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Assessment ofDFTmethods through analysis of the Renner-
Teller Effect (RTE) in the X 2Π state of the NCO radical was
completed. Our results suggest that the amount of exact
exchange at long range is important for an accurate descrip-
tion of the RTE in NCO. DFT functionals from the B3LYP,
PBE, TPSS, M06, and M11 families with standard Corre-
lation Consistent, 6-311G split valence family, as well as
Sadlej, and Sapporo polarized triple-ζ basis sets were as-
sessed. Our Renner coefficients are compared with pre-
viously published theoretical and experimental results to
characterize the overall accuracy of various functional/basis
set combinations in determining the RTE splitting in the
Π (bending) modes of NCO(X 2Π). We suggest that this
method of analysis can be extended to other systems, serve
as an accuracy metric when selecting a functional, and pro-
vide a means to create training sets for machine learning in
computational molecular physics applications.
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1 | INTRODUCTION

Density functional theory (DFT), in the common Kohn-Sham formalism [1], has become one of the go-to tools for
the calculation of ground state observable properties of small and large molecular complexes. Its ease of use and its
ability to produce accurate results at a cost less than traditional wavefunction methods has resulted in DFT being
ubiquitously available in most (if not all) standard quantum chemistry packages.

In a recent study [2] employing DFT we realized that the out-of-box (OoB) calculation of harmonic vibrational
modes using the GAUSSIAN09 [3] and now GAUSSIAN16 [4] suites render non-degenerate ground-state bending
frequencies for open-shell linear molecules, specifically the NCO (isocyanate) radical. This lead us to questionwhether
or not the software was predicting the Renner-Teller (RT) splitting of the bending modes to a useful level of accuracy
and if so, what specifically makes one functional more or less accurate when determining the RT splitting.

Léonard et al. [5], and several references within, carried out a high-accuracy ab initiomulti-reference configuration
interaction with the Davidson correction (MRCI+Q) treatment of the Renner-Teller Effect (RTE) in NCO using the cc-
pVTZ [6] basis set producing results with spectroscopic accuracy. Léonard et al.’s work shows the importance of
electron correlation in systems such as NCO and due to this importance the authors suggest that DFT is not an
appropriate method for treating the RTE in NCO to spectroscopic accuracy.

In this work we suggest that the amount of exact (or Hartree-Fock) electronic exchange correlation of a given
functional strongly impacts the accuracy when treating the RTE in NCO. In order to establish this link we employ 13
common DFT functionals from the middle rungs of Perdew et al.’s metaphorical “Jacobs ladder” of functional accuracy
[7], each with differing amounts of exact correlation, to determine the Renner coefficient from the non-degenerate
bending vibrational modes of the NCO ground state (X 2Π). We then compare the results to experimental values and
characterize the overall performance of these functionals classifying the impact of the electronic exchange energy on
the accuracy of the results.

To our knowledge, the only other high-level DFT treatment of the RTE in NCO was completed by Mladenovic
et al. [8] using only the B3LYP [9]/EPR-III [10] methods and no other work address the link between the amount of
exact exchange energy and the accuracy of the DFT treatment of the RTE in NCO (or any other linear triatomics).

We also suggest that the OoB calculation of the RTE in NCO can serve as a metric to to assess the overall per-
formance of a particular functional and basis set choice when using DFT for, or systems that include, bending NCO.
We also speculate that this method can be extended to other open-shell linear triatomics. Understanding whether or
not a functional will accurately predict the RT splitting in vibrational modes based on functional composition can be
useful when working with open-shell linear molecules (like NCO) or systems with open-shell linear groups. We also
suggest that this assessment method can also serve as a means for further developing training data sets for machine
learning (ML) applications in molecular physics and quantum chemistry [11, 12].

