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Abstract

We report here an assessment of the model refinement category of the 14th round of Critical

Assessment of Structure Prediction (CASP14). As before, predictors submitted up to five 

ranked refinements, along with associated residue-level error estimates, for targets that had 

a wide range of starting quality. The ability of groups to accurately rank their submissions 

and to predict coordinate error varied widely. Overall only four groups out-performed a 

“naïve predictor” corresponding to resubmission of the starting model. Among the top groups

there are interesting differences of approach and in the spread of improvements seen: some 

methods are more conservative, others more adventurous. Some targets were “double-

barrelled” for which predictors were offered a high-quality AlphaFold 2 (AF2)-derived 

prediction alongside another of lower quality. The AF2-derived models were largely 

unimprovable, their apparent errors being found to reside very largely at domain and, 

especially, crystal lattice contacts. Refinement is shown to have a mixed impact overall on 

structure-based function annotation methods to predict nucleic acid binding, spot catalytic 

sites and dock protein structures.



1. Introduction

The Critical Assessment of Structure Prediction (CASP) refinement category ran for the first 

time at CASP8 in 2008 1. The aim was to systematically test methods that could push initial 

structure predictions, initially deriving from template-based modelling alone, closer to the 

native structure. At the time it was particularly envisaged that Molecular Dynamics (MD)-

based methods could have a significant role. At CASP9 refinement was found to have a 

distinct beneficial effect on model geometry 2, although coordinate refinement remained 

modest and sporadic. As recognised from the beginning 1, such geometric improvement and 

elimination of atomic clashes is easier than systematic improvement of coordinate accuracy: 

the former can be achieved by local conformational sampling, while larger-scale shifts 

require an algorithm that can avoid trapping in local energy minima and distinguish the 

correct direction of travel from the much larger number of ways in which a model structure 

can be degraded. Nevertheless, impressive results by the FEIG group at CASP10 

demonstrated that most models could be systematically improved by restrained MD 3. In 

more recent CASPs, such MD_based approaches have been profitably adopted and 

adapted by other groups (eg 4), sometimes with a specific focus such as loops 5 and 

alternative approaches, most notably from the BAKER group 6 , emerged as rivals.

It is recognised that the refinement category is something of a special case in CASP by 

taking as targets selected products of another category, namely the primary structure 

prediction exercise. This means that as the original prediction algorithms improve, including 

by harnessing explicit refinement steps, refinement groups need to improve every time 

merely to stand still in terms of the headline statistics 7. Targets have also been observed to 

differ in their refinability 7 so the obviously different selections made for each exercise might 

influence difficulty in unappreciated ways. Here in CASP14, AlphaFold 2 (AF2)-derived 

refinement targets, selected alongside poorer quality models as “double-barrelled” targets, 



proved to be a special case. Even the best methods failed to drive them closer to the 

experimental structures, but detailed analysis suggests they were, to a large extent, not 

meaningfully improvable since their deviations lay mainly at crystal lattice contacts where the

experimental structure is potentially unrepresentative of biologically relevant conformations. 

Amid a picture of inevitable uncertainty regarding CASP to CASP progress, strong evidence 

of progress was nevertheless available from the comparison of DellaCorteLab and FEIG 

submissions (reported elsewhere in this issue) since the former, slightly less well-performing 

overall, was largely based on FEIG methodology from CASP13 8. As with other CASP 

categories, accurate model quality assessment is fundamental here since alternative 

strategies can be employed for higher- or lower-quality models (eg 6) and refinement effort 

can be productively focussed on areas that are predicted to be inaccurately modelled. Here 

we show, however, that groups still differ widely in their ability to rank submissions by overall

quality and to predict local coordinate error at a residue level.

It is important to remember that the value of a model, refined or otherwise, lies not only in 

the overall fold and what that may reveal about evolution and function, but also in its use, for 

example, for more detailed structure-based function prediction 9, for structure-based in silico 

ligand screening and as a search model in Molecular Replacement (MR) eg 10, 11. Here we 

show that refinement affects - often positively but not exclusively so - the readout of catalytic 

site recognition and prediction of nucleic acid binding ability. A similarly mixed picture is 

obtained from comparing the protein-protein docking of unrefined and refined models with 

that of the experimental structures. Less ambivalently, we show elsewhere in this issue 

(authorship tbd) that refinement often significantly improves performance in MR, frequently 

converting an unsuccessful starting model into a structure that succeeds.



2. Materials and Methods

2.1 Target selection and characteristics

Refinement targets were selected on a continuous basis during the CASP experiment. When

a target closed for regular prediction consideration was given to whether a submission (or 

occasionally two - see “double-barrelled” targets below) might be suitable. This decision 

factored in its size (a target should be tractable for even compute-intensive methods based 

on MD) and quality (it should be neither irredeemably poor or so good that significant 

improvement would be difficult). In addition to available quantitative measures of coordinate 

quality, potential targets were examined visually to be sure that their errors were plausibly 

refinable and, in particular, did not lie predominantly at interfaces between domains or 

chains. This latter selection was designed to address the previous observation (CASP13 

paper) that missing structural context hampers refinement. Table 1 indicates characteristics 

of the final set of refinement targets.

Compared to previous CASPs, two different classes of refinement target were introduced. 

With the first, indicated in Table 1, groups were allowed six weeks for refinement rather than 

the usual three weeks. The six week extended versions bore names such as R1034x1, the 

regular three week submissions being R1034 etc. The second innovation was what we refer 

to as double-barrelled targets. As CASP14 progressed it became obvious that one group, 

ultimately revealed to be AlphaFold 2 (AF2), performed significantly better than all others. 

Although the AF2 submissions typically had less, and sometimes very little, room for 

improvement, we considered that perfecting them further represented an interesting and 

potentially important challenge. Certain proteins, the “double-barrelled” targets were 

therefore represented by both an AF2 prediction and a prediction from another group. There 

were seven targets of this type and they were named, for example, R1074v1 and R1074v2, 

the labelling as v1 or v2 being random between targets. As an unforeseen consequence of 



this, for three targets one group submitted (unpublished communications) derivatives of the 

AF2 models as ‘refinements’ of the non-AF2 target. In certain places indicated below we 

chose to exclude these points from our analysis.

