.1)

where, ψ is a complex scalar nucleon field while φ is a real scalar meson
one and the positive constant µ represents the mass of a meson. Since it is
considered a bounded domain with Dirichlet conditions, the term µ2 φ does
not affect the employed arguments in the proof of the asymptotic stability.
In our case we will assume fields ψ and φ which has an average value of
zero, thus the term µ2φ does not hinder the multiplier techniques employed
in our results of decay rates. So, for simplicity, this term will be omitted. For
more details on physical modeling see [47]. The Klein-Gordon-Schrodinger
system through Yukawa coupling has been investigated by many authors,
recent papers such as Poulou et. al [38, 39], and Cavalcanti et. al [15, 16].
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In this paper, we consider the Cauchy problem of the following Klein-
Gordon-Schrödinger equations through Yukawa interaction,

iψt + ∆ψ + iαBj(x, ψ) = φψχω in M× (0,∞), j = 1, 2

φtt −∆φ+ a(x)φt = |ψ|2χω in M× (0,∞)

ψ(0) = ψ0, φ(0) = φ0, φt(0) = φ1 in M
(Pj)

where (M, g) is a bidimensional compact Riemannian manifold without bound-
ary and g represents your metric, Bj(x, ψ) is non-linear locally distributed
damping, ω is a region onM where the dissipative effect is effective, and χω
is the characteristic function on ω. We study two types of damping, defined
by

B1(x, ψ) = b(x)(1−∆)1/2b(x)ψ and B2(x, ψ) = b(x)(|ψ|2 + 1)ψ (1.2)

We assume that a(·), b(·) are non-negative functions satisfying{
a, b ∈W 1,∞(M) ∩ C∞(M)

a(x) ≥ a0 > 0 in ω, and b(x) ≥ b0 > 0 in ω,

where ω is an open subset of M such that meas(ω) > 0 satisfying geometric
control condition.

We are interested in uniform decay results for Klein-Gordon-Schrödinger
equations with the damping effect. The Klein-Gordon-Schrödinger system
with the dissipative mechanisms was considered extensively in the literature,
for instance, the exponential decay of Klein-Gordon-Schrödinger system with
full damping in both equations holds. These results due to Cavalcanti in
[15], they have used a perturbed energy method to guarantee exponential
decay rates. On the other hand, a uniform decay result holds, considering
locally distributed damping into the wave equation and full damping into the
Schrödinger equation. This was proven by the authors in [11].

An interesting result of exponential decay considering Klein-Gordon-
Schrödinger system with localized damping in both equations are due the
authors in [1]. More precisely they consider the following Klein-Gordon-
Schrödinger equations{

iψt + ∆ψ + iαb(x)(−∆)
1
2 b(x)ψ = φψχω in Ω× (0,∞), (α > 0)

φtt −∆φ+ a(x)φt = |ψ|2χω in Ω× (0,∞),

where Ω is a bounded domain and ω is a region of domain with damping effect.
Uniform decay rates were have obtained combining multipliers method, inte-
gral inequalities of energy, and regularizing effect due to Aloui [3]. Recently in
[2], the authors generalize the previous results considering the weaker damped

structure iαb(x)(|ψ|2+1)ψ instead of iαb(x)(−∆)
1
2 b(x)ψ assumed in [1], mak-

ing use of the observability inequality in both equations, the linear wave (see
[7]) and the Schrödinger equation (see [21, 31]), furthermore, combined with
other tools have proven exponential decay as done in [20].

The purpose of the present article is to extend substantially all previous
results given by [1] and [2] in the geometric sense and exhibit an important
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multiplier function.. Here we study the problem (Pj), j = 1, 2, on a com-
pact Riemannian manifold with arbitrary metric. In what follows, we would
like to explain the relevance of this paper compared to [1, 2]. In fact, these
recent articles take advantage of a smoothing effect introduced by Aloui [3]
for bounded domains and observability inequalities associated with the linear
problems of the wave and Schrödinger equations. The main features of this
work are as follows:
(i) We consider the Klein-Gordon-Schrödinger system with localized damp-
ing and provide a regular function f : M → R that allows us to apply the
multiplier method and Unique continuation property. See Theorem 4.1.
(ii) We establish uniform decay rates of both systems. See Theorem 2.4 and
2.5. More specifically, we use multiplier functional combined with the reg-
ularizing effect due to Aloui on manifolds. In aditional, by using geometric
control conditions on ω, we obtain observability inequalities in the linear wave
and the Schrödinger equation.

It is worth mentioning that the results of unique continuation are closely
related to the existence of this multiplier. On the other hand, the effective
dissipation region ω needs the properties of this mentioned multiplier. The
general idea is construct a function f : M → R and define an open subset
V ⊂M where meas(V ) ≥ meas(M)− ε for every ε > 0, such that f satisfies
conditions related to it is hessian, gradient, and Laplacian in V . Thus, we
can define ω (see Figure 1) as the open subset such that,

ω ⊃⊃ (M\V ).

Figure 1. Blank, we have an arbitrarily large area, free of
dissipative effects while in black, it is in the region ω where
the dissipative effect is effective, this region can be chosen
arbitrarily small, both totally distributed on M.

Recently in [14] and [16], the authors exposed a multiplier for the
Schrödinger equation and the wave equation, respectively. The main result
Theorem 4.1 generalizes the multiplier function, and in this case, we obtain
a multiplier that works for both equations simultaneously. Therefore, we can
use the relevant results [14, Theorem 4.2] and [16, Theorem 5.1] in the Klein-
Gordon-Schrödinger system.

We refer the reader to, for instance, the references about classical Klein-
Gordon-Schrödinger system [6, 22, 23, 24]. In general we would like to mention
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some nice important papers in connection with Klein-Gordon-Schrödinger
equations [5, 8, 10, 25, 26, 27, 35, 36, 37, 42, 43, 46].

The rest of this paper is structured as follows. In section 2 we give the
precise assumptions and state our main results, in section 3 we give an idea
of the well-posedness, in section 4 we present the construction of multiplier
f , and in section 5 we give the proof of the main theorems.

2. Main Result

We shall use standard Sobolev spaces on Riemannian manifolds, for more
detail see [32], [44] and [45]. We will give some definitions for sake of com-
pleteness. First, we consider the space L2(M) of complex-valued function on
M, with the following real inner product and norm

L2(M) = {y :M→ C;

∫
M
|y|2 dM <∞}

(y, z)L2(M) = Re

∫
M
y(x)z(x) dM,

‖y‖2L2(M) = (y, y)L2(M).

Besides, we consider

H1(M) = {y :M→ C; y ∈ L2(M); |∇y| ∈ L2(M)},

V := {y ∈ H1(M);

∫
M
y(x) dM = 0},

H := {y ∈ L2(M);

∫
M
y(x) dM = 0},

equipped with the norms, respectively

‖y‖2H1(M) = ‖y‖2L2(M) + ‖∇y‖2L2(M), ‖y‖2V = ‖∇y‖2L2(M), (2.1)

and H with the standart L2-norm.
It is important to note that, from Poincaré’s inequality,

‖y‖2L2(M) ≤ λ‖∇y‖
2
L2(M); ∀ y ∈ V, (2.2)

where λ−1 is the first eigenvalue of the Laplace-Beltrami operator. Conse-
quently the norms in H1(M) and V are equivalent.