2 | COMPUTATIONAL AND QUANTUM CHEMISTRY DETAILS

All calculations were completed using the GAUSSIAN16, Revision A.03, quantum chemistry suite [4]. Calculations
utilized one or two compute nodes (two 16-core Intel Xeon E5-2698v3 [13] processors per node) housed in a Cray
XC40 High Performance Computer (HPC) named “Excalibur”. 1

The DFT functionals used are a subset of those included in the standard GAUSSIAN16 suite [4, 14]. Namely, the
TPSS [15, 16, 17], and M06 [18] families, as well as the M11 [19], B3LYP [9], CAM-B3LYP [20], B3PW91 [9, 21, 22,

1This HPC, formerly housed at the Army Research Laboratory, was decommissioned in February 2021; well after all calculations were complete.
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23, 24], PBE [25, 26], and PBE0 [25, 26, 27] methods. We combine these functionals with the standard 6-311G series
[28, 29, 30, 31, 32], correlation-consistent series [6, 33, 34, 35], and Sadlej polarized triple-ζ [36, 37, 38, 39, 40] basis
sets, obtained through the Environmental Molecular Sciences Laboratory Basis Set Exchange [41, 42] (EMSL-BSE)
database, as well as the Sapporo [43, 44, 45] polarized triple-ζ (SPK-TZP) and augmented-TZP (SPK-ATZP) basis sets
along with the Sapporo 2012 updates [46, 45] (SPK-TZP-2012 and SPK-ATZP-2012). The basis sets employed in
this study, except for the Sapporo sets obtained from Noro [46], were those tabulated on and downloaded from the
EMSL-BSE [41, 42] database. Where possible, the basis sets obtained from the EMSL-BSE database were directly
compared to those pre-programmed in GAUSSIAN16 to assure consistancy.

Each calculation used semi-default settings. We used keyword Int(Grid = -96032) to set a spherical numerical
integration grid for all of ourDFT calculations. TheUniversity ofMinnesota Computational Chemistrywebsite [47] and
the GAUSSIAN reference website [48] outlines that this setting uses 96 radial shells around each atomwith a spherical
product grid of 32 θ and 64 φ points in each shell resulting in 196 608 integration points per atom. This keyword is
often cited in benchmarking calculations [48] and effectively eliminates small imaginary (negative) frequencies [47].

The unscaled harmonic vibrational frequencies for each functional/basis set combination were determined from
the Hessian computed from the ground state stationary point. Calculations were completed in the typical C2v point
group (we note that linear NCO is in the C∞v group) which was automatically selected by the GAUSSIAN16 software
after reading the input file’s z -matrix. Here we note that as part of the calculation process completed by GAUSSIAN16
the linear molecule is bent, therefore breaking the high-symmetry. The bentmolecule is best described by theCs point
group which will be discussed more in section 3.

3 | THE RENNER-TELLER EFFECT AND THE NCO (ISOCYANATE) RADICAL

Gas phase NCO is of interest to us because of its presence in the residue of post-detonated chemical propellants
[49, 50, 51, 2]. There is also a vast amount of information about NCO in the literature as this radical has been studied
experimentally and theoretically since the late 1950’s [52]. An extensive experimental treatment of the Renner-Teller
levels in NCOwas completed by Tan et al. [53] in 2003. Then, in 2004, R. Prasad [54] completed an exhaustive review
of all the theoretical and experimental work on NCO and its isomers. We will not reproduce their results here except
for instances where a specific result is relevant to the current work.

A linear triatomic molecule, ideally, has four irreducible vibrational modes (two non-degenerate and two degen-
erate) for a bound electronic state. In the C∞v notation the non-degenerate Σ modes represent the symmetric and
asymmetric stretching modes along the molecular axis (usually defined along the z -axis) and the degenerate Π modes
represent the bending modes in the x y - and xz -plains. Open-shell linear triatomics (like NCO) have a non-zero pro-
jection of the electronic angular momentum onto the molecular axis that couples to the vibrational momenta. This
coupling, known as the Renner-Teller (RT) coupling [55], results in a breakdown of the Born-Oppenheimer (BO) approx-
imation [56] and the splitting of the ideally-degenerate bending (Π) modes [57] into two distinct observable values.
The effect’s namesake, Rudolf Renner, first described this splitting for linear CO2 [58] in 1934. A good review of the
original work is available online by Wormer [57] and an in-depth review of the RTE was done in 2019 by Jungen [59].