Table 2 compares sizes and categories of the CASP14 refinement targets to those of 

CASP13 while Figure 1 illustrates their range of quality, expressed as GDT_HA (or GDTHA), 

with the previous two CASPs. In terms of quality, this set of refinement targets is comparable

to those of previous CASPs, but clearly the mean size of target has crept up from 134 to 149

since CASP13. There has also been a change of distribution between Template-Based 

Modelling (TBM) and Free Modelling (FM) categories with a shift towards more difficult 

targets: the latter outnumbered the former around 2:1 in CASP14, a reversal of the CASP13 

distribution.

Figure 1. Comparison of the accuracy of models suggested as starting structures for 
refinement in CASP12-14. The accuracy is expressed in terms of GDT_HA. Box limits 
indicate upper and higher quartiles, whiskers indicate upper and lower bounds and a 
horizontal line in the middle of the box represents the median.



2.2 Evaluation

2.2.1 Overall ranking

In order to allow ready comparisons with other CASPs, we used the CASP12 refinement 

ranking score.  This score was derived using a machine learning approach to reproduce 

automatically the expertly assigned scores of four independent assessors (CASP12ref). For 

a single target it is given by 

SCASP12 = 0.46 zRMS_CA + 0.17zGDT_HA + 0.2zSG + 0.15zQCS + 0.02zMP

 It includes five weighted z-scores (standard deviations above the mean of all submissions). 

Three of these assess atomic positional accuracy:RMS_CA is the local global alignment ‐

(LGA; 12) sequence-dependent calculation of root mean square deviation between the ‐ ‐

superposed model and target, GDT_HA is the high accuracy variant of the GDT score ‐ 12, 

SG is the SphereGrinder score that captures the local similarity of model and target at each 

residue within a sphere of 6Å 13. The Quality Control Score (QCS) assesses the correctness 

of secondary structure elements and their relative arrangements 14 while the Molprobity 

score assesses stereochemical parameters of backbone and side chains, as well as 

measuring atomic clashes 15. For overall group rankings SCASP12 scores are summed across 

all targets after discarding outliers (see 16 for details).. 

2.2.2 Refinability

We wished to investigate properties of refinement targets that made them more (in)tractable.

For this purpose we devised a simple refinability metric for each target as ∑ΔGDT_HA where

ΔGDT_HA is the improvement (positive values) or worsening (negative) of the GDT_HA 

value from the starting refinement model to the particular refined version. We considered six 

variant scores differing combinatorially: firstly in whether for a target the sum was over all 



groups or only the top four groups; and secondly in which submissions were considered - 

only the group’s self-defined top prediction (model_1), the actual best prediction or all 

predictions (models 1 to 5, if available).

2.2.3 Assessing refinement groups’ self-assessments

Groups were asked to submit what they consider to be their best model as number 1, their 

next best as 2 and so on. We assessed their performance here by measuring a Spearman’s 

correlation coefficient between the submission order and the actual ranking of model 

accuracy expressed as GDT_HA. We additionally recorded for each group the % of targets 

where model_1 was indeed the highest accuracy model submitted.

Groups are also asked to include per-residue error estimates in the B-factor column of their 

submissions. These are scored at the CASP website using the ASE (Accuracy Self 

Estimate) score, which captures in a single value between 0-100 how well the error 

estimates and actual errors align in a given prediction. It should be mentioned though, that 

ASE score can be considered only as a supplementary measure as a good ASE score can 

correspond to a very poor structural model, for which authors ‘correctly predicted’ large local 

deviations for the vast majority of atoms.

2.2.4 Function prediction

In order to assess the impact of refinement on readout of structure-based function prediction 

methods, targets that were enzymes and/or nucleic acid binding proteins were identified. 

Catalytic sites from the Catalytic Site Atlas (CSA; 17) were then sought using the 3D-motif 

matching methods implemented at CatsId 18 and ProFunc 19. Nucleic acid binding capacity 

was predicted with the structure-based methods DNA_bind 20 and BindUP 21.

2.2.5 Docking assessment for function prediction



In order to assess the impact of model refinement on the ability to predict protein-protein 

interactions, ClusPro 22 was used to dock the subunits of targets involved in this kind of 

interactions. In those cases where pre-existing mutagenesis evidence implicating specific 

residues on the interaction was available, contact restraints were provided as they could be 

inferred from these experimental data. All other parameters were left at their default values. 

The quality of the resulting docked subunits was then assessed using PPDbench 23, which 

was used to calculate the fraction of native contacts (Fnat), ligand RMSD (L-RMSD) and 

interface RMSD (I-RMSD) between the docked pose obtained with ClusPro and the ground 

truth as observed on the crystal structures. These values were then used to determine the 

quality of the docking, using the CAPRI assessment protocol (Supplementary Table 1; 24) 

2.2.6 Assessment of proximity of modelling errors and interfaces

In order to assess whether error regions present in the AF2 models selected for refinement

were located in the vicinity of intermolecular interfaces that were not considered during the

refinement stage and therefore could preclude successful refinement of such local errors,

they were analysed as follows.  Error  regions were defined as comprising at  least  three

consecutive  residues with  a five residue-window rolling  average LGA distance (between

target and experimental structure superimposed using the sequence-dependent algorithm)

of at least 3Å. If the residues within this error region had an average of at least 0.5 residues

originating in a symmetry mate, another chain or a different domain within a radius of 10Å -

measured between Cα; the error region was then defined as neighbouring an unmodelled

portion  in  one  of  these  three  categories,  according  to  the  predominant  kind  of  contact

observed.



3. Results and Discussion

3.1 Overall group rankings

For comparability with previous CASP rounds we employed the CASP12 scoring for overall 

ranking of groups (see Materials and Methods). This score was derived using a machine 

learning approach to reproduce automatically the expertly assigned scores of four 

independent assessors 16. It includes (see Materials and Methods) five weighted terms, three

of which assess Cα positional accuracy, the Quality Control Score 14 which assesses 

secondary structure elements and the Molprobity score 15 for stereochemical analysis. Since 

the CASP12 score terms are Z-scores and more groups degrade model quality overall than 

improve it, then it is useful to compare the overall ΣSCASP12 score of each group with a “naïve 

predictor” corresponding simply to resubmission of the starting structures. 