Consider the following Hilbert space

H2m(M) = {y ∈ L2(M); ∆my ∈ L2(M)},
equipped with norm

‖y‖2H2m(M) = ‖y‖2L2(M) + ‖∆my‖2L2(M). (2.3)

Considering f : M → R a sufficiently regular real function and H a
vector field on M, we have the following identity (see [16]: p.22)

〈∇f,∇(H(f))〉g = ∇H(∇f,∇f) +
1

2
〈∇(|∇f |2), H〉g, (2.4)
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The following result is also true (see [17], section 4.1):
Let M be a compact Riemannian manifold without boundary y :M→

C ∈ H1(M) and X a vector field of class C1 on M. So, the following state-
ment is valid, ∫

M
〈X ,∇y〉 dM = −

∫
M

(divX) y dM. (2.5)

Consequently, if y ∈ H1(M) such that ∆y ∈ L2(M) and w ∈ H1(M)
hen the following identity is valid:∫

M
〈∇y ,∇w〉 dM = −

∫
M

∆y w dM. (2.6)

In the present paper, we consider some crucial assumptions about the
dissipative region ω, in order to establish the geometric control condition.

Assumption 1. We assume that a, b ∈W 1,∞(M) ∩C∞(M) are nonnegative
functions such that

a(x) ≥ a0 > 0 and b(x) ≥ b0 > 0 in ω.

In addition,

If a(x) ≥ a0 > 0 in M, then we consider χω ≡ 1 in M
If b(x) ≥ b0 > 0 in M, then we consider χω ≡ 1 in M.

Definition 2.1. (Geometric Control Condition): ω geometrically controls M,
i.e there exists T0 > 0, such that every geodesic of M travelling with speed
1 and issued at t = 0, enters the set ω in a time t < T0.

Assumption 2. We assume that ω is an open subset ofM such that meas(ω) >
0 and satisfying the geometric control condition

As a consequence of assumption (2), it follows that there exists a couple
(ω, T0), with T0 > 0, such that the following observability inequalities holds:

‖ψ0‖2L2(M) ≤ C
∫ T

0

∫
ω

|ψ(x, t)|2 dM dt, (2.7)

associated with the problem{
iψt + ∆ψ = 0 in M× (0, T ),
ψ(0) = ψ0 ∈ L2(M),

and

‖φ1‖2L2(M) + ‖∇φ0‖2L2(M) ≤ C
∫ T

0

∫
ω

|φt(x, t)|2 dM dt, (2.8)

about problem  φtt −∆φ = 0 in M× (0, T ),
φ(0) = φ0 ∈ V,
φt(0) = φ1 ∈ L2(M),

for some positive constant C = C(ω, T0) and for all T > T0.
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Remark 2.2. Observe that, the couple (ω, T0) satisfies the geometric control
condition (GCC, in short) if every geodesic ofM, traveling with speed 1 and
issued at t = 0 enters the open set ω before the time T0. It is the well-known
geometric control condition (GCC) due to Bardos, Lebeau, Rauch [7] and
Taylor [40]. Furthermore, observability estimates was extensively studied by
many authors. We refer the reader to, for instance, the references [7, 21, 29,
30, 34, 31, 33, 41].

The energy associated to problems (Pj), j = 1, 2, is defined by

E(t) :=
1

2

∫
M

(
|ψ(x, t)|2 + |∇φ(x, t)|2 + |φt(x, t)|2

)
dM. (2.9)

Firstly, we observe that a straight forward computation leads to

dE

dt
(t) + α

∫
M
Bi(x, ψ)ψ dM+

∫
M
a(x)|φt|2 dM =

∫
ω

|ψ|2φt dM,

multiplying the first equation of (Pj) by ψ, the second equation by φt, in-
tegrating over M, taking a real part where is necessary and making use of
Green formula.

Remember that problem (P1) concerns regularizing term B1(x, ψ) =
b(x)(1 − ∆)1/2b(x)ψ and problem (P2) concerns cubic non-linearity term
B2(x, ψ) = b(x)(|ψ|2 + 1)ψ. Then we have the following energy identities,

dE

dt
(t) + α

∫
M
b(x)|(1−∆)

1
4ψ|2 dM

+

∫
M
a(x)|φt|2 dM =

∫
ω

|ψ|2φt dM, (2.10)

dE

dt
(t) + α

∫
M
b(x)

(
|ψ|4 + |ψ|2

)
dM

+

∫
M
a(x)|φt|2 dM =

∫
ω

|ψ|2φt dM, (2.11)

regarding (P1), and (P2), respectively. We are now in a position to state the
main results.

Theorem 2.3. Suppose Assumption 1 holds. In addition, assume that 5(2a0b0)−1 ≤
α in the problem (P2). Then, given (ψ0, φ0, φ1) ∈ {V∩H2(M)}2×V problems
(P1) and (P2) has a unique regular solution satisfying

ψ ∈ L∞(0,∞;V ∩H2(M)), ψ
′ ∈ L∞(0,∞;L2(M)),

φ ∈ L∞(0,∞;V ∩H2(M)), φ
′ ∈ L∞(0,∞;V),

and φ
′′ ∈ L∞(0,∞;L2(M)).

(2.12)

Considering the phase space H := {V ∩H2(M)}2×V, in the next theo-
rem, below, we provide a local uniform decay of the energy. Indeed, we shall
consider the initial data taken in bounded sets ofH, namely, ‖(ψ0, φ0, φ1)‖H ≤
L, where L is a positive constant. This is strongly necessary due to the non
linear character of system (P1) and since the energy E(t) is not naturally
a non increasing function of the parameter t. Thus, the constants, C and γ
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which appear in (2.13) and (2.14) will depend on L > 0. We shall denote
d = d(c, ‖b‖∞, L), to be fixed in Section 5, where c comes from the embed-

ding D
[
(1−∆)

1
4

]
≡ H 1

2 (M) ↪→ L4(M). So, under the above considerations,
we can establish the main result concerning uniform stabilization from the
problems (P1) and (P2).

Theorem 2.4. Suppose that the hypotheses of Theorem 2.3 holds. In addition,

α >
a−1
0 b−4

0 d
2 or d is sufficiently small. Then, there exist C, γ positive constants

such that following decay rate holds

E(t) ≤ Ce−γtE(0), for all t ≥ 0. (2.13)

for every regular solution of problem (P1) satisfying (2.12), provided the ini-
tial data are taken in bounded sets of H.

Theorem 2.5. Suppose that the hypotheses of Theorem 2.3, and Assumption
2 hold. Then, there exist C, γ positive constants such that the following decay
rate holds

E(t) ≤ Ce−γtE(0), for all t ≥ 0. (2.14)

for every regular solution of problem (P2) satisfying (2.12), provided the ini-
tial data are taken in bounded sets of H.

Remark 2.6. Observe that geometric control condition is not necessary in
Theorem 2.4 regarding (P1). On the other hand, assumption 5(2a0b0)−1 ≤ α
is required in the well-posedness of problem (P2). However, this is not a
drawback in the method since the constants a0 and b0 are used just to localize
the dissipative effect according to Assumption 2. On the other hand, to take
α sufficiently large is natural to guarantee the dissipativity of the system.
The second one has been considered previously and surely it is much more
natural.