The breakdown of the BO approximation is manifest by a splitting of the two-fold degenerate potential energy
surface (PES) representing the degenerate state. In the case of NCO, the linear ground state (in typical C∞v notation)
is X 2Π. As the molecule bends the high C∞v symmetry is reduced to the less symmetric Cs point group with two
irreducible symmetry representations: 2A′ and 2A′′. The PESs representing the NCO(2A′) and NCO(2A′′) states split as
a function of the bending angle. We provide a sketch of this splitting in Fig. (1). NCO exhibits a “weak RTE” [60, 8, 61]
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F IGURE 1 This figure presents a sketch of the “weak RTE” [60, 8, 61] in NCO. The origin represents ground state NCO in its linear
configuration. The N-C and C-O bond lengths are kept at their respective equilibrium values. The horizontal axis is related to the molecular
bending angle and the vertical is the typical potential energy. As the molecule bends the 2A′ (solid) and 2A′′ (dashed) potential energy
surfaces (PESs) split as a function of the bending angle. The vibrational spectra associated with each PES also split, represented by the
horizontal solid and dashed lines near the bottom of the potential wells. The horizontal dashed line represents the higher-energy bending
mode associated with the 2A′′ PES (dashed) and the horizontal solid line represents the lower-energy bending mode associated with the 2A′

PES (solid). This is the Renner-Teller splitting of the bending modes in NCO(X 2Π).

which is characterized by the small splitting between the non-degenerate 2A′ and 2A′′ PESs each of which have their
own vibrational spectra. For further reading on the weak RTE and a description of the the strong RTE see chapter 4
of Bersuker’s book on the Jahn-Teller Effect [60].

3.1 | The Renner Coefficient (ε)

The Renner Coefficient (also known as the Renner Parameter), denoted ε, is a unit-less quantitative measure of the
strength of the RTE (how much the ideally-degenerate bending (Π) mode splits). The RTE is characterized using the
Renner coefficient [5],

ε =
ω2
A′
− ω2

A′′

ω2
A′
+ ω2

A′′

(1)

and by the average of the split frequencies,

ωavg =
ω2
A′
+ ω2

A′′

2
(2)

where ω2
A′

and ω2
A′′

represent the bending frequencies in units of cm−1 in the harmonic approximation. For ε < 0 the
bending mode associated with the 2A′ PES is lower in energy than the mode associated with the 2A′′ PES. This is the
situation is sketched in Fig. (1). For all of our calculated results ε < 0. In Table (1) we provide relevant values for ωavg
and ε found in the literature. In Table (2), in this articles appendix, we provide all of our calculated Renner coefficents.

Due to the same dimensionality of the numerator and denominator in Eq. (1) the method-dependent global mul-
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TABLE 1 Relevant Renner Coefficients (ε), also called the Renner Parameter, found in the literature for NCO(X 2Π). The ωavg
parameter is the typical arithmetic mean of the respective 2A′ and 2A′′ bending modes in units of wavenumbers (cm−1). In the present work
we compare our values to ε = (−0.1436 ± 0.0001) [62, 63]. The value for the absolute uncertainty was determined to be 0.000057 using
values presented in Prasad’s review [54] and the method of quadrature outlined by Taylor [64] and rounded to a more conservative 0.0001.
We provide other values for context on the uncertainty that may exist in the value.

Type ωavg ε

Theoretically Determined Values

B3LYP/EPR-III, Mladenovic et al. [8] 540 -0.15

MRCI+Q/cc-pVQZ, Léonard et al. [5] 532 -0.1441

f v -CASSCF a/6s4p2d2f, Prasad [54] 532 -0.124

CAM-B3LYP/aug-cc-pCvQZ [Fig. (2)], this work 543.74b -0.1424

M06/cc-pVDZ, this work 537.38c -0.14365

Experimentally Determined Values

Tables 5 & 6, Wu et al. [62] 532.69 -0.1436

Table 4, Woodward et al. [63] 528.6 -0.1436

NIST [65] 535.4 -

Tables 2 & 3, Dixon [52] 539.4 -0.181
afull-valence Complete Active Space Self-Consistent-Field (f v -CASSCF).
bCalculated frequencies are scaled by 0.9540 [2].
cCalculated frequencies are scaled by 0.9620 [2].

tiplicative linear harmonic scaling factors, used to account for anharmonicity when the harmonic approximation is
employed [66, 67, 68, 2], reduces to unity so we need not scale our harmonic frequencies before computing the Ren-
ner coefficient. The ωavg, however, does require scaling of the harmonic frequencies when comparing to experimental
counterparts. Appropriate scaling factors can be found in the literature (for example see Ref. [2] and references within)
and some are provided by NIST. Except for the frequencies presented in Fig. (2) and the ωavg’s in Table (1) we did not
apply scaling factors in this study.