Figure 2 Overall group ranking according to the ΣSCASP12 score  (A) and proportion of models
improved by each group (B). The “naïve predictor” corresponding to resubmission of the 
starting models is shown in pink in A. The data used to generate these figures are from the 
regular refinement targets i.e. excluding the extended targets but including the double-
barrelled targets. 

Figure 2A shows that, across all regular targets only four groups out-performed the “naïve 

predictor” : the human FEIG and its server equivalent FEIG-S, the overall top-scoring group 

BAKER, and the DellaCorteLab. This, along with the observation that only the FEIG group 

managed to improve more than half the targets (Figure 2B), is testimony to the continuing 

difficulty in consistently refining target structures. Quite distinct methods lie behind the most 

successful approaches. The FEIG and FEIG-S approaches are based on MD with flat-

bottom harmonic restraints. New for CASP14 was additional sampling by the generation of 

multiple alternative initial models using Modeller 25 and templates identified by HHsearch 26. 

The DellaCorteLab uses a modified version of the FEIG group MD-based approach from 

CASP13, differing in details of salt concentration, equilibration and restraint application. In 



contrast, the BAKER group carries out all-atom refinement in Rosetta using information from 

a deep learning framework that estimates per-residue accuracy and residue-residue 

distances.  

Figure 3 Overall group ranking according to the ΣSCASP12 score for targets subdivided 
according to size, from small (top) to large (bottom). The “naïve predictor” corresponding to 
resubmission of the starting models is shown in pink in each panel. The data used to 
generate these figures are from the regular targets i.e. excluding the extended targets but 
including the double-barrelled targets.



Figure 3 shows, unsurprisingly, that more groups perform well with smaller proteins, where 

conformational sampling is more tractable, than with larger targets. Ten groups, including the

four overall top performers, outperform the “naïve predictor” on the four small targets with 

fewer than 100 residues. With these small targets the DellaCorteLab performs best, followed

by FEIG and FEIG-S, similarly based on MD. The overall winner, the BAKER group, ranks 

only 8th for these targets. On the other hand, only the BAKER group beats the “naïve 

predictor” for the eight targets longer than 200 residues. DellaCorteLab, FEIG and FEIG-S 

rank 9, 12 and 7 on these largest targets. Overall, the results suggest that MD-based 

approaches, at least as currently configured, perform best on the smallest targets, but for 

larger targets their relative performance drops and the BAKER group approach would be 

preferred.



Figure 4 Overall group ranking according to the ΣSCASP12 score for targets subdivided 
according to starting quality, from poor (top) to good (bottom). The “naïve predictor” 
corresponding to resubmission of the starting models is shown in pink in each panel. The 
data used to generate these figures are from the regular targets i.e. excluding the extended 
targets but including the double-barrelled targets.

Figure 4 illustrates group rankings on targets classified by quality, as measured by their 

starting GDT_HA. There is an overall trend in the number of groups out-performing the 

“naïve predictor” from seven for the lowest-quality starting structures to none where the 



targets were already of reasonable quality with GDT_HA > 70: evidently gross errors are 

generally easier to correct than the final incorrect details. Viewed by target starting quality 

there does not seem to be any observable overall difference among the top four performers 

between the MD-based methods and the BAKER group results. Interestingly, the 

JLU_Comp_Struct_Bio submission performs best in both 60 < Starting GDT_HA <=70 and 

Starting GDT_HA >70 categories. It employs a neural network implementation of 

generalized solvation free energy 27 to allow rapid structure refinement by differentiation 

rather than more expensive conformational sampling 28.

Figure 5 Distribution of ΔGDT_HA (A, C) and ΔRMS_CA (B, D) values for refined 
submissions of all groups. The numbers displayed alongside the chart compare the 
proportion that were improved with values from previous CASP experiments. Panels a and b
show submissions for all targets, panels c and d illustrate analyses excluding targets based 
on AF2 modelling. The data used to generate these figures are from the regular and 
extended targets.
Figure 5 shows the distribution of ΔGDT_HA and ΔRMS_CA values for submissions by 

refinement groups, positive and negative respectively being refinements towards the 



experimental structure. The overall percentages of improved models are no better, or even 

somewhat worse than in recent CASP experiments. However, the AF2-derived refinement 

targets had some special properties that materially influence these numbers as discussed 

later. Figure 5 shows that the overall picture clearly improves when AF2 targets are 

disconsidered, but it remains the case that overall performance - in terms of the percentage 

of models with improved GDT_HA or RMS_CA - is comparable or still slightly down on 

previous CASPs. As commented by previous assessors, comparisons between CASPs are 

difficult as the targets are, by definition, different each time. Furthermore, initial predictive 

pipelines increasingly incorporate refinement steps, potentially reducing the scope for the 

separate refinement step assessed here. When considering why, despite the intense effort, 

refinement results seemingly show little if any progress, it is worth remembering that the 

mean target size this time at 149 residues is distinctly longer than at CASP13 (134), a factor 

that will likely depress the performance of MD-based refinement methods. 

Figure 6 Distribution of ΔGDT_HA values for named groups. They are the four overall top-
performing groups with the addition of BAKER-experimental which achieved the largest 
single refinement. The data used to generate these figures are from the regular and 
extended targets.



Figure 7 Distribution of ΔGDT_HA values represented as a box and whisker plot for named 
groups. Box limits indicate upper and higher quartiles, whiskers indicate upper and lower 
bounds, circles represent outliers and a horizontal line in the middle of the box represents 
the median, also labelled. The data used to generate these figures are from the regular and 
extended targets.

The distributions of ΔGDT_HA values for the best-performing four methods and the BAKER-

experimental group, who produced a number of very large improvements, are shown in 

Figures 6 and 7. For example, the GDT_HA value of R1085-D1 increased from 42.5 to 73.1 

after refinement by the BAKER-experimental group. Interestingly, Figure 7 suggests it is 

possible to distinguish between the more conservative MD-based methods and the more 

expansive protocols from the Baker group. The DellaCorteLab submissions are quite 

narrowly distributed about ΔGDT_HA of -0.3 indicating that the maximum improvement to be

expected is relatively modest but, similarly, a model is unlikely to be significantly degraded in

quality. The FEIG and FEIG-S distributions, in comparison, are flattened somewhat so that 

bigger improvements are sometimes seen but, at the same time, other models are more 

significantly degraded in quality. An example of a FEIG-S refinement is shown in Figure 8. 