3. Existence and uniqueness

The well-posedness of the problems (P1) and (P2) was studied in [1, 2],
through Faedo-Galerkin’s method, in the bounded domains case. The same
results on a compact Riemannian manifold without boundary will follow with
the same arguments. For the sake of completeness, we comment some steps
of the proof. In what follows, for simplicity, we will denote ut = u′. Let us
represent by {ων} a basis in V ∩H2(M) formed by the eigenfunctions of −∆,
by Vm the subspace of V ∩H2(M) generated by the first m vectors and by

ψm(t) =

m∑
i=1

gim(t)ωi, φm(t) =

m∑
i=1

him(t)ωi,
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where {ψm(t), φm(t)} is the solution to the following approximate problem

(ψ′m(t), u) + i(∇ψm(t),∇u) + α(b(x)(1−∆)
1
2 b(x)ψm(t), u)

= −i(φm(t)ψm(t)χω, u), ∀u ∈ Vm,
(φ′′m(t), v) + (∇φm(t),∇v) + (a(x)φ′m(t), v)

= (|ψm(t)|2χω, v), ∀v ∈ Vm,
ψm(0) = ψ0m → ψ0, φm(0) = φ0m → φ0 in V ∩H2(M),
φ′m(0) = φ1m → φ1 in V.

(3.1)

regarding problem (P1). On the other point view, we consider the solution to
the following approximate problem

(ψ′m(t), u) + i(∇ψm(t),∇u) + α(b(x)|ψm(t)|2ψm(t), u)
+α(b(x)ψm(t), u) = −i(φm(t)ψm(t)χω, u), ∀u ∈ Vm,

(φ′′m(t), v) + (∇φm(t),∇v) + (a(x)φ′m(t), v)
= (|ψm(t)|2χω, v), ∀v ∈ Vm,

ψm(0) = ψ0m → ψ0, φm(0) = φ0m → φ0 in V ∩H2(M),
φ′m(0) = φ1m → φ1 in V.

(3.2)

regarding problem (P2)
The approximate systems (3.1) and (3.2) are finite systems of ordinary

differential equations which has a solution in [0, tm[. The extension of the
solution to the whole interval [0, T ], for all T > 0, is a consequence of the
first a priori estimate. The proof of Theorem 2.3 is divided into three steps.
In Step 1 solution of the approximate problem. In Step 2 a priori estimates
for {ψm(t), φm(t)}. In Step 3 passage fo limits.

The proof follows the same basic steps as the one of [1] (see Theorem
2.1) and [2] (see Theorem 2.2) since Sobolev’s immersions for compact Rie-
mannian manifolds hold (see [9]). Therefore, we will omit the details of the
proof.

Uniqueness: Fix j = 1 or 2. Let {ψ1, φ1} and {ψ2, φ2} solutions do
problem (Pj). Then, the uniqueness follows defining z = ψ1 − ψ2 and w =
φ1−φ2 and repeating verbatim the same arguments already used in the first
estimates.

4. Definition of effective dissipation region ω and construction
of multiplier f

In the course of this work, we will strongly use a regular function f :M→ R
that satisfies certain properties in a subset V with regular boundary such that
meas(V ) ≥ meas(M) − ε. The function existence will define the multiplier,
which is also crucial for Unique Continuation Principle applications of the
Schrödinger and Wave equations. The subset ω ⊂ M where dissipation is
effective satisfies

ω ⊃⊃ (M\V ).

In this section, we construct the multiplier f : M → R and we find
precisely region V . This multiplier will satisfy specific conditions, in view of
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problems (P1) and (P2). We based the construction following the ideas in [14]
and [16].

We omit the metric g when there is no possibility of misunderstandings.
Now, we are in conditions to state and prove the main result of this section.
In what follows, the objects onM will be denoted by usual symbols and the
objects on the tangent space will be denoted by calligraphic symbols.

Theorem 4.1. Let (Mn, g) be a compact Riemannian manifold without bound-
ary of dimension n and Riemannian metric g and fix ε > 0. Therefore, there
are C0, C1 positive constants and a regular function f :M→ R and a open
subset V ⊂M, with regular boundary ∂V , satisfying:

(i) meas(V ) ≥ meas(M)− ε.
(ii) ∆f = C0 > 0 on V.

(iii) ∇2f(v, v) ≥ c|v|2, for every vector v on a tangent space of V.
(iv) |∇f | ≥ C1 > 0 on V.
(v) |∇f | is bounded on M.
(vi) There is a positive function ξ :M→ R, ∇ξ(x) = 0, ∀x ∈ V , such that

C2

∫ T

0

∫
V

ϕ2
t+|∇ϕ|2 dMdt ≤

∫ T

0

∫
V

(
∆f

2
− ξ
)
ϕ2
t dMdt

+

∫ T

0

∫
V

∇2f(∇ϕ,∇ϕ) +

(
ξ − ∆f

2

)
|∇ϕ|2 dMdt, (4.1)

is satisfied for some positive constant C2 > 0 and all admissible function
ϕ.

We divided the Theorem 4.1 proof into several steps. First, we show
some preliminary constructions.

4.0.1. Some formulas in a coordinate system. LetM be a Riemannian man-
ifold, p ∈ M and let U ⊂ M a neighborhood of p. Let (x1, . . . , xn) be a
coordinate system on U . Denote the components of the Riemannian metric
concerning this coordinate system by gij . Suppose that gij(p) = δij . We de-
note the components of the inverse matrix of (gij) by gij . Thus, if f ∈ C1(U),
then the gradient of f is given by

(∇f)i =

n∑
j=1

gij
∂f

∂xj
. (4.2)

The Hessian of f ∈ C2(U) is given by

(∇2f)ij =
∂2f

∂xi∂xj
+

n∑
k=1

∂f

∂xk
Γkij (4.3)

where Γkij are the Christoffel symbols. We denote the Hessian of f by ∇2f .
Finally the Laplacian of f is the trace of the Hessian with respect to the
metric g and it is given by

∆f =

n∑
i,j=1

(
∂2f

∂xi∂xj
+

n∑
k=1

∂f

∂xk
Γkij

)
gij . (4.4)
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Observe that Γkij(p) = 0 because we are dealing with normal coordinates.

4.1. Construction of the local multiplier

Lemma 4.2. Let M be a Riemannian manifold and consider p ∈ M. There
exist a neighborhood Vp of p and a smooth function f : Vp → R such that
|∇f | ≥ C > 0, ∇2f is positive definite, ∆f is a (positive) constant and, the
inequality (4.1) on Vp holds.

Proof: The main idea proof is combine Lemma 5.1 in [14] and Lemma 6.1
in [16]. Indeed, from Lemma 5.1 in [14], for any p ∈M there is a neighborhood
Vp of p, and smooth function f : Vp → R such that |∇f | ≥ C1 > 0, ∇2f
is positive-definite and ∆f is a positive constant. That is, there are γ1, γ2

positive constants such that

∆f(q) = γ1

∇2f(q)(v, v) ≥ γ2|v|2, ∀v ∈ TqM
for all q ∈ Vp.

Note that γ2 ≥ 1. In fact, we have f ≈ f0 in the C2-norm sense ([14],
see Subsection 5.2), where

f0(x) =

n∑
i=1

x2
i + 3x1 − 1

Thus,

∇2f0(p)(v, v) = 2g
E

(p)(v, v) ≥ γ2gE
(p)(v, v) ∀v ∈ TpM

where 1 ≤ γ2 < 2, and g
E

(·) Euclidian metric. Therefore, by continuity, the
choice of Vp is such that

∇2f(q)(v, v) ≥ γ2 g(q) (v, v), ∀v ∈ TqM
for all q ∈ Vp.