The splitting of the vibrational bending modes due to the RTE in NCO was observed experimentally in 1960 by
Dixon [52]. In Fig. (2) we provide a simulation [69] of the NCO(X 2Π) vibrational absorption spectra. The bendingmode
split by the RTE is indicated in the figure as are the symmetric and antisymmetric stretching modes. The frequencies
in the simulation are calculated at the CAM-B3LYP/aug-cc-pCvQZ level and scaling factor of 0.9540 [2] was applied.
CAM-B3LYP is a Range Separated Hybrid (RSH) functional with a mid-to-long range exact correlation contribution
of 65%. This will be discussed more in section 4.1. The Renner coefficient and ωavg for this calculation are given in
Table (1) for direct comparison with the literature. The calculated frequencies are in very good agreement with the
experimental values of 535.4 cm−1, 1266.6 cm−1, and 1921.3 cm−1 reported on the NIST [65] database.

4 | CHARACTERIZATION AND DISCUSSION

The motivation behind this preliminary study was to use the RT splitting of the bending modes in the ground state of
the NCO radical as a metric to assess and characterize the performance of various functional and basis set choices in
order to establish a link between the accuracy of the calculated Renner coefficient and the amount of exact correlation
in a given functional. In all we completed 273 calculations (13 functionals 21 basis sets). However, because of weak
across-the-board performance of the 6-311G basis set (which was expected), we excluded those 13 calculations from
the remainder of our analysis.
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F IGURE 2 This figure presents a simulation [69] of the vibrational absorption spectra for the NCO(X 2Π) radical. The vertical axis is
relative absorbance scaled against the absolute absorbance of the symmetric stretching mode (set to 100%). The frequencies are calculated
at the CAM-B3LYP/aug-cc-pCvQZ level and scaling factor of 0.9540 [2] was applied. The calculated frequencies are in very good agreement
with the experimental values reported on the NIST [65] database. The resulting Renner-coefficient, ε = −0.1424, is in excellent agreement
with the experimentally determined −0.1436 [62, 63].

We compute the mean absolute relative error (MARE) from the experimentally determined “target” Renner coef-
ficient in usual way; illustrated by:

MARE = 1

n

n∑
i=1

���� εi − εtarget|εtarget |

���� (3)

where εi represents the presently calculated Renner coefficient, εtarget = −0.1436 represents the experimentally de-
termined Renner coefficient [5, 63], and n is the total number of coefficients sampled per functional (20 in this case).
The fraction inside of the absolute value bars of the summation is the relative error (RE) of a particular method com-
bination (also called relative difference (RD) in the literature). The MARE is used to characterize our results. In Fig. (3)
we graphically present theMAREs as well as the actual MARE value for each functional with an error bar representing
the standard error (SE) for the functional in question assessed across the n = 20 basis sets. For each functional we
compute the SE using

SE = σ
√
n

(4)

where σ represents the standard deviation across the sampled basis sets. The relative error (RE) of the calculated coef-
ficients, when compared to the target value, approximate a normal distribution about the average value, as illustrated
in Fig. (4).

The base 6-311G basis set showed weak performance across all functionals which was expected. The weakest
wasM06-HF/6-311G yielding ε = −0.0368, a+74.4% relative error (RE) from our target value. On average, the 6-311G
basis set results in a (26.6 ± 6.9)% MARE when assessed across all 13 functionals. The 6.9% error bar is computed
using the SE described in Eq. (4) assessed across the 13 functionals. The next weakest performance was the PBE/aug-
cc-pVDZ which yielded ε = −0.1871, a −30.3% RE from our target value. Overall, the PBE functional showed a weak
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F IGURE 3 This figure presents the MAREs, as defined by Eq. (3), for each functional assessed. The error bar represents the standard
error (SE) as determined using Eq. (4) as assessed over the 20 basis sets sampled. The color code ties the functionals to their rung of Perdew
et al.’s metaphorical “Jacob’s Ladder” of functional approximation accuracy [7, 70]. In this figure we separate “rung four” into two shades of
green highlighting the differences between Hybrid GGA (light green) and Hybrid meta-GGA (dark green) functionals. Functionals from the
lowest rung, Local Spin-Density Approximation (LSDA), were not assessed in this study.

performance across all 20 basis sets yielding a (−24.62 ± 0.53)%MARE from the target value.
The overall strongest performance was M06/cc-pVDZ yielding ε = −0.14365, a −0.033% RE from our target value.