Interestingly, the DellaCorteLab protocol is based very largely on the FEIG group efforts 

from CASP13 so the fact that the FEIG and FEIG-S methods clearly outperform 

DellaCorteLab (Figure 7) demonstrates the improvement in this restrained MD-based 

method in the past two years, although DellaCorteLab refinements were best for the smallest

four targets (Figure 3). The BAKER and, especially, the BAKER-experimental protocols 

broaden the distributions further so that occasional large improvements are accompanied by 

sometimes much larger worsening of quality. 

These characteristics can be related to the details of the protocols. Restrained MD lies at the

heart of the DellaCorteLab and FEIG submissions. Restraints have been found to be 

necessary for avoiding model degradation but, naturally, limit the conformational space that 

can be sampled. The greater breadth of the FEIG and FEIG-S distributions compared to 

DellaCorteLab may be due to the innovation of the FEIG lab in sampling from alternative 

initial template-based models, as well as from the CASP refinement target. The Rosetta 

protocols behind the BAKER submissions can sample conformational space more broadly. 

This effect is enhanced in the BAKER-experimental protocol where deep learning-guided 

fragment insertion and rigid body movements form part of the procedure. 

Figure 8. A typical example of a refinement, here T1090 refined by FEIG-S (ΔGDT_HA = 
16.01) - A shows a superposition of the starting model (blue) and the crystal structure (grey).
B shows a superposition of the starting model (blue), the refined model (pink) and the crystal
structure (grey). C shows a superposition of the refined model (pink) and the crystal 
structure (grey). 



3.2 Refinability

Since even the best performing groups clearly struggle with some targets, we thought it 

interesting to study which kinds of targets could be refined, and which consistently 

confounded the refinement groups. We therefore devised a simple metric of refinability (see 

Material and Methods) which sums the improvements (or deteriorations) seen on a per-

target basis. The basic refinability scoring concept can be applied to selected or all groups 

and selected or all submissions. 

Analysis (Supplementary Figure 1) shows that the six variant scores we trialled (all groups or

only the top four; model_1, or model_1 to model_5, or highest quality model) correlated quite

well with each other. We therefore looked first at target refinability for all groups and all 

submissions, then for the least correlated variant - top groups, best submission.

Figure 9 Correlation between target refinability - defined as the sum of the difference of 
GDT_HA before and after refinement - and three different factors: the starting GDT_HA of 
the refinement target, the target’s percentage of regular secondary structure and its total 
number of residues. Top row corresponds with data obtained across all submissions from all 
groups, bottom row with data observed across the top four groups’ best submissions. A 
linear model was fitted into the data displayed at each figure and included in the form of a 
line, together with the R2 value resulting from this model. Shaded bands around the 



regression line depict the 95% confidence interval for the regression estimate.  Each point 
represents a different refinement target, those coloured in orange highlight refinement 
targets derived from AF2 modelling results. Only refinement target accuracy is correlated 
significantly with refinability, and the correlation is weaker for the top groups than for all 
groups. 

The per-target refinability scores for all groups and all submissions show that target size and

percentage regular secondary structure are not significantly correlated with refinability. Thus,

perhaps surprisingly, neither larger proteins nor targets containing less regular secondary 

structure are harder to refine (expressed as improvement in GDT_HA value) than other 

structures, at least within the ranges sampled by the target selection. However, there is a 

significant negative correlation between the starting GDT_HA value of a target and its 

refinability: higher quality starting models are harder to improve. Interestingly, Figure 8 also 

highlights that across all groups and all submissions only a single target - R1030-D2 a 

helical domain of a bacterial adhesin - has a positive refinability value.

In comparison, the refinability values calculated just from the top four groups’ best 

submissions show a much weaker association with starting model quality (Figure 8). This 

suggests that the best groups achieve similar performance across the range of target 

difficulties, with better starting structures proving more tractable for them than for other 

groups. By this refinability measure, most targets have positive values showing they can, on 

average, be improved by the top four groups. Intriguingly, however, AF2-derived targets 

(shown in orange in Figure 9) buck this trend and cannot, on average, be improved. 



Figure 10 Distributions of ΔGDT_HA (A) and ΔFlexE (B) scores across all submissions for 
each target. Box limits indicate upper and higher quartiles, whiskers indicate upper and 
lower bounds and a horizontal line in the middle of the box represents the median. Model 
improvement corresponds to positive ΔGDT_HA and negative ΔFlexE values. The vertical 
dotted lines are drawn at zero - no change in model quality after refinement. Outliers are 
depicted as a rhombi in figure A but, for clarity, are omitted in figure B where they all had 
values above 0. Targets are ordered by their starting GDT_HA value from high (better 
model) at the top to low (poorer model) at the bottom. Targets deriving from AF2 predictions 
are coloured orange. Three submissions for double-barrelled targets involving cross 
submission of AF2-derived predictions (see Materials and Methods) are not shown.

In order to test the universality of this observation across all groups and submissions, we 

plotted the per-target distributions of ΔGDT_HA (Figure 10a). For an orthogonal view of 

model quality we also performed a similar analysis with respect to FlexE scores (Figure 

10b). FlexE estimates the energy of deformation between the model and the experimental 

structure 29. Negative ΔFlexE values indicate improvements in the native-likeness of the 

protein structure 29. By both measures, AF2-derived targets are anomalous in their near-

unrefinability. Across all groups and all submissions, there are very few that improve AF2-

derived targets, and the improvements are marginal at best.



Since non-AF2-derived targets of similar starting quality can be improved in both GDT_HA 

and FlexE (Figure 9) we sought an explanation for the anomalous behaviour of AF2-derived 

refinement targets. Visual inspection first suggested that the answer may lie in crystal lattice 

interfaces. Clearly, crystal packing can distort local protein structure from its favoured 

solution structure(s): a correct prediction of the (or a) relevant biological conformation could 

therefore appear to be an error in these circumstances. We therefore explored ways to 

quantify the extent to which error regions in the original AF2-derived targets (regions with 

smoothed LGA residue error of > 3Å over three or more consecutive residues) coincided 

with crystal lattice contacts (see Materials and Methods). (No AF2-derived targets were for 

structures determined by NMR or Cryo-EM.) For comparison, we similarly assessed contacts

between the (sub-)structures represented by the AF2-based targets and other chains and 

domains. Since the context provided by other chains or domains would not be considered 

during the refinement exercise, such contacts would provide an alternative explanation for 

the inability of AF2-derived targets to be refined.