It remains to verify (4.1) on a neighborhood of p. That is, to find a
neighborhood Vp of p, eventually Vp ⊂ Vp, such that

C2

∫ T

0

∫
Vp

ϕ2
t+|∇ϕ|2 dMdt ≤

∫ T

0

∫
Vp

(
∆f

2
− ξ
)
ϕ2
t dMdt

+

∫ T

0

∫
Vp

∇2f(∇ϕ,∇ϕ) +

(
ξ − ∆f

2

)
|∇ϕ|2 dMdt, (4.5)

with ξ a positive function and C2 > 0.
Following Lemma 6.1 in [16] consider

ξ =
γ1

2
− 1

2
and C2 =

1

4
. (4.6)

Thus, let κ be the smooth field of symmetric bilinear form on Vp given by

κ(p)(X,Y ) = ∇2f(p)(X,Y ) +

(
γ1

2
− 3

4
− ∆f

2

)
g(p)(X,Y )
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where X and Y are vector fields on Vp. Since ∇2f(p)(X,X) ≥ γ2g(p)(X,X)
and γ2 ≥ 1, we obtain

κ(p)(X,X) ≥
(
γ2 −

3

4

)
g(p)(X,X) ≥ 1

4
g(p)(X,X).

Therefore κ is positive definite bilinear form on p. Then, there exist a
neighborhood Ûp ⊂ Vp of p such that κ is positive definite. Consequently∫ T

0

∫
Ûp

∇2f(∇ϕ,∇ϕ) +

(
γ1

2
− 3

4
− ∆f

2

)
|∇ϕ|2 dMdt ≥ 0. (4.7)

On the other hand, observe that(
∆f(p)

2
− γ1

2
+

1

4

)
=

1

4
> 0.

So, there is a neighborhood Ũp ⊂ Vp of p such that∫ T

0

∫
Ũp

(
∆f

2
− γ1

2
+

1

4

)
ϕ2
t dMdt ≥ 0. (4.8)

To the end, define Vp = Ûp ∩ Ũp. So, from (4.6), (4.7) and (4.8),∫ T

0

∫
Vp

∇2f(∇ϕ,∇ϕ)+

(
ξ − ∆f

2
− C2

)
|∇ϕ|2 dMdt

+

∫ T

0

∫
Vp

(
∆f

2
− ξ − C2

)
ϕ2
t dMdt ≥ 0

Therefore f |Vp : Vp → R satisfies all conditions of Lemma 4.2. �

4.2. Construction of the multiplier in a wide domain

The extension of the local construction to a wide domain follows using ar-
guments on the compactness of M, in local construction of multiplier, and
the existence of mollifier smoothing. These steps can be found in [14] (see
Theorem 5.5) and [16] (see Theorem 6.6). Therefore, fix ε > 0 there exist a
smooth functions ξ, f : M → R and an open subset V ⊂ M with smooth
boundary satisfying (i)-(vi). Following steps, we get |∇f | is continuous on
compact M then, (v) holds.

It is worth mentioning other papers in connection with the extension of
the local construction to a wide domain, [12, 13, 17, 18].

Remark 4.3. It is important to note ifM has regions with negative sectional
curvature and satisfies k1 ≤ secg ≤ k2 < 0. Then, it is possible to find open
subsets, precisely, within those regions such that can still be free of dissipative
effect, further reducing the ω region where the dissipative effect is effective
(see Figure 2).

This fact because in these regions it is possible to obtain limitations on
the Hessian of the multiplier f to get the inequality 4.1. Furthermore, the class
of manifolds called Warped Products some examples of this property. For
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more details of the proof and examples see [13] (Theorem 5.1 and subsection
5.2.2).

Figure 2. Riemannian manifold with open subsets satisfy-
ing curvature conditions, which allow to reduce the effective
damping region ω (in black).

5. Uniform Decay Rates

In this section we prove the results stated in Section 2

5.1. Problem (P1)

From Theorem 2.3, we consider regular solutions (ψ(t), φ(t), φt(t)) ∈ H of the
problem (P1). Denote ψt = ψ′, and φt = φ′ to simplify notation. Moreover,
we consider bounded initial data, that is, ‖(ψ0, φ0, φ1)‖H ≤ L, where L > 0.
Thus, the energy identity (2.10) holds,

E′(t)+α

∫
M
|(1−∆)

1
4 b(x)ψ|2 dM

+

∫
M
a(x)|φ′|2 dM =

∫
ω

|ψ|2φ′ dM. (5.1)

Next, we will analyze the last term on the RHS of (5.1). From Assump-
tion 1, inequality of Gagliardo-Niremberg and making use of the Cauchy-
Schwarz inequality we have∣∣∣∣∫

ω

|ψ|2φ′ dM
∣∣∣∣ ≤ a−1

0 b−4
0

2

∫
M
|b(x)ψ|4 dM+

1

2

∫
Ω

a(x)|φ′|2 dM

≤ a−1
0 b−4

0

2
‖b(·)ψ‖2L4(M)‖b(·)ψ‖

2
L4(M) +

1

2

∫
M
a(x)|φ′|2 dx

≤a
−1
0 b−4

0 c‖b‖∞‖ψ‖2‖∇ψ‖2
2

‖(1−∆)
1
4 b(·)ψ‖22 +

1

2

∫
M
a(x)|φ′|2 dM

≤a
−1
0 b−4

0 d

2

∫
M
|(1−∆)

1
4 b(x)ψ|2 dM+

1

2

∫
M
a(x)|φ′|2 dM (5.2)
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where d := c‖b‖∞L
Combining (5.1) and (5.2) and considering α large enough, more specif-

ically, β := α− a−1
0 b−4

0 d
2 > 0, we obtain

E′(t) ≤ −k
[∫
M
a(x)|φ′|2 dM+

∫
M
|(1−∆)

1
4 b(x)ψ|2 dM

]
(5.3)

where k = min{ 1
2 , β}.

Remark 5.1. From (5.3) we deduce two facts: (I) the map t ∈ (0,∞) 7→ E(t)
is non increasing, and, in addition, (II) we have the following inequality of
the energy

E(t2)− E(t1)

≤ −k
∫ t2

t1

[∫
M
a(x)|φ′|2 dM+

∫
M
|(1−∆)

1
4 b(x)ψ|2 dM

]
dt, (5.4)

for 0 ≤ t1 ≤ t2 < +∞, which is crucial in the proof. We observe that in
order to transform the energy E(t) in a non increasing function we could
have considered d small enough instead of taking α sufficiently large, which
would imply to take the initial data sufficiently small. Well, in any case, some
kind of tribute must be paid in order to obtain uniform decay rates of the
energy to the present system.

In order to prove Theorem 2.4 we proceed in several steps.