This result is interesting because in general the aug-cc-pVDZ basis set shows a weaker across-the-board performance
with a (15.0±3.9)%MAREwhen assessed across all 13 functionals. OverallM06 performedwell yielding a (2.14±0.42)%
MARE. But, the M06-2X functional performed best resulting in a (1.88 ± 0.36)%MARE.

In Fig. (3) we present the MARE values for the functional families assessed. The color code indicates where the
functionals lie on Perdew et al.’s metaphorical “Jacob’s Ladder” of functional approximation accuracy [7, 70]. As one
would expect, the global hybrid GGA and global hybrid meta-GGA perform better than than the meta-GGA and pure
GGA functionals. The small SE, indicated by the error bars, supports the suggestion that results determined with DFT
have a stronger dependence on functional choice than on the choice of basis set [2, 71].

In Fig. (5) we present the average Renner coefficient determined for each functional assessed depicting where it
lies on a number line compared to the target value. Although very small, we do include an error bar computed using
the SE of the 20 basis sets assessed. All of our calculated Renner coefficients are provided in Table (2) and the resulting
REs from the target value as well as the MAREs are provided in Table (3) of this article’s appendix.

4.1 | Linking Exact Exchange Energy to the Accuracy of ε

Accurate treatment of the electronic correlation has proven to be very important when calculating the Renner coef-
ficient to spectroscopic accuracy [5]. Analysis of the MAREs of the Hybrid GGA and Hybrid meta-GGA functionals
in Fig. (3) suggests that accuracy of a calculated Renner coefficient is dependent on the amount of exact exchange
energy (also called Hartree-Fock exchange energy and is often denoted EHF

x in the literature [72, 70]) that is included
in the functional’s total exchange-correlation energy term (typically denoted Exc in the literature [72, 70]). M06 and
M06-2X have 27% and 54% HF exchange respectively [18] with the M06-2X performing marginally better than M06.
However, the M06-HF [18] with its 100% HF exchange performs significantly worse. The range separated hybrid
(RSH) M11 functional [19], with its 42.8% short range and 100% long rage HF exchange, performs about the same
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F IGURE 4 This figure presents the relative error (RE) from the target, as defined by the fraction in Eq. (3), for each coefficient for
each functional assessed across all basis sets sampled. This figure is intended to be qualitative in nature showing that for each functional,
the REs from the target approximate a normal distribution about the average RE. The the horizontal bins are 2.5% RE from the target. The
color code is similar to that used in Fig (3) used to distinguish the placement on Jacob’s ladder. In areas where distributions overlap we add a
pattern to allow distinguishable results. Due to is across-the-board poor performance the 13 coefficients resulting from the 6-311G basis
set are not included in this analysis. The remaining 260 coefficients tabulated and shown.

as M06-HF suggesting that this system has a stronger longer-range dependence on the exact exchange contribution.
The improved performance of CAM-B3LYP over B3LYP supports this suggestion. At short range CAM-B3LYP [20]
has 19% while at mid-to-long range it has a 65% exact exchange while B3LYP [9] maintains a constant 20% exact
exchange at all ranges. The M06, M06-2X, and CAM-B3LYP showed great performance when compared to the other
functionals assessed. This preliminary assessment suggests that the accuracy of the calculated Renner coefficient
has definite dependence on the amount of exact exchange energy contribution at mid-to-long range and that this
contribution lies between ∼30% (M06-2x) and ∼70% (CAM-B3LYP) (when rounded to one significant figure).