Table 3 presents a summary of this analysis. It is immediately evident that the error regions 

in the initial AF2-derived targets are very often found at crystal lattice contacts - 12 regions, 

93 residues - and only rarely at interfaces with other domains of the same protein  - 2 

regions, 11 residues - and not, in this set, at at all at interfaces with other chains. What we 

term uncomplicated errors, not in any of these categories, are rather few - 2 regions 

containing 10 residues. Figure 11illustrates the error regions determined for AF2-derived 

R1041v1 and how they are each positioned near a crystal lattice contact. For comparison, 

we also show a non-AF2 target R1091-D2 of similar quality which contains error regions that

are uncomplicated by contact with crystal symmetry mates, other chains or other domains. 



Figure 11 Comparison of error regions in (A) R1041v1, an AlphaFold 2-derived target with a 
starting GDT_HA of 70 and (B) R1091-D2, deriving from a tFold-IDT prediction with a 
starting GDT_HA of 61. Error regions are coloured according to whether they are at lattice 
contacts (red), domain interfaces (orange) or neither (green).The remainder of the 
refinement target is coloured in light blue and is superimposed on the complete chain of the 
experimental structure (dark blue) with symmetry mates shown in grey.

The strong co-location of AF2 target errors and crystal lattice contacts should be set in the 

context of the overall extremely high quality of AF2 models in general. This means that the 

question arises as to which of the structures - the AF2 prediction or the crystal structure - 

should be considered as the more authentic. Ordinarily, the structure based on experimental 

data would immediately be preferred but at crystal lattice contacts, where unnatural 

distortions can occur, the crystal structure should not necessarily be trusted to the same 

extent. Since crystal lattices take no part in the AF2 calculations (to the best of our 

knowledge), the resulting models do not suffer from this disadvantage. Naturally, they are 

only predictions, yet for the bulk of many targets they are as close a match to the native 

structure as would be another crystal structure of the same protein (see elsewhere in this 

issue). It seems we are forced to consider the prediction as not necessarily less useful or 

authentic than the experimental structure in these regions.

Returning to the question of refinability, overall the results suggest that the apparent 

unrefinability of AF2-derived targets can plausibly be explained by the fact that the remaining



small errors lie at crystal lattice contacts. Thus,  the ‘correct’, experimental structure used as 

a reference for refinement assessment may not necessarily be representative of the 

conformation(s) accessible in solution. This means that the reference structure might not be 

accessible to or targeted by a refinement protocol that seeks a global energy minimum 

and/or a structure that satisfies covariance information deriving from residue contact 

constraints on natural conformations. 

3.3 Self-assessments

In addition to submitting coordinates, refinement groups reported their own assessment of 

model accuracy in two ways, firstly at the global level, by ranking models from 1 to 5 in 

decreasing order of accuracy. Secondly at local level, groups are asked to submit a per-

residue error estimate, unit Å, in the B-factor column of the submitted models. For different 

reasons each aspect has real world significance: a user would likely give most consideration 

to the top-ranked model, while per-residue error estimates are very valuable for search 

model weighting and editing when using predictions for Molecular Replacement 30. 

Supplementary Table 2 shows, for all groups that submitted five unique models for at least 

one target (all except five) an assessment of their ability to rank their five models. Most 

groups’ submissions (17 groups including the top four ranking overall) had a positive 

Spearman correlation coefficient between the model submission number 1 to 5 and the 

actual model quality expressed as GDT_HA. Seven groups, however, recorded a negative 

correlation coefficient. The ability of the groups to correctly identity their best refined model is

arguably most important of all. Here, 17 groups were correct 20% or more of the time, but 

nine were below that level. Among the top-performing groups, BAKER, BAKER-

experimental, FEIG and FEIG-S scored well at 34, 56, 30 and 50%, respectively, but 

DellaCorteLab was low at 11%. Some groups, notably Kiharalab, pinpointed their best 

prediction as model_1 very well despite scoring a low Spearman CC. This may indicate that 

some groups place more emphasis on detecting their best model than on ordering all five.



Per-residue error estimates are scored at the CASP website using the ASE (Accuracy Self 

Estimate) score (see Methods). The predictions from two groups (AIR and 

Frustration_Refine) were not accompanied by these error estimates while analysis 

suggested that the submissions from groups Risoluto, Beta and AWSEM_PCA had values in

the B-factor column in a reversed order i.e. high for more accurate parts of the model. Figure

12 illustrates the ASE values for all submissions from the remaining groups. 

Figure 12 Distribution of the ASE values across all the submissions made by the refinement 
groups. Box limits indicate upper and higher quartiles, whiskers indicate upper and lower 
bounds and a horizontal line in the middle of the box represents the median. Outliers are 
depicted as a rhombi. Groups were ordered by descending median of their ASE values.



Interestingly, the overall best-performing groups occupy four of the top seven places 

showing that their high quality predictions are accompanied by high accuracy error 

estimates.

The ASE values also allow an analysis by target of features that are associated with the 

ability to accurately estimate errors. We found no association between secondary structure 

class (all-α, all-β, mixed), percentage regular structure and number of residues (not shown). 

However there was a strong correlation between the mean ASE of a target (across all the 

groups shown in Supplementary Figure 2 and for all refinements) and its starting GDT_HA. 

Curiously the AF2-derived targets again performed differently, having lower ASE values than

other targets of similar starting GDT_HA. Evidently it is harder to predict residue error for 

AF2-derived targets than for other comparable proteins. This is presumably because the 

AF2-derived targets were generally high quality throughout, not following the typical pattern 

of lower accuracy in exposed loops. 

3.4 Extended targets

At CASP14, for the first time, for a subset of targets, refinement groups were invited to 

submit results after six weeks of work, in addition to submissions after the usual period of 

three weeks. The rationale was that some refinement methods, especially those based on 

MD, are quite compute-intensive and so can benefit from a longer window, particularly when 

dealing with larger targets.