Step 1. Considering the multiplier f : M → R, and function ξ ∈
W 1,∞(M) as stated in the previous section, we get

C2

∫ T

0

E(t) dt ≤ |χ|
2

+
C5

2
[E(0)− E(T )] + 4ε

∫ T

0

E(t) dt (5.5)

+
C2

2

∫ T

0

∫
M
|ψ|2 dM dt+

‖ξ‖∞
8ε

∫ T

0

∫
ω

|φ|2 dM dt

+
C∗

2

∫ T

0

∫
M\V

|∇φ|2 dM dt,

where C2, C5, C
∗ and ε are positive constants and

χ =

[∫
M

(
|ψ|2

2
+ φ′〈∇f,∇φ〉+ ξφ

(
φ′ +

φa

2

))
dM

]T
0

In fact, multiplying the first equation of problem (P1) by ψ and the
second equation by 〈q,∇φ〉g, where q ∈ (W 1,∞(M))n (for simplicity, we have
omitted the notation of the metric g), using the identity (2.4) and following
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Proposition 4.1 in [16] we deduce the following identity:[∫
M

(
|ψ|2

2
+ φ′〈q,∇φ〉

)
dM

]T
0

+
1

2

∫ T

0

∫
M

(div q)[|φ′|2 − |∇φ|2] dM dt

+

∫ T

0

∫
M
∇q(∇φ,∇φ) dM dt−

∫ T

0

∫
ω

|ψ|2〈q,∇φ〉 dM dt

+

∫ T

0

∫
M
a(x)φ′〈q,∇φ〉 dM dt

+ α

∫ T

0

∫
M
|(1−∆)

1
4 b(x)ψ|2dM dt = 0. (5.6)

Employing (5.6) with f : M → R of class C∞ as in Theorem 4.1 and
replacing q = ∇f in (5.6), follows[∫

M

(
|ψ|2

2
+ φ′〈∇f,∇φ〉

)
dM

]T
0

+
1

2

∫ T

0

∫
M

∆f
[
|φ′|2 − |∇φ|2

]
dM dt

+

∫ T

0

∫
M
∇2f(∇φ,∇φ)dM dt−

∫ T

0

∫
ω

|ψ|2〈∇f,∇φ〉 dM dt

+

∫ T

0

∫
M
a(x)φ′〈∇f,∇φ〉 dM dt

+ α

∫ T

0

∫
M
|(1−∆)

1
4 b(x)ψ|2 dM dt = 0. (5.7)

Fix ξ ∈ W 1,∞(M) and multiply the second equation of problem (P1)
by ξφ, then we have the following identity:[∫

M
φξ

(
φ′ +

φa

2

)
dM

]T
0

=

∫ T

0

∫
ω

|ψ|2ξφ dM dt

+

∫ T

0

∫
M
ξ
[
|φ′|2 − |∇φ|2

]
dM dt−

∫ T

0

∫
M
φ〈∇φ · ∇ξ〉 dM dt. (5.8)

Combining (5.8) with (5.7) we have

χ+

∫ T

0

∫
M

(
∆f

2
− ξ
)
|φ′|2 dM dt+

∫ T

0

∫
M

(
ξ − ∆f

2

)
|∇φ|2 dM dt

−
∫ T

0

∫
ω

|ψ|2〈∇f,∇φ〉 dM dt+

∫ T

0

∫
M
a(x)φ′〈∇f,∇φ〉 dM dt

+ α

∫ T

0

∫
M
|(1−∆)

1
4 b(x)ψ|2 dx dt−

∫ T

0

∫
ω

ξ|ψ|2φdM dt

+

∫ T

0

∫
M
∇2f(∇φ,∇φ) dM dt+

∫ T

0

∫
M
φ〈∇φ,∇ξ〉 dM dt = 0. (5.9)

This is the precise moment when the inequality (vi) of Theorem 4.1 is
essential. That is, making use of such property in (5.9) and adding the term
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C2

∫ T
0

∫
M |ψ|

2 dM dt on both sides of the inequality, we obtain

2C2

∫ T

0

E(t) dt ≤ C∗
∫ T

0

∫
M\V

[
|φ′|2 + |∇φ|2

]
dM dt

+ C2

∫ T

0

∫
M
|ψ|2dM dt+ |χ|+

∫ T

0

∫
ω

|ψ|2|∇f ||∇φ| dM dt

+

∫ T

0

∫
M
a(x)|φ′||∇f ||∇φ| dM dt+ α

∫ T

0

∫
M
|(1−∆)

1
4 b(x)ψ|2dM dt

+

∫ T

0

∫
ω

ξ|ψ|2|φ| dM dt+

∫ T

0

∫
M\V

|φ||∇φ||∇ξ| dM dt, (5.10)

where C∗ > 0 is a constant that depends on C2, ξ and f .

Now, we are going to estimate some terms in (5.10). In the estimate
for I1, I2, I3, and I4, we make use integral Cauchy-Schwarz inequality, the
numerical Hölder inequality, Poincaré inequality, (5.4), and considering the
inequality ab ≤ 1

4εa
2 + εb2. Moreover, from Theorem 4.1 item (v), denote

C3 := max
x∈M

|∇f(x)|.

Estimate for I1 :=
∫ T

0

∫
ω
|ψ|2|∇f ||∇φ| dM dt.

|I1| ≤
C2

3

4ε

∫ T

0

∫
M
|ψ|4 dM dt+ 2ε

∫ T

0

E(t) dt (5.11)

≤ C2
3d

4εb40k
[E(0)− E(T )] + 2ε

∫ T

0

E(t) dt.

Estimate for I2 :=
∫ T

0

∫
ω
|ψ|2φdM dt.

|I2| ≤
λd

4εb40k
[E(0)− E(T )] + 2ε

∫ T

0

E(t) dt. (5.12)

Estimate for I3 := −α
∫ T

0

∫
M |(1−∆)

1
4 b(x)ψ|2 dM dt.

|I3| ≤
α

k
[E(0)− E(T )]. (5.13)

Estimate for I4 := −
∫ T

0

∫
M a(x)|φ′||∇f ||∇φ| dM dt.

|I4| ≤
‖a‖∞C2

3

4εk
[E(0)− E(T )] + 2ε

∫ T

0

E(t) dt. (5.14)
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Combining (5.10)-(5.14) we get

2C2

∫ T

0

E(t) dt ≤ C∗
∫ T

0

∫
M\V

|φ′|2 + |∇φ|2 dM dt

+ C2

∫ T

0

∫
M
|ψ|2 dx dt+ |χ|+ C4 [E(0)− E(T )] (5.15)

+

∫ T

0

∫
M\V

|φ||∇φ||∇ξ| dM dt+ 6ε

∫ T

0

E(t) dt,

where C4 =

[
C2

3d

4εb40k
+
‖a‖∞C2

3

4εk
+
α

k
+

λd

4εb40k

]
. Note that∫ T

0

∫
M\V

|φ||∇φ||∇ξ| dM dt ≤ ‖ξ‖∞
∫ T

0

∫
M\V

1

4ε
|φ|2 + ε|∇φ|2 dM dt

≤ ‖ξ‖∞
4ε

∫ T

0

∫
ω

|φ|2 dM dt+ 2ε

∫ T

0

E(t) dt. (5.16)

From (5.15) and (5.16) we conclude

2C2

∫ T

0

E(t) dt ≤ C∗
∫ T

0

∫
M\V

|φ′|2 + |∇φ|2 dM dt

+ |χ|+ C2

∫ T

0

∫
M
|ψ|2 dM dt

+ C4[E(0)− E(T )] + 8ε

∫ T

0

∫
M

E(t) dt

+
‖ε‖∞

4ε

∫ T

0

∫
ω

|φ|2 dM dt. (5.17)

Estimate for I5 := C∗
∫ T

0

∫
M\V |φ

′|2 dM dt. Considering (5.4) we obtain

|I5| ≤
C∗

a0k
[E(0)− E(T )]. (5.18)

Finally, from (5.17) and (5.18) we conclude (5.5) where C5 :=
{
C4 + C∗

a0k

}
.