5 | SUMMARY & CONCLUDING REMARKS

The GAUSSIAN16 quantum chemistry suite on DoD-HPCMP HPCs was used to compute the ground state (X 2Π)
vibrational modes of the NCO radical using Density Functional theory (DFT). The out-of-box bending (Π) vibrational
modes calculated by the software shows the splitting in the ideally degenerate bending modes associated with the
NCO(X 2Π) state due to the Renner-Teller effect (RTE). We used these non-degenerate bending modes to calculate
the Renner coefficient (ε) for 21 common basis sets assessed across 13 common functionals residing on various
rungs of Jacob’s ladder. For each functional assessed we computed the mean absolute relative error (MARE) from the
experimentally determined “target” value for the NCO(X 2Π) Renner coefficient found in the literature. As expected,
we found a weak across-the-board performance of the 6-311G basis set so these 13 data points were excluded from
the overall analysis. Upon analyzing results across the reaming 20 basis sets, we find that theM06-2X,M06, and CAM-
B3LYP functionals perform the best with respect to the other 10 functionals assessed. Results of this preliminary
study suggest that the accuracy of the DFT-calculated Renner coefficient is highly dependent on the longer-range
contribution of the exact (or Hartree-Fock) exchange energy (EHF

x ) in the functional’s exchange-correlation energy
term (Exc ). We are suggesting that use of DFT to calculate the effects of the RTE in open shell linear molecules
may serve as a metric for assessing the likelihood of accurate performance when calculating vibronic effects in similar
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F IGURE 5 This figure presents the average Renner coefficients for the indicated functional on a number line as it compares to the
experimentally determined “target” value indicated by the vertical purple line. The error bar represents the standard error (SE) determined
using Eq. (4) as assessed over the 20 basis sets sampled. The color code used is the same as that used in Fig. (3).

species or larger systems with isocyanate groups a priori. This method may also be applicable for inclusion in much
needed machine learning training sets [11, 12] for molecular physics and quantum chemistry applications where near-
spectroscopic accuracy is desired.
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Appendix: Calculated Values

In this appendix we include the calculated Renner coefficients (ε) in Table (2) and the percent relative error (%-RE) of
the calculated ε from the experimentally determined “target” value in Table (3).

TABLE 2 All of the Renner Coefficients we calculated using Eq. (1). The arithmetic mean and standard deviation of the mean (σ) are
computed in the usual way. The standard error (SE) for each functional is computed using Eq. (4). The left to right order of the functionals is
that of the top-down order in Fig. (3). The functional column labeled CB3LYP is shorthand for CAM-B3LYP.

Basis/Func M06-2X M06 TPSSh M06-HF M11 CB3LYP B3LYP PBE0 B3PW91 M06-L TPSS RevTPSS PBE

aug-cc-pVTZ -0.14176 -0.14499 -0.16300 -0.12324 -0.12173 -0.14088 -0.14981 -0.15270 -0.15430 -0.16615 -0.17403 -0.17511 -0.17847

aug-cc-CpVTZ -0.14162 -0.14449 -0.16283 -0.11899 -0.12082 -0.14064 -0.14954 -0.15249 -0.15408 -0.16476 -0.17384 -0.17493 -0.17809

aug-cc-pVQZ -0.14376 -0.15026 -0.16498 -0.11969 -0.12074 -0.14234 -0.15144 -0.15444 -0.15613 -0.17202 -0.17611 -0.17756 -0.18028

aug-cc-CpVQZ -0.14346 -0.15039 -0.16474 -0.11951 -0.11912 -0.14242 -0.15151 -0.15442 -0.15612 -0.17333 -0.17584 -0.17732 -0.18044

aug-cc-pVDZ -0.14674 -0.15229 -0.16996 -0.12541 -0.12534 -0.14695 -0.15660 -0.15908 -0.16060 -0.17797 -0.18199 -0.18302 -0.18705

cc-pVTZ -0.14123 -0.14522 -0.16318 -0.12587 -0.12352 -0.13913 -0.14837 -0.15172 -0.15399 -0.16642 -0.17439 -0.17526 -0.17706

cc-CpVTZ -0.13951 -0.14368 -0.16128 -0.12069 -0.12075 -0.13727 -0.14635 -0.15002 -0.15221 -0.16444 -0.17218 -0.17314 -0.17461

cc-pVQZ -0.14334 -0.15106 -0.16398 -0.12393 -0.12354 -0.14144 -0.15056 -0.15370 -0.15567 -0.17212 -0.17494 -0.17669 -0.17919

cc-pVDZ -0.13833 -0.14365 -0.16463 -0.11568 -0.11285 -0.13539 -0.14661 -0.15262 -0.15403 -0.17412 -0.17706 -0.17773 -0.18071