Supplementary Figure 3A shows the groups ordered by overall performance (Figure 2) and 

illustrates the sum of all improvements made, expressed as sigma ΔGDT_HA, over model_1

submissions for all targets. Somewhat surprisingly, it is as common to see that the six-week 

submissions are worse (12 groups) than it is that they are improved (also 12). For the 



remaining three groups (DellaCorteLab, BAKER-experimental  and MULTICOM_CLUSTER),

the three- and six-week scores are identical, reflecting repeat submissions. Supplementary 

Figure 3B shows variation of scores on each of the seven extended targets. Again, equal 

numbers of targets benefit or suffer overall from the additional three weeks, while R1029 

scores similarly at the two time points. Taken together, these results suggest that there is 

little benefit from the extended submission window of six weeks.

3.5 Structure-based function prediction

A major application of protein modelling lies in the better interpretation and prediction of 

function. Function prediction in CASP is a separate category reported elsewhere in this 

issue, but we wished to assess here what impact model refinement had on the ability to read

out function from protein structure. We focused on servers that are readily accessible to the 

community. Inspection of the information provided to CASP predictors was combined with 

some initial analysis and literature review to identify functions encoded within the refinement 

targets that would be interpretable using structure-based methods. This produced four 

enzymes (R1053, a PI3 kinase; R1056, a metalloprotease; R1057, a methyltransferase; 

R1067, an LD-transpeptidase) with catalytic sites potentially discoverable by structural motif 

matching in ProFunc 19 or CatsId 18. R1057, along with the non-catalytic R1068 were DNA-

binding proteins, a function potentially discoverable using DNA_BIND 20 or BindUP 21. Finally,

we identified three targets that contribute to protein-protein interactions and considered 

testing their performance in docking using ClusPro 22.

In order to be able to measure the impact of refinement we required, for at least one 

criterion, that the experimental structure give a positive prediction while the refinement target

yield a negative result. Any positive impact of the refinement would then be evident in the 

function annotation  emerging from the refined version. Unfortunately, only one of the four 

enzymes - R1057, an N4-cytosine methyltransferase -  fulfilled these criteria. 



Table 4  shows that refinement can make a significant difference to structure-based function 

annotation, albeit the picture is mixed and method-dependent. For example, six of the 20 

refinements from the top four groups hit a methyltransferase catalytic site template in CastID

in a way the unrefined target does not. Although it is important to note that the submitted 

structures often matched other templates with similar scores - the methyltransferase match 

was not necessarily top-scoring - depending on the other information available regarding a 

protein of interest (ref for non-homology methods) it might still be very relevant to flag a 

particular activity as a possibility, even among a list of candidate activities. By Profunc, the 

unrefined target already scores almost as well as the experimental structure but its score 

can be increased, sometimes significantly after refinement, although it must also be pointed 

out that the match may also be lost on refinement. Unlike CastID, when a methyltransferase 

hit emerged for a submission to ProFunc  it was the only hit. For DNA binding, refinement 

typically improves the unrefined target score with DNAbind, in four cases taking it above the 

threshold for a positive prediction. However, the BindUP predictions remain negative for all 

refinements tested.

Among the targets involved in protein-protein interactions only one ultimately proved suitable

for us. In the case of T1045, one subunit of the Arabidopsis thaliana PEX4-PEX22 complex 

was chosen for refinement. However, even ClusPro docking of the two partners from the 

crystal structure did not identify the native interaction mode in first place. T1055, selected for

refinement, was a single chain NMR structure of the C-terminal domain of the A20 

processivity factor but the crystal structure of its known partner vaccinia virus E9 DNA 

polymerase was available in the PDB 31. Unfortunately, even with mutagenesis evidence 

implicating specific residues on each partner in the interaction 31, no plausible binding mode 

between the two structures was obtained. 



The refinement targets that could be used were both chains of T1065 which are described 

by the submitters as two subunits of Serratia marcescens N4-cytosine methyltransferase 

(although our own unpublished analysis suggests they may be a toxin-antitoxin pairing). We 

did pairwise docking between crystal structures, unrefined targets and the model_1 

refinements of the top 5 groups, looking at the top predicted binding model in each case. We

defined the receptor as the larger T1065s1 and the ligand as T1065s2. As Table 5 and 

Supplementary Figure 4A show, the crystal structures can be docked by ClusPro to closely 

capture the native interaction. Replacing the crystal structure of the ligand with the 

refinement target still yields good results (Supplementary Figure 4B), but the refinement 

target version of the receptor is not successfully docked to the ligand crystal structure 

(Supplementary Figure 4C). Nevertheless, the pair of refinement targets dock well. The 

impact of refinement here is again mixed. Positively, refinement of the receptor structure 

prediction by three of the four groups tested improved the results significantly, giving native-

like poses where the unrefined target did not (eg Supplementary Figure 4D). On the other 

hand, the good quality result between ligand crystal structure and receptor refinement target 

is lost upon any of the tested refinements of the latter.



4. Conclusions

As mentioned earlier, it is hard to compare CASP to CASP performance since the selection 

of targets is necessarily different in each case. Some measures of performance would also 

be influenced by the entry or withdrawal of particularly strong or weak groups. Nevertheless, 

CASP 14 refinement targets seem comparable to those of CASP13, in coordinate quality for 

example, albeit with a somewhat larger mean size. In terms of the proportion of models 

improved, performance is at best maintained compared to previous CASPs: certainly there 

have not been advances of the magnitude of those seen in the initial modelling as a result of 

the deployment of Deep Learning methods.  Nevertheless, some concrete proof of progress 

is provided by the comparison between the DellaCorteLab and FEIG groups submissions 

since the former employed a protocol largely corresponding to the FEIG group approach 

from CASP13. Although both did well this time, and are in the select number capable of 

beating the naïve predictor, FEIG and FEIG-S clearly did better, validating the innovations in 

extra sampling they introduced this time. Cross-fertilisation between CASP categories is 

quite common: for example, a number of original predictors incorporate elements of 

refinement protocols into their modelling. The top-performing BAKER group illustrate the 

reverse here: their latest refinement protocol 32 incorporates Deep Learning, which has 

revolutionised protein structure prediction in recent years, using it to estimate errors and 

thereby guide the diversification and optimisation of refined derivatives of the refinement 

target. Also notable is the use of a neural network by the JLU_Comp_Struct_Bio 27 which is 

the best performing group for refinement of higher quality starting models with GDT_HA > 

60.