The key idea in next step is the construction of a “cut-off” function on

a neighborhood of M\ V to estimate
∫ T

0

∫
M\V |∇φ|

2 dM dt. Following [16]

(see p.955) we obtain a function η ∈W 1,∞(M) satisfying
η = 1 a.e. in ω̂;

η = 0 a. e. in M\ω;

0 ≤ η ≤ 1 a.e. in M and
|∇η|2

η
∈ L∞(ω).

(5.19)

where ω̂ is a region on M such that M\ V ⊂⊂ ω̂ ⊂⊂ ω.
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Step 2. Under above considerations, we estimate

C∗

2

∫ T

0

∫
M\V

|∇φ|2 dM dt ≤ C∗|Z|+ C6[E(0)− E(T )]

+2ε

∫ T

0

E(t) dt+
C∗

2

∥∥∥∥ |∇η|2η

∥∥∥∥
L∞(ω)

∫ T

0

∫
ω

|φ|2 dM dt. (5.20)

where ε, C6 > 0 and

Z :=

[∫
ω

φη

(
φ′ +

φa

2

)
dM

]T
0

(5.21)

In fact, taking ξ = η in identity (5.8) and multiplying by C∗, it results
in

C∗Z = C∗
∫ T

0

∫
ω

|ψ|2ηφ dM dt+ C∗
∫ T

0

∫
ω

η
[
|φ′|2 − |∇φ|2

]
dM dt

− C∗
∫ T

0

∫
ω

φ(∇φ · ∇η) dM dt (5.22)

Next, let us analyze the terms on the RHS of (5.22).

Estimate for L1 := C∗
∫ T

0

∫
ω
|ψ|2ηφ dM dt. Analogously to the above

estimates, it follows that

|L1| ≤
λd (C∗)

2

4ε b40 k
[E(0)− E(T )] + 2ε

∫ T

0

E(t) dt. (5.23)

Estimate for L2 := C∗
∫ T

0

∫
M η|φ′|2 dM dt.

|L2| ≤
C∗

a0k
[E(0)− E(T )]. (5.24)

Estimate for L3 := −C∗
∫ T

0

∫
ω
φ(∇φ · ∇η) dM dt. From (5.19), we can

write

|L3| ≤
C∗

2

∫ T

0

∫
ω

η|∇φ|2 dM

+
C∗

2

∥∥∥∥ |∇η|2η

∥∥∥∥
L∞(ω)

∫ T

0

∫
ω

|φ|2 dM dt. (5.25)

From (5.22)-(5.25) we have

C∗
∫ T

0

∫
ω

η|∇φ|2dM dt ≤ C∗|Z|+ C6 [E(0)− E(T )]

+2ε

∫ T

0

E(t) dt+
C∗

2

∫ T

0

∫
ω

η|∇φ|2 dM

+
C∗

2

∥∥∥∥ |∇η|2η

∥∥∥∥
L∞(ω)

∫ T

0

∫
ω

|φ|2 dM dt, (5.26)
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where C6 :=
[
λd(C∗)2

4εb40
+ C∗

a0k

]
. Therefore, from (5.26) and having in mind that

η ≡ 1 on ω̂ ⊃⊃M \ V we conclude Step 2, that is, (5.20) holds.

Before Step 3, combine (5.20) from Step 1 and (5.5) from Step 2, then

C2

∫ T

0

E(t) dt ≤ |χ|
2

+ C7[E(0)− E(T )] + 6ε

∫ T

0

E(t) dt

+ C∗|Z|+ C8

∫ T

0

∫
ω

|φ|2 dM dt+
C2

2

∫ T

0

∫
M
|ψ|2 dM dt, (5.27)

where C7 :=
[
C5

2 + C6

]
and C8 :=

[
C∗

2

∥∥∥ |∇η|2η

∥∥∥
L∞(ω)

+ ‖ξ‖∞
8ε

]
.

Also note that,

|χ|
2

+ C∗|Z| ≤ C9[E(0) + E(T )]

where C9 is a positive constant. Taking ε small enough such that C10 :=
C2 − 6ε > 0 we obtain

C10

∫ T

0

E(t) dt ≤ 2C11E(0) + C12

(∫ T

0

∫
M
|φ|2 + |ψ|2 dM dt

)
, (5.28)

where C11 := max{C7, C9} and C12 := max{C8, C2/2}. Therefore,∫ T

0

E(t) dt ≤ C E(0) +C

[∫ T

0

∫
M
|φ|2 dM dt+

∫ T

0

∫
M
|ψ|2 dM dt

]
(5.29)

where C is a positive constant which depends on

max
x∈M

|ξ(x)|,max
x∈M

|∇f(x)|, ‖a‖∞, ‖b‖∞, λ, k, a0, b0, d.

Step 3. Let T0 > 0 considered sufficiently large for our purpose. We will
prove the following lemma:

Lemma 5.2. For all T > T0 there exists a positive constant C = C(T ) such
that if {ψ, φ} is the regular solution of (P1) with initial data (ψ0, φ0, φ1) ∈ H
we have∫ T

0

∫
M
|φ|2 dM dt+

∫ T

0

∫
M
|ψ|2 dM dt (5.30)

≤ C(T )

[∫ T

0

∫
M
a(x)|φ′|2 dM dt+

∫ T

0

∫
M
|(1−∆)

1
4 b(x)ψ|2 dM dt

]
.

Proof. We argue by contradiction. Suppose that (5.30) is not verified and let
(ψk(0), φk(0), φ′k(0)) ∈ H be a sequence of initial data where the correspond-
ing solutions {ψk, φk} with Ek(0) uniformly bounded in k, verifies

lim
k→+∞

∫ T
0

∫
M |φk|

2 dxM dt+
∫ T

0

∫
M |ψk|

2 dM dt∫ T
0

∫
M a(x)|φ′k|2 dM dt+

∫ T
0

∫
M |(1−∆)

1
4 b(x)ψk|2 dM dt

= +∞. (5.31)
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Since Ek(t) is non-increasing and Ek(0) remains bounded then, we ob-
tain a subsequence, still denoted by {ψk, φk} which verifies

ψk ⇀ ψ weak star in L∞(0, T ;L2(M)), (5.32)

φk ⇀ φ weak star in L∞(0, T ;V), (5.33)

φ′k ⇀ φ′ weak star in L∞(0, T ;L2(M)). (5.34)

We also have, employing compactness results (see Theorem 5.1 in Lions
[32]) that

φk → φ strongly in L2(0, T ;L2(M)). (5.35)

Now, from (5.31), (5.32) and (5.33) we deduce that

lim
k→+∞

∫ T

0

∫
M
a(x)|φ′k|2dM dt = 0, (5.36)

lim
k→+∞

∫ T

0

∫
M
|(1−∆)

1
4 b(x)ψk|2dM dt = 0, (5.37)

On the other hand, from Assumption 1, namely, b(x) ≥ b0 > 0 in ω,

taking (5.37) into account and considering D[(−∆)
1
4 ] ≡ H

1
2 (M) ↪→ L4(M)

for n = 2, we deduce

lim
k→∞

∫ T

0

∫
ω

|ψk|4 dM dt = 0. (5.38)

and

lim
k→∞

∫ T

0

∫
ω

|ψk|2 dM dt = 0. (5.39)

From now on let us focus our attention on the coupled wave equation

φ′′k −∆φk + a(x)φ′k = |ψk|2χω in M× (0, T ) (5.40)

Let us divide our proof in two cases (in what concerns the limit φ above):

(a) φ 6= 0.