6-311G(p) -0.13980 -0.14760 -0.16579 -0.11797 -0.11819 -0.13783 -0.14882 -0.15365 -0.15554 -0.17521 -0.17818 -0.17915 -0.18180

G(pd) -0.13980 -0.14760 -0.16579 -0.11797 -0.11819 -0.13783 -0.14882 -0.15365 -0.15554 -0.17521 -0.17818 -0.17915 -0.18180

++G(pd) -0.14301 -0.14823 -0.16749 -0.11982 -0.12009 -0.14185 -0.15245 -0.15603 -0.15746 -0.17652 -0.17963 -0.18112 -0.18405

++G(2p2d) -0.14158 -0.14516 -0.16155 -0.12195 -0.12141 -0.14074 -0.14918 -0.15165 -0.15313 -0.16965 -0.17231 -0.17410 -0.17649

++G(2df2dp) -0.14002 -0.14263 -0.15998 -0.11978 -0.12123 -0.13918 -0.14769 -0.15003 -0.15176 -0.16386 -0.17074 -0.17203 -0.17512

++G(3df3dp) -0.14165 -0.14497 -0.16347 -0.12100 -0.12122 -0.14156 -0.15059 -0.15323 -0.15481 -0.16537 -0.17456 -0.17585 -0.17917

Sadlej -0.14262 -0.14704 -0.16434 -0.12928 -0.12193 -0.14162 -0.15123 -0.15323 -0.15541 -0.17053 -0.17607 -0.17682 -0.18121

SPK-TZP -0.13757 -0.14526 -0.16025 -0.11978 -0.12050 -0.13577 -0.14557 -0.14934 -0.15190 -0.16626 -0.17126 -0.17227 -0.17447

SPK-ATZP -0.14124 -0.14639 -0.16270 -0.11962 -0.12090 -0.14072 -0.14965 -0.15256 -0.15420 -0.16578 -0.17361 -0.17486 -0.17803

SPK-TZP-2012 -0.13663 -0.14443 -0.15925 -0.11865 -0.11978 -0.13447 -0.14427 -0.14835 -0.15092 -0.16461 -0.17017 -0.17129 -0.17328

SPK-ATZP-2012 -0.14094 -0.14621 -0.16249 -0.11831 -0.11978 -0.14050 -0.14939 -0.15240 -0.15401 -0.16489 -0.17335 -0.17467 -0.17787

Mean: -0.14123 -0.14658 -0.16358 -0.12086 -0.12058 -0.13993 -0.14942 -0.15277 -0.15459 -0.16946 -0.17492 -0.17610 -0.17896

σ : 0.00234 0.00270 0.00258 0.00324 0.00251 0.00291 0.00270 0.00238 0.00219 0.00472 0.00304 0.00302 0.00339

SE : 0.00052 0.00060 0.00058 0.00072 0.00056 0.00065 0.00060 0.00053 0.00049 0.00106 0.00068 0.00067 0.00076
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TABLE 3 Relative error (RE) of the calculated Renner Coefficients from the experimentally determined target value of ε = −0.1436
[5, 63]. The values below are percents (%). At the bottom of the table, for each functional, we compute the Mean Absolute Relative Error
(MARE) using Eq. (3). The individual REs are determined using the fractional argument of of the summation in Eq. (3). The standard deviation
of the mean (σ) is computed in the usual way from which the standard error (SE) is computed using Eq. (4). The left to right order of the
functionals is that of the top-down order in Fig. (3). The functional column labeled CB3LYP is shorthand for CAM-B3LYP.