The CASP organisers introduced two new features to the refinement challenge this time. 

Some targets were allowed an additional three weeks of time, with submissions at a six-

week checkpoint in addition to the usual three. Though well-motivated by the compute-



intense nature of many refinement protocols, the results were disappointing: the quality of 

the extended target refinements was just as likely to be worse than better, even among 

submissions from the best groups. Also new this year were ‘double-barrelled’ targets where 

groups were challenged to refine lower and higher quality predictions for the same target. 

The higher quality predictions were from a single group, later revealed to be AlphaFold 2. 

Despite containing regions differing from the experimental structure these proved to be 

essentially unimprovable by two orthogonal measures of protein quality. Digging deeper, we 

found that a large majority of the structural differences to the reference experimental 

structure lay at crystal lattice interfaces. Bearing in mind the potential distortion introduced 

by formation of the crystal lattice, it seems possible that the failure to ‘improve’ the quality of 

these error regions in the AF2 models may simply reflect that the experimental reference 

structures are in non-natural conformations at these points. The code we developed to 

categorise error regions as lying at lattice or other interfaces may prove useful to future 

CASP refinement assessors for the selection of targets with uncomplicated and improvable 

errors.

Remembering that structure predictions are frequently used by biologists for interpretation or

prediction of function, we looked at the impact of refinement on structure-based function 

annotation methods for catalytic sites, nucleic acid binding capacity and protein-protein 

docking. Although only a small number of refinement targets were suitable, and although the

picture was mixed, it is clear that refinement can sometimes yield a correct structure-based 

function read-out for a refinement target that did not give a positive result. Importantly, the 

server FEIG-S was among the groups whose refinements behaved in this way suggesting 

that biologists should consider structure-based hypotheses from server-refined models in 

addition to analysing the original structure predictions. We also looked at the impact of 

refinement on the prospects for use of structure predictions in Molecular Replacement 

(elsewhere in this issue) where the picture was very strongly encouraging: we frequently 

observed success with a refined version where the original prediction failed.
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Table 1. Features of the selected refinement targets

TARGET 
ID(S) AT 
REFINEMEN
T PHASE…

ID OF 
EXTENDED 
REFINEMEN
T TARGET, 
WHERE 
APPLICABL

E

RESIDUES 
INCLUDED

RESIDUES 
IN 
REFINEMEN
T TARGET

CLASSIFICA

TION

STARTING 
MODEL

REFINEMEN
T TARGET 
STARTING 
GHT_HA

EXPERIMEN
TAL 
STRUCTUR

E IS NMR 
OR CRYO-
EM?

R1029 R1027x1 1-125 125 FM TS364_4 27.6 NMR

R1030-D2 155-273 119 TBM-hard TS362_5-
D2

40.34

R1031 1-95 95 FM TS042_1 52.11

R1033 1-100 100 FM TS376_1 37.75

R1034 R1034x1 1-156 156 TBM-easy TS070_1 70.03

R1035 1-102 102 FM/TBM TS031_2 69.12

R1038-D2 123-198 76 FM/TBM TS326_5-
D2

56.58

R1039 1-161 161 FM TS031_1 36.022

R1040v1

R1040v2

1-130 130 FM TS427_1

TS435_2

v1-53.84

v2-30.96

R1041v1

R1041v2

1-242 242 FM TS427_5

TS031_1

v1-70.25

v2-42.35

R1042v1

R1042v2

1-276 276 FM TS403_1

TS427_1

v1-34.69

v2-65.58

R1043v1

R1043v2

1-148 148 FM TS403_1

TS427_1

v1-43.41

v2-65.37

R1045s2 8-173 166 TBM-hard TS238_1 61.6

R1049 1-134 134 FM TS351_1 50.93



R1052-D2 540-
588,669-
832

213 TBM-easy TS209_1-
D2

57.98

R1053v1

R1053v2

407-577 171 FM/TBM TS042_5-
D2

TS427_4-
D2

v1-53.07

v2-80.12

R1055 R1055x1 3-124 122 FM/TBM TS013_2 59.22 NMR

R1056 R1056x1 13-181 169 TBM-hard TS183_2 49.7

R1057 1-
121,127-
184,200-
241,255-
279

246 TBM-easy TS209_2 64.4

R1061-D3 736-838 103 TBM-easy TS277_3-
D3

58.25 CRYO-EM

R1065s1 6-124 119 TBM-hard TS351_4 73.32

R1065s2 1-98 98 FM/TBM TS209_1 74.75

R1067v1

R1067v2

R1067x1 44-264 221 TBM-hard TS473_3

TS427_1

v1-46.27

v2-79.08

R1068 R1068x1 13-203 191 TBM-hard TS238_1 40.64

R1074v1

R1074v2 R1074x2

71-202 132 FM TS427_1

TS140_5

v1-78.41

v2-35.61

R1078 3-131 129 TBM-hard TS226_2 69.69

R1082 23-97 75 FM/TBM TS042_1 52.66

R1085-D1 173-339 167 TBM-hard TS468_1-
D1

42.5

R1090 2-192 191 FM TS351_1 44.44

R1091-D2 498-604 107 TBM-easy TS351_3-
D2

60.75



Table 2. Number of CASP14 targets in Template-Based Modelling (TBM) and Free 

Modelling (FM) categories and size measurements. Numbers in parentheses indicate values

from CASP13. Extended and “double-barrelled” targets (see main text) are counted once 

here.

Target class Number of
targets

Size in residues

minimum maximum mean

TBM-easy 5 (13) 103 246 165 (132)

TBM-hard 8 (5) 119 221 160 (130)

FM/TBM 6 (5) 75 171 107 (142)

FM 11 (6) 95 276 157 (137)

all 30 (29) 75 (77) 276 (204) 149 (134)



Table 3 Analysis of the neighbourhoods of error regions in the AF2 models (see Materials 

and Methods for definitions). Error regions are classified according to whether they 

predominantly lie near other symmetry mates in the crystal lattice, other domains in the 

native protein containing the refinement target sequence, or neither. We considered the 

possibility of contacts with other chains in the asymmetric unit but there were no cases like 

this. Each cell contains ranges of residues considered as error regions in the AF2-based 

refinement target. Numbers in parentheses correspond with the average number of 

contacting residues (in a symmetry mate or another domain) for residues in the error region.