Passing to the limit when k → +∞ in (5.40) taking into account the
above convergence, we deduce that{

φ′′ −∆φ = 0 in M× (0, T )
φ′ = 0 a. e. in M× (0, T ),

(5.41)

and for φ′ = v, we obtain, in the distributional sense that{
v′′ −∆v = 0 in M× (0, T )
v = 0 a. e. in ω × (0, T ).

(5.42)

From Theorem 5.1 in [16] we conclude that v ≡ 0, that is, φ′ ≡ 0.
Returning to (5.41) we obtain the following elliptic equation for almost ev-
erywhere t ∈ (0, T ) : {

−∆φ = 0 in M
φ′ = 0 in ω,

(5.43)

Multiplying (5.43) by φ we deduce that
∫
M |∇φ|

2 dM = 0, which implies

that φ ≡ 0 in V ↪→ L2(M) a.e. t ∈ (0, T ), which is a contradiction.
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Now, we consider the other case when

(b) φ ≡ 0.

Defining

ck :=

[∫ T

0

∫
M
|φk|2 dM dt+

∫ T

0

∫
M
|ψk|2 dM dt

]1/2

(5.44)

φ̂k =
1

ck
φk, ψ̂k =

1

ck
ψk, (5.45)

we obtain ∫ T

0

∫
M
|φ̂k|2 dM dt+

∫ T

0

∫
M
|ψ̂k|2 dM dt = 1. (5.46)

Besides,

Êk(t) =
1

2

[∫
M
|ψ̂k|2 dM+

∫
M
|φ̂′k|2 dM+

∫
M
|∇φ̂k|2 dM

]
=

1

2c2k

[∫
M
|ψk|2 dM+

∫
M
|φ′k|2 dM+

∫
M
|∇φk|2 dM

]
,

that is,

Êk(t) =
Ek(t)

c2k
. (5.47)

On the other hand, integrating (5.1) over (0, T ), we deduce

Ek(T ) = Ek(0)− α
∫ T

0

∫
M
|(1−∆)

1
4 b(x)ψk|2 dM dt (5.48)

−
∫ T

0

∫
M
a(x)|φ′k|2 dM dt+

∫ T

0

∫
M
|ψk|2φ′k dM dt.

From the fact that Ek(t) ≥ Ek(T ) for all t ∈ [0, T ] and taking (5.48)
into account, we obtain∫ T

0

Ek(t) dt ≥ TEk(T ) = TEk(0)− αT
∫ T

0

∫
M
|(1−∆)

1
4 b(x)ψk|2 dM dt

(5.49)

− T
∫ T

0

∫
M
a(x)|φ′k|2 dM dt+ T

∫ T

0

∫
ω

|ψk|2φ′k dM dt.

Combining (5.29), (5.49) and making use of Cauchy-Schwarz inequality
and considering the Assumption 1, we infer

TEk(0) ≤ [2(α+ a−1
0 b−4

0 d+ 3)]T

{∫ T

0

∫
M
|(1−∆)

1
4 b(x)ψk|2 dM dt

+

∫ T

0

∫
M
a(x)|φ′k|2 dM dt

}

+ C Ek(0) + C

∫ T

0

∫
M
|φk|2 dM dt+ C

∫ T

0

∫
M
|ψk|2 dM dt.
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The last inequality yields for a large T ,

Ek(0) ≤ C(T, a0, b0, α, d)

{∫ T

0

∫
M
|(1−∆)

1
4 b(x)ψk|2 dM dt

+

∫ T

0

∫
M
a(x)|φ′k|2 dM dt+

∫ T

0

∫
M
|φk|2 dM dt

+

∫ T

0

∫
M
|ψk|2 dM dt

}
(5.50)

Having in mind that Ek(t) ≤ Ek(0) for all t ∈ [0, T ], applying inequality
(5.50) and dividing both sides by c2k it holds that

Ek(t)

c2k
≤ C

{∫ T
0

∫
M |(1−∆)

1
4 b(x)ψk|2 dM dt

c2k

+

∫ T
0

∫
M a(x)|φ′k|2 dM dt

c2k
+ 1

}
(5.51)

where C = C(T, a0, b0, α, d). Since in view of (5.31) we have

lim
k→+∞

∫ T
0

∫
M |(1−∆)

1
4 b(x)ψk|2 dM dt+

∫ T
0

∫
M a(x)|φ′k|2 dM dt∫ T

0

∫
M |φk|2 dM dt+

∫ T
0

∫
M |ψk|2 dM dt

= 0, (5.52)

then, from (5.51) there exists M > 0 such that

Ek(t)

c2k
≤ C(T, a0, b0, α, d)(M + 1), for all t ∈ [0, T ] and for all k ∈ N.

Consequently, from (5.47) it results that

Êk(t) ≤ C(T, a0, b0, α, d)(M + 1), for all t ∈ [0, T ] and for all k ∈ N (5.53)

Then, in particular, from (5.52) we deduce

lim
k→+∞

∫ T

0

∫
M
a(x)|φ̂′k|2 dM dt

= lim
k→+∞

∫ T
0

∫
M a(x)|φ′k|2 dM dt∫ T

0

∫
M |φk|2 dM dt+

∫ T
0

∫
M |ψk|2 dM dt

= 0, (5.54)

and

lim
k→+∞

∫ T

0

∫
M
|(1−∆)

1
4 b(x)ψ̂k|2 dM dt

= lim
k→+∞

∫ T
0

∫
M |(1−∆)

1
4 b(x)ψk|2 dM dt∫ T

0

∫
M |φk|2 dM dt+

∫ T
0

∫
M |ψk|2dMdt

= 0, (5.55)
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and from (5.53), for a subsequence {ψ̂k, φ̂k}, we obtain

ψ̂k ⇀ ψ̂ weak star in L∞(0, T ;L2(M)), (5.56)

φ̂k ⇀ φ̂ weak star in L∞(0, T ;V), (5.57)

φ̂′k ⇀ φ̂′ weak star in L∞(0, T ;L2(M)), (5.58)

φ̂k → φ̂ strongly in L2(0, T ;L2(M)). (5.59)

In addition, φ̂k satisfies the equationφ̂
′′
k −∆φ̂k + a(x)φ̂′k =

|ψk|2

ck
in M× (0, T )

φ̂′k → 0 a. e. in L2(0, T ;L2(ω)).

(5.60)

Passing to the limit when k → +∞ taking the above convergences and
(5.55) into account, we get{

φ̂′′ −∆φ̂ = 0 in M× (0, T )

φ̂′ = 0 a. e. in ω × (0, T ).
(5.61)

Then, v = φ̂′ verifies, in the distributional sense{
v′′ −∆v = 0 in M× (0, T )
v = 0 a. e. in ω × (0, T ).

(5.62)

From Theorem 5.1 in [16] follow that v = φ̂′ = 0. Returning to (5.61)

follow that φ̂ = 0.

Moreover, ψ̂k satisfies the equation{
iψ̂′k + ∆ψ̂k + ib(x)(1−∆)

1
2 b(x)ψ̂k = φ̂kψkχω in M× (0, T )

ψ̂k(0) = ψ̂0
k in M.