Basis/Func M06-2X M06 TPSSh M06-HF M11 CB3LYP B3LYP PBE0 B3PW91 M06-L TPSS RevTPSS PBE MARE σ SE

aug-cc-pVTZ 1.282 -0.968 -13.508 14.178 15.231 1.897 -4.325 -6.337 -7.448 -15.705 -21.191 -21.946 -24.283 11.41 12.81 3.56

aug-cc-CpVTZ 1.381 -0.618 -13.389 17.140 15.860 2.062 -4.133 -6.190 -7.297 -14.735 -21.057 -21.817 -24.015 11.52 12.23 3.67

aug-cc-pVQZ -0.114 -4.639 -14.891 16.652 15.917 0.875 -5.457 -7.552 -8.727 -19.788 -22.636 -23.652 -25.543 12.80 13.82 3.83

aug-cc-CpVQZ 0.098 -4.731 -14.719 16.779 17.046 0.821 -5.507 -7.534 -8.717 -20.706 -22.451 -23.480 -25.651 12.94 14.04 3.90

aug-cc-pVDZ -2.189 -6.054 -18.357 12.670 12.714 -2.332 -9.051 -10.780 -11.839 -23.937 -26.736 -27.453 -30.256 14.95 14.19 3.94

cc-pVTZ 1.651 -1.127 -13.634 12.349 13.987 3.115 -3.322 -5.656 -7.239 -15.895 -21.440 -22.045 -23.301 11.14 12.45 3.45

cc-CpVTZ 2.848 -0.057 -12.309 15.952 15.911 4.406 -1.918 -4.469 -5.994 -14.515 -19.902 -20.574 -21.595 10.80 12.73 3.53

cc-pVQZ 0.180 -5.194 -14.194 13.697 13.969 1.503 -4.846 -7.031 -8.409 -19.857 -21.821 -23.041 -24.783 12.19 12.93 3.59

cc-pVDZ 3.669 -0.033 -14.646 19.446 21.416 5.716 -2.095 -6.281 -7.263 -21.250 -23.300 -23.767 -25.844 13.44 15.80 4.38

6-311G(p) 2.648 -2.788 -15.450 17.851 17.698 4.019 -3.634 -7.002 -8.315 -22.012 -24.080 -24.759 -26.604 13.61 15.17 4.21

G(pd) 2.648 -2.788 -15.450 17.851 17.698 4.019 -3.634 -7.002 -8.315 -22.012 -24.080 -24.759 -26.604 13.61 15.17 4.21

++G(pd) 0.408 -3.225 -16.637 16.562 16.369 1.220 -6.163 -8.653 -9.652 -22.924 -25.091 -26.130 -28.165 13.94 15.01 4.16

++G(2p2d) 1.405 -1.089 -12.498 15.074 15.455 1.989 -3.884 -5.604 -6.633 -18.140 -19.996 -21.237 -22.907 11.22 12.77 3.54

++G(2df2dp) 2.490 0.674 -11.410 16.589 15.580 3.079 -2.847 -4.481 -5.681 -14.108 -18.899 -19.798 -21.947 10.58 12.49 3.46

++G(3df3dp) 1.359 -0.956 -13.834 15.741 15.586 1.419 -4.869 -6.704 -7.803 -15.158 -21.560 -22.457 -24.770 11.71 13.19 3.66

Sadlej 0.680 -2.398 -14.440 9.970 15.092 1.376 -5.310 -6.704 -8.226 -18.757 -22.612 -23.134 -26.188 11.91 12.88 3.57

SPK-TZP 4.199 -1.157 -11.594 16.584 16.086 5.451 -1.369 -3.998 -5.778 -15.783 -19.264 -19.962 -21.495 10.99 12.88 3.57

SPK-ATZP 1.643 -1.945 -13.298 16.698 15.805 2.008 -4.211 -6.238 -7.382 -15.443 -20.896 -21.766 -23.973 11.64 13.14 3.64

SPK-TZP-2012 4.854 -0.576 -10.899 17.374 16.584 6.355 -0.469 -3.307 -5.099 -14.633 -18.504 -19.286 -20.668 10.66 12.82 3.56

SPK-ATZP-2012 1.850 -1.818 -13.157 17.611 16.584 2.159 -4.030 -6.130 -7.249 -14.825 -20.719 -21.639 -23.862 11.66 13.32 3.69

MARE: 1.65 2.14 13.92 15.84 16.03 2.79 4.05 6.38 7.65 18.01 21.81 22.64 24.62

σ : 1.63 1.88 1.79 2.26 1.75 2.02 1.88 1.66 1.52 3.29 2.12 2.10 2.36

SE: 0.36 0.42 0.40 0.50 0.39 0.45 0.42 0.37 0.34 0.74 0.47 1.93 0.53