Target Errors near lattice
contacts

Errors near domain
contacts

Uncomplicated errors

1040 35-51 (1.6)
97-99 (4)

70-74 (0)

1041 191-200 (1.7) 18-22 (6.6)

1042 150-154 (1.2)
247-250 (0.5)
273-275 (1)

96-101 (5.6)

1043 25-34 (0.8)
115-119 (1.4)

134-137 (0.75)

1053 68-72 (0)

1067 79-97 (3.9)

1074 21-27 (0.5)
83-88 (0.85)

Total number of error
regions

12 2 2

Total number of residues
in error regions

93 11 10



Table 4.  Catalytic site and DNA binding predictions for R1057 and R1068 targets, comparing results for the crystal structure, the refinement 
target and selected refined versions thereof.  Included are the five models of the top four groups along with model_1 from the other six groups 
that were ranked in the top 10 for both targets.  CatsID identifies structural matches to catalytic sites among all Protein Data Bank proteins; 
scores listed are for methyltransferase hits.  Scores above 0.02 are an indication of correct assignment of catalytic function. No models 
surpassed this threshold for a methyltransferase hit, but scores for any methyltransferase hits are displayed (bold).  It should be noted also that 
where a methyltransferase hit was recorded, other hits with unrelated catalytic sites also were observed.  For ProFunc scores,  the higher the 
score of an active site template match the greater the confidence in a hit:  methyltransferase hit scores are again highlighted in bold. DNAbind 
predicts DNA-binding ability even from  low-resolution, Cα-only protein models: proteins with scores above the 0.5313 threshold are predicted 
to bind DNA (bold). BindUP predicts nucleic acid binding function given the protein's three-dimensional structure.

R1057 R1068

GDT_HA CatsID ProFunc DNAbind BindUP GDT_HA DNAbind BindUP

Crystal  - 0.004 82.04 0.663 YES - 0.991 YES

Refinement 
target 44.11 No hits 81.14 0.476 NO 21.612 0.959 YES

FEIG-S 
refinements model_1 75.10 No hits 0 0.535 NO 43.58 0.989 YES

model_2 70.20 No hits 0 0.497 NO 38.13 0.989 YES

model_3 74.60 No hits 0 0.531 NO 38.41 0.989 YES

model_4 72.20 No hits 0 0.535 NO 40.36 0.991 YES

model_5 74.00 No hits 80.5 0.527 NO 42.60 0.990 YES

DellaCorteLab model_1 64.40 No hits 83.0 0.515 NO 43.30 0.989 YES



refinements 

model_2 66.40 No hits 0 0.509 NO 42.60 0.989 YES

model_3 66.10 No hits 87.0 0.529 NO 42.32 0.990 YES

model_4 66.10 No hits 83.0 0.506 NO 42.64 0.989 YES

model_5 66.20 No hits 81.1 0.547 NO 40.64 0.989 YES

FEIG 
refinements model_1 71.60 0.005 0 0.068 NO 46.23 0.987 YES

model_2 70.90 No hits 90.1 0.525 NO 44.55 0.989 YES

model_3 67.90 No hits 0 0.065 NO 44.13 0.990 YES

model_4 67.40 0.004 0 0.496 NO 43.85 0.988 YES

model_5 67.80 0.005 0 0.483 NO 36.87 0.986 YES

Baker 
refinements model_1 70.90 No hits 83.0 0.511 NO 40.64 0.986 YES

model_2 67.80 0.004 83.0 0.491 NO 40.92 0.985 YES

model_3 64.40 0.004 124.0 0.469 NO 32.82 0.978 YES

model_4 65.30 0.004 0 0.457 NO 32.26 0.986 YES

model_5 62.20 No hits 81.1 0.547 NO 32.68 0.989 YES



Table 5 Results obtained using ClusPro to dock the two subunits of target T1065. Different 
combinations of structures were tested using, for each subunit; the crystal structure, the 
structure provided to the groups as the refinement target, and the model_1 submitted by 
each of the top four refinement groups. These top predictions are indicated simply by the 
refinement group name in the Table. For each docking exercise, the ClusPro cluster size 
and lowest energy reported were recorded. Additionally, the top cluster was selected for 
further docking quality assessment, where the fraction of native contacts (Fnat), ligand 
RMSD (L-RMSD) and the interface RMSD (I-RMSD) were recorded and used to estimate 
the docking quality based on the CAPRI assessment protocol - see Materials and Methods 
and Supplementary Table 1.

‘Receptor’
(R1065s1)

‘Ligand’
(R1065s2)

ClusPr
o

Cluster
Size

ClusPr
o

Lowest
Energy Fnat

L-
RMSD

(Å)

I-
RMSD

(Å)

CAPRI
Assessme

nt

Crystal Crystal 126 -878.6 0.7 2.39 3.11 Medium

Crystal
Refinement

target 108 -616.1 0.7 4.91 4.84 Medium

Crystal BAKER 159 -713.2 0.08 31.61 29.25 Incorrect

Crystal FEIG 169 -743.4 0.09 24.93 23.89 Incorrect

Crystal FEIG-S 80 -676.8 0.1 26.36 25.08 Incorrect

Crystal
DellaCorteLa

b 173 -752.9 0.07 32.76 30.62 Incorrect

Refinement
target Crystal 119 -574.2 0.13 24.37 22.79 Incorrect

BAKER Crystal 99 -591.9 0.09 31.59 28.41 Incorrect

FEIG Crystal 152 -629.1 0.84 1.82 1.89 Medium

FEIG-S Crystal 150 -630.5 0.84 3.78 3.08 Medium

DellaCorteLab Crystal 108 -535.5 0.62 22.83 6.06 Medium

Refinement
target

Refinement
target 215 -640.4 0.47 9.61 9.1 Acceptable

BAKER BAKER 113 -650.3 0.28 15.84 13.79 Incorrect

FEIG FEIG 146 -590.9 0.1 25.4 24.04 Incorrect

FEIG-S FEIG-S 127 -623 0.1 34.52 31.73 Incorrect

DellaCorteLab DellaCorteLa 123 -627.4 0.08 26.91 25.69 Incorrect
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