(5.63)

Now, we will use the effect smoothing effect due to Aloui given in [4],

theorem 1. Indeed, since ψ̂k satisfies (5.63), we have that (ψ̂k) satisfies the
integral equation

ψ̂k = S(t)ψ̂k(0) +

∫ T

0

S(T − τ)F (ψk)(τ) d τ, (5.64)

where S(t) is the semigroup generated by

A : D(A) = V ∩H2(M)→ L2(M)

y 7→ Ay := i∆y − b(x)(1−∆)
1
2 b(x)y,
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and F (ψk) := φ̂kψkχω. We observe that∫ T

0

∫
M
|F (ψk)|2 dMdt ≤

∫ T

0

(∫
ω

|φ̂k|4 dM
)1/2(∫

ω

|ψk|4 dM
)1/2

dt

=

∫ T

0

‖φ̂k(t)‖2L4(ω)‖ψk(t)‖2L4(ω) dt

≤ C‖φ̂k‖2L∞(0,T ;V)

∫ T

0

‖ψk(t)‖2L4(ω) dt. (5.65)

Then from (5.38), (5.57) and (5.65), we obtain

F (ψk) −→ 0 in L2(0, T ;L2(M)). (5.66)

Applying smoothing effect due to Aloui given in [4], Theorem 1, we
have, for any θ ∈ C∞0 (0, T ),

‖θψ̂k‖
L2(0,T ;H

1
2 (M))

≤ C
(
‖ψ̂0

k‖L2(M) + ‖F (ψk)‖L2(0,T ;L2(M))

)
. (5.67)

Let ε > 0 and θ ∈ C∞(0, T ); 0 ≤ θ ≤ 1 such that

θ(t) = 1 in [ε, T − ε] and θ(t) = 0 in
[
0,
ε

2

]
∪
[
T − ε

2
, T
]
. (5.68)

Therefore, from (5.66), we obtain the following estimative:

‖ψ̂k‖
L2(0,T ;H

1
2 (M))

≤ ‖ψ̂k‖
L(0,ε,H

1
2 (M)

+ ‖θψ̂k‖
L2(ε,T−ε,H

1
2 (M))

+ ‖ψ̂k‖
L2(T−ε,T,H

1
2 (M))

≤ 2ε max
t∈[0,T ]

‖ψ̂k‖
H

1
2 (M)

+ C‖ψ̂0
k‖L2(M) + C, ∀ε > 0.

This allows us to conclude

{ψ̂k} is bounded in L2(0, T ;H
1
2 (M)). (5.69)

Recalling (5.63), we note that for a.e t ∈ (0, T )

ψ̂′k = i∆ψ̂k + ib(x)(−∆)
1
2 b(x)ψ̂k − iφ̂kψkχω ∈ [V ∩H2(M)]′. (5.70)

Note that ∆ : L2(M)→ [V ∩H2(M)]′ is linear and continuous, so

‖∆ψ̂k(t)‖[V∩H2(M)]′ ≤ C‖ψ̂′k‖L2(M). (5.71)

So from (5.56) we have that i∆ψ̂k is limited in L∞(0, T ; [V ∩H2(M)]′)
and consequently from (5.70), (5.55) and (5.66) we conclude

Therefore,

{ψ̂′k} is bounded in L2(0, T ; [V ∩H2(M)]′). (5.72)

Combining (5.69), (5.72) and the embedding chain H
1
2 (M)

c
↪→ L2(M) ↪→

[V ∩H2(M)]′, due to Aubin-Lions Theorem (see Theorem 5.1 in Lions [32]),
we have,

ψ̂k → ψ̂ strongly in L2(0, T ;L2(M)). (5.73)

Moreover, from (5.55) and (5.73) we get,

ψ̂k → ψ̃ strongly in L2(0, T ;L2(M)), (5.74)
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where

ψ̃ =

{
ψ̂, in M\ ω
0, in ω.

(5.75)

Note that if ψ̂ = 0, in M so from (5.59), (5.74), (5.46) and observing

that φ̂ = 0 we have a contradiction.

On the other hand, if ψ̂ 6= 0, by passing limit on (5.63), we have, thanks
to (5.65) and (5.55), that{

iψ̂′ + ∆ψ̂ = 0 in M× (0, T )

ψ̂ = 0 a. e. in ω × (0, T ).
(5.76)

from Theorem 4.2 in [14] we conclude that ψ̂ = 0 a.e. in M. Therefore we

have ψ̂ = 0 and φ̂ = 0, which is a contradiction by (5.59), (5.74), and (5.46).
Thus, Lemma 5.3 is proved.

�

Therefore, from (5.29) and (5.30), making use of the standard arguments
we conclude exponential stability. For more details see [19, 20, 28].

5.2. Problem (P2)

From Theorem 2.3 we consider regular solutions (ψ(t), φ(t), φt(t)) ∈ H to
problem (P2), such that ‖{ψ0, φ0, φ1}‖H ≤ L, where L > 0. Note that∣∣∣∣∫

ω

|ψ|2φ′dx
∣∣∣∣ ≤ 1

2a0b0

∫
M
b(x)|ψ|4dM+

1

2

∫
M
a(x)|φ′|2dM

Thus, from (2.11),

E′(t) ≤ −
(
α− 1

2a0b0

)∫
M
b(x)|ψ|4dM− α

∫
M
b(x)|ψ|2dM

− 1

2

∫
M
a(x)|φ′|2dM

≤ −k
[∫
M
b(x)

[
|ψ|4 + |ψ|2

]
dM+

∫
M
a(x)|φ′|2 dM

]
(5.77)

where k = min

{
α− 1

2a0b0
,

1

2

}
. Remember that α ≥ 5

2a0b0
, that is, k > 0.

Therefore

(I) The map t ∈ (0,∞) 7→ E(t) is non increasing,

(II) We have the following inequality of the energy

E(t2)− E(t1)

≤ −k
∫ t2

t1

[∫
M
b(x)

[
|ψ|4 + |ψ|2

]
dM+

∫
M
a(x)|φ′|2 dM

]
dt, (5.78)

In order to prove the exponential decay we will consider the following
lemma
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Lemma 5.3. For all T > T0 there exists a positive constant C = C(T ) such
that if {ψ, φ} is the regular solution of (P2) with initial data (ψ0, φ0, φ1) taken
in limited of H, we have

E(0) ≤ C
∫ T

0

[∫
M
b(x)

[
|ψ|4 + |ψ|2

]
dM+

∫
M
a(x)|φ′|2 dM

]
dt. (5.79)

The proof of the lemma follows the same steps as in [2] (see Lemma
4.1), that is, using the observability inequalities of the wave equation and
of the Schrödinger equation, however, here, using the unique continuation
principle given in [16] and [14] instead of the Holmgren theorem. Indeed, to
use these principles, the existence of the multiplier f satisfying the conditions
of Theorem 4.1 is fundamental.

To end this section. Fix T0 large enough. From (5.78)

E(T0)− E(0) ≤ −k
∫ T0

0

[∫
M
b(x)

[
|ψ|4 + |ψ|2

]
dM+

∫
M
a(x)|φ′|2 dM

]
︸ ︷︷ ︸

D(t)

dt,

Then, from Lemma 5.3,

E(T0) ≤ E(0) ≤ C
∫ T0

0

D(t)dt ≤ −C
k
E(T0) +

C

k
E(0).

So,

E(T0) ≤ σE(0)

where σ := C
k+C ∈ (0, 1). Finally, following standard arguments, we conclude

exponential stability.
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Maringá, PR, Brazil.
e-mail: janainazanchetta@yahoo.com.br